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Abstract

We introduce and study a family of generalized double-layer potentials which are used to build smooth and accurate approximants
for the signed distance function. Given a surface, the value of an approximant at a given point is a power mean of distances from the
point to the surface points parameterized by the angle they are viewed from the given point. We analyze mathematical properties
of the potentials and corresponding approximants. In particular, approximation accuracy estimates are derived. Our theoretical
results are supported by numerical experiments which reveal the high practical potential of our approach.
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1. Introduction

Singular integrals are central to many mathematical and
physical theories and constructions. In this paper, we use
singular integrals to construct smooth approximations of
distance functions. The paper is inspired by recent works
[15,8,4] where remarkable properties of the mean value
normalization function (the sum of the mean value weights
in the case of a polygon/polyhedron) were discovered and
studied. We introduce signed Lp-distance fields, simple
but useful generalizations of the mean value normaliza-
tion function, and exploit their properties to build smooth
approximations to the signed distance function.

For many applications, the exact distance field is not
needed and smooth approximations of the distance field
are employed. For example, in the area of solid modeling,
Shapiro and co-workers [2,27] discussed Ricci operations
[24] and used R-functions [26] for building approximate
distance fields from local approximations.

Fayolle et al. [10] developed smooth alternatives to the
classical min/max operations for constructing signed ap-
proximate distance functions. Very recently, Freytag et al.
[12] introduced sampled smooth approximations of a dis-
tance function and used them to enhance the Kantorovich
method [17,18] for computational mechanics purposes. In
image processing and computer graphics, Ahuja, Chuang,
and co-workers [1,6] and Peng et al. [22,23] introduced gen-
eralized potential fields and applied them for shape skele-
tonization and 3D texture modeling, respectively. It is also

worthwhile to mention very recent works [14,7] where the
distance function and geodesics are approximated by solu-
tions of certain partial differential equations.

Our approach is conceptually close to that of Ahuja
and Chuang (and, therefore, to that of Peng et al. who
re-introduced Ahuja-Chuang ideas for computer graphics
applications) but instead of using generalized Newtonian
potentials we introduce and study a family of general-
ized double-layer potentials and corresponding signed
Lp-distance fields.

There are several advantages of using generalized double-
layer potentials to compare with their single-layer counter-
parts. In particular,

(i) our signedLp-distance fields deliver smooth and accu-
rate approximations of the signed distance function;

(ii) exact formulas for the generalized double-layer poten-
tials generated by triangle meshes (polylines in 2D)
can be obtained;

(iii) mathematical properties of the generalized double-
layer potentials and their corresponding signed Lp-
distance fields are easy to analyze;

(iv) our generalized double-layer potentials can be con-
sidered as a generalization of the mean value normal-
ization function [8,4] and can be used for high-order
transfinite interpolation purposes.

It is interesting that singular integrals similar to the
double-layer potentials we deal with serve as a main build-
ing block for the so-called surface generalized Born model
in biomolecular modeling [13,25].



The purpose of this paper is to provide the reader with
insights into mathematical properties of Lp-distance fields
and reveal their high potential for various applications.

2. Generalized double-layer potentials

Consider a smooth oriented hyper-surface S ⊂ Rn and a
singular integral

φp(x) =
∫
S

ny · (y− x)
|x− y|n+p σ(y) dSy, p ≥ 0, (1)

where x is a point outside S, y ∈ S, ny is the orientation
normal at y, dSy is the surface element at y, and σ(y) is
a density function defined on S. The classical double-layer
potential corresponds to (1) with p = 0. If the electric
dipoles are distributed over S with density σ, then φ0(x) is
proportional to the electric field generated by the dipoles
at x.

Let us assume that σ ≡ 1 (i.e., the dipoles are uniformly
distributed over S) and introduce a generalized double-
layer potential by

ϕp(x) =
∫
S

ny · (y− x)
|x− y|n+p dSy =

∫
Ω

dΩy
|x− y|p

, (2)

where p > 0, Ω is the unit sphere centered at x, and dΩy is
the solid angle at which surface element dSy is seen from
x. We have used a simple relation

dSy = ρndΩy/h with ρ = |x− y| and h = ny (y− x) .

Here h is the distance from x to the plane tangent to S at y.
The two-dimensional analog of (2) can be written in polar
coordinates as

ϕp(x) =
∫ 2π

0

dθ

ρ(θ)p
, (3)

where θ is the angle between vector y − x and a fixed di-
rection.

Note that the surface integral in (2) is correctly defined
for an arbitrary smooth oriented surface S, while the in-
tegral over unit sphere Ω is properly defined if domain D
is star-shaped w.r.t. x. In order to drop this limitation for
the integral over Ω we follow a standard approach of alter-
nating signs (see, for example, [8,4]). Consider a ray origi-
nated at x and intersecting S at m points y1, . . . ,ym. We
set εi = 1 if the ray [x,yi) arrives at yi from the positive
side of S, εi = −1 if the ray approaches yi from the nega-
tive side of S, and εi = 0 if the ray is tangent to S at yi.
Now let us assume that |x− y|p in the denominator of the
integral over Ω in (2) means

∑
i εi |x− yi|

p. See the left and
middle images of Fig. 1 below for a visual explanation.

If S is a closed curve and p = 1 then (3) defines the nor-
malization function corresponding to the transfinite mean
value interpolation for the domain bounded by S. It is easy
to see that

ψp(x) = [1 /ϕp(x) ]1/p , p ≥ 1, (4)

vanishes as x approaches S.

Fig. 1. Left and middle: illustrations for the definition of ϕk(x). Right:

potential ϕk(x) generated by a segment ab and notations used.

3. Mathematical properties

In this section we formulate our main mathematical re-
sults which describe approximation properties of (4). See
Appendix A for proofs.

Denote by vn and an the volume of the unit ball in
Rn and the area of the unit sphere, respectively. We have
an = nvn, v0 = 1, v1 = 2, v2 = π, v3 = 4π/3, and an =
2πn/2

/
Γ(n/2), where Γ(·) is the Gamma function.

LetD be a domain in Rn bounded by a piecewise-smooth
surface S. Consider a family of functions dx(y) = ‖x− y‖,
y ∈ S, defined on S and parameterized by x ∈ D.

Proposition 1 We always have ψp(x) → dist(x), as
p→∞. In other words, ψ∞(x) = dist(x).
If dx(y) has continuous second-order partial derivatives
in a small vicinity of its global minimum, then

ψp(x)=dist(x)
[
1+

n− 1
2

ln p
p

]
+O

(
1
p

)
, as p→∞. (5)

If D is star-shaped w.r.t. x and 1 < p < q <∞, then

anψ1(x) > (an)1/p
ψp(x) > (an)1/q

ψq(x) > dist(x).

Note that typically the distance-function dx(y) is suffi-
ciently smooth in a small neighborhood of its global mini-
mum and, therefore, (5) is valid. A loss of differentiability
of dx(y) happens when x is sufficiently close to a concave
singularity (concave corner, concave edge, etc.) of S.

Although (5) is not fast, below we will see that, after a
proper normalization, ψp(x) delivers a very accurate ap-
proximation of dist(x) near S even for small p. Fig. 2 illus-
trates that in the simplest case of n = 1. As seen in the
left image, (an)1/p

ψp(x) converges to dist(x) from above
as p→∞. However a different normalization of ψp(x) (no
normalization is needed if n = 1) allows us to obtain a
much better approximation dist(x) near the boundary.

Fig. 2. Approximate distance functions (an)1/p ψp(x) (left) and ψp(x)
(right) defined for [0, 1] (n = 1). See the main text for details.

Let us introduce the following sequence:
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c0 = an/2, c1 = vn−1, cp+2 =
p+ 1
p+ n

cp (6)

and define

Ψp(x) = [cp]
1/p

ψp(x) = [ϕp(x)/cp]
−1/p

.

Proposition 2 Let n be the outer normal for S = ∂D.
If x ∈ ∂D then

Ψp(x) = 0, ∂Ψp(x)/ ∂n = −1.

If ∂D contains a planar part and x is an internal point
of that planar part, then, in addition,

∂sΨp(x)/ ∂ns = 0, s = 2, 3, . . . , p.

A simple asymptotic analysis of (6) yields

[cp]
1/p = 1− n− 1

2
ln p
p

+O

(
1
p

)
, as p→∞,

which, in view of the last statement of Proposition 1, gives

Ψp(x) = dist(x) +O (1/p) , as p→∞. (7)

Note that, according to Proposition 2, if x is near a flat part
of ∂D, Ψp(x) converges to dist(x) much faster than (7).

Our last theoretical result is presented below. In partic-
ular, it implies that the shapes of the graphs of ψp(x) and
Ψp(x) are similar to that of dist(x).

Proposition 3 We have

∆ϕp(x) = p(p+ n)ϕp+2(x)

and, therefore, ψp(x) has no local minima inside D.

Note that the gradient and the other derivatives of ϕp(x)
can be easily obtained by differentiating (2) by x as many
times as needed.

4. Singular potentials for polylines and meshes

Let us start from the 2D case and consider the general-
ized double-layer potentials generated by oriented segment
ab. Given point x, γ = γ(x) is the angle between xa and
xb, where a and b are the distances from x to a and b, re-
spectively, and ρ(θ) is the distance from x to point y ∈ ab.
See the right image of Fig. 1 for a visual illustration of the
notations used.

The area of 4xab is equal to the sum of areas of 4xay
and 4xyb. We have

ab sin γ = aρ(θ) sin θ + bρ(θ) sin(γ − θ),
which gives an explicit expression of ρ(θ)

ρ(θ) =
ab sin γ

a sin θ + b sin(γ − θ)
.

Then the generalized double-layer potential ϕp(x) gener-
ated by the segment is given by

ϕp(x) =
∫ γ

0

dθ

ρ(θ)p
=

1
(ab sin γ)p

∫ γ

0

(a sin θ+b sin(γ−θ))pdθ.

For an arbitrary positive integer p, the value of this integral
can be evaluated symbolically (for example, one can use
Maple or Mathematica for that). If p is odd, the integral
can be expressed as a polynomial of degree p of the variable
t, where t = tan(γ/2). In particular,

ϕ1(x)=
[

1
a

+
1
b

]
t, ϕ3(x)=

t

3

[
1
a3

+
1
b3

]
+
t+ t3

6

[
1
a

+
1
b

]3

.

Note that ϕ1(x) is the weight corresponding to ab and
induced by the mean value coordinates [11,15].

If p is even, then more complex expressions are obtained
for ϕp(x), except the case when p = 0: ϕ0(x) = γ(x) is the
standard double-layer potential induced by ab.

As expected, in the 3D case, the situation is more com-
plex. Let S be a triangulated surface and abc ∈ S be a
mesh triangle. While ϕ0(x) is just a solid angle at which
abc is seen from x and the formula for ϕ1(x) generated by
the triangle abc is presented in [16], deriving a closed-form
expression for ϕp(x), p > 1 is a difficult and tedious task.
Fortunately, a clear way to obtain analytical expressions for
a family of singular integrals including ϕp(x) was proposed
very recently in [5].

Given a polyline in 2D (triangle mesh in 3D), the poten-
tial ϕp(x) at point x is obtained by summing the contribu-
tions of the polyline segments (mesh triangles).

5. Numerical experiments

In Fig. 3, we provide the reader with a visual comparison
of the level sets of dist(x) with those of Ψ1, Ψ3 and Ψ5 for
sufficiently complex planar polylines. We observe that the
approximation quality improves quickly as k increases.

Fig. 4 visualizes the relative error between dist(x) and
ψp(x) and between dist(x) and Ψp(x) (normalized Lp-
distance), p = 1, 3, 5, for a squared domain. As before, the
error goes down quickly as p increases. One can observe
that the approximation error is relatively high near the
corners.

Fig. 4. Estimating the distance function inside and outside a unit

square. The first row corresponds to the relative error between the

exact signed distance and ψ1, ψ3 and ψ5 respectively. The second
row uses the normalized functions: Ψ1, Ψ3 and Ψ5 instead.

In Fig. 5, we investigate the approximation properties of
Lp-distance fields near a corner (as before, we calculate the
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Fig. 3. Polygon approximations of two shapes used in our experiments (left-most images). The polylines consist of 201 and 29 segments
respectively. Contour plots for: the signed distance, Ψ1, Ψ3 and Ψ5 for a 2D polyline (columns 2 to 5). Ψ5 (right-most images) provides

already a good approximation of the distance function (second column). Note that the hole for the letter A is properly handled.

Fig. 5. Relative errors between the exact signed distance and Ψ5 for

various opening angles between two segments. The angles vary be-

tween 0◦ (top row, left column) and 45◦ (bottom row, right column).

relative error). As expected, the approximation accuracy
in a small vicinity of a corner point is lower than it is near
an internal point of the segment. Further, the relative er-
ror increases on the reflex side of the angle, as the angle
becomes sharper. However, even for a sharp corner, the ap-
proximation accuracy quickly improves, as k increases. Fi-
nally, Fig. 6 illustrates our approach in 3D with the relative
error between dist(x) and Ψ2(x) plotted on cross-sections
of 3D objects.

Fig. 6. Relative errors between dist(x) and Ψ2(x) for a cube (left)
and the rocker-arm model (right).

6. Discussion and conclusion

In this paper, we have introduced a family of gener-
alized double-layer potentials and their corresponding
Lp-distance fields. They possess interesting mathematical
properties, and, in particular, the Lp-distance fields de-

liver smooth and accurate approximations of the distance
function.

A practical computation of Lp-distance fields can be ac-
celerated by using a hierarchical approach similar to that
developed in [9]. Another possibility is to approximate po-
tentials via fast multipole expansions [19].

The ability of Lp-distance fields to deliver accurate ap-
proximations of the distance function not only near the
boundary of the object but also deep inside the object (a
task which R-functions do not handle well, as demonstrated
in [10]) makes them potentially useful for heterogeneous
object modeling [3,10].

We also foresee potential applications of the Lp-distance
fields in computational mechanics where some new promis-
ing computational techniques rely on constructing accurate
and efficient approximate smoothed distance functions and
their derivatives [12, Section 3.2].

Acknowledgements. We would like to thank the
anonymous reviewers of this paper for their valuable and
constructive comments.

Appendix A

Proof sketch for Proposition 1. Let x ∈ D be fixed,
Ω is the unit sphere centered at x, and k → ∞. We have
according to Laplace’s method [28, Chapter IX, § 5]

ϕk(x) =
∫

Ω

dΩ
ρk

=
∫

Ω

exp
{
k ln

1
ρ

}
dΩ =

C1 + o(1)
k(n−1)/2

1
ρkmin

,

where ρmin = dist(x). Thus

ψk(x) =
[

1
ϕk(x)

]1/k

= dist(x)
[
k(n−1)/2

C1 + o(1)

]1/k

= dist(x) [C2 + o(1)]1/k
(
k1/k

)(n−1)/2

, as k →∞,
where C1 and C2 are positive constants. It remains to note
that, as k →∞,(
k1/k

)n−1
2

= exp
{

(n− 1) ln k
2k

}
= 1+

n− 1
2

ln k
k

+O
(

1
k

)
.
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Above, we assumed that dx(y) = ρ = ‖x − y‖ has con-
tinuous second-order partial derivatives in a small vicinity
of its global minimum. This may be not true if x ∈ D is lo-
cated near a reflex singularity (e.g., a reflex angle or edge)
of S = ∂D and the minimum of dx(y) is achieved for y sit-
uated on that singularity. In that case, weaker asymptotics
can be derived [21] (see also [20, Theorem 2.1]). However
convergence ψk(x)→ dist(x), as k →∞, remains true.

Now let us assume that D is star-shaped w.r.t. x ∈ D.
An integral version of Jensen’s inequality states that

F

[
1

µ(R)

∫
R

f(y) dµ(y)
]
≤ 1
µ(R)

∫
R

F [f(y)] dµ(y),

where R is a measurable set with finite positive measure µ
and F (t) is a convex function. Let 1 < p < q <∞, F (t) =
tq/p, R = Ω be the unit sphere in Rn, and f(y) = (1/ρ)p,
where ρ = ‖x− y‖. Since F (t) is strictly convex, we have[

1
an

∫
Ω

dΩy
ρ p

] 1
p

<

[
1
an

∫
Ω

dΩy
ρ q

] 1
q

, [an]
1
p ψp(x) > [an]

1
q ψq(x).

Proof sketch for Proposition 2. First let us consider
the 2D case and study an asymptotic behavior of potential
ϕ1(x) generated by a single segment ab. See the left image
of Fig. 7 for notations used. Assume that h, the distance
from x to ab, is small: h� 1. We have γ = π − α− β,

a(h) = a+O(h2), α = arctan (h/a) = h/a+O(h2),

b(h) = b+O(h2), β = arctan (h/b) = h/b+O(h2),

tan
γ

2
=

2ab
a+ b

1
h

+O(h), ϕ1(x) =
2
h

+O(h).

Fig. 7. Notations used for asymptotic analysis of potentials ϕk(x)
generated by a segment (left) and convex and concave circular arcs

(middle and right, respectively).

In the 2D case, for a single straight segment, we have

ϕk(x) =
∫

dθ

ρ(θ)k
=
∫

h dsy
ρ(θ)k+2

, ρ = |x− y|.

Note that

ρ =
√
h2 + z2,

∂ρ

∂h
=
h

ρ
,

∂

∂h

(
1

ρk+2

)
= − (k + 2)h

ρk+4
,

∂

∂h

(
h

ρk+2

)
=

1
ρk+2

− (k + 2)h2

ρk+4

(see the left image of Fig. 7 for the notations used). Thus

(k + 2)ϕk+2 =
1
h2
ϕk −

1
h

∂ϕk
∂h

. (8)

Note thatϕk(x) is odd w.r.t. h. Thus the expansion ofϕk(x)
w.r.t. h� 1 contains only odd degrees of h. For example,

ϕ1(x) = 2h−1 + a1h+ a3h
3 + a5h

5 +O
(
h7
)
, h→ 0.

Then (8) implies that

3ϕ3(x) = 4h−3 − 2a3h− 4a5h
3 +O

(
h5
)
.

One can observe that the right-hand side of (8) kills the
term linear w.r.t. h in the expansion ofϕk(x) and, therefore,
the expansion of ϕk+2(x) w.r.t. h contains only one growing
term. Mathematical induction yields

ϕk(x) = ck
/
hk +O(h)

with ck defined by (6), where singular potential ϕk(x) is
generated by segment ab and x approaches an internal
point of ab. For the potential generated by a polygon con-
taining segment ab, we have a slightly bigger remainder:

ϕk(x) = ck
/
hk +O(1), as h→ 0,

as the contribution of the other segments of the polygon is
O(1). Thus

Ψk(x) = [ck /ϕk(x) ]1/k = h+O
(
hk+1

)
, as h→ 0.

In particular, if x is an internal point of ab, we have

∂sΨk(x)/ ∂ns = 0, s = 2, 3, . . . , k.

Now let us consider a domain D with a smooth bound-
ary S oriented counterclockwise (see the middle image of
Fig. 7 for the notations used). Consider a point x ∈ D at a
distance h � 1 from S and assume that the curvature of
S is positive in a vicinity of x. Let ab be a circular arc os-
culating S at the point closest to x such that the segment
ab is perpendicular to the direction from x to its closest
neighbor on S, as seen in the middle image of Fig. 7. Let
us also consider another circular arc cd such that it is sit-
uated inside D, ab and cd are collinear, and the direction
from x to its closest neighbor on S is the bisector for cd.

Now we approximate ϕk(x) given by (3) by the sum of
integrals of 1/ρ(θ)k over the circular arcs ab and cd. Note
that, as x approaches S, the osculating arc ab delivers a
better and better local approximation of S and the leading
term in asymptotics ϕk(x), as h → 0, is the same as that
in the integral of 1/ρ(θ)k over the circular arc ab.

Let R be the radius of the osculating circle. The law of
cosines and simple algebraic manipulations yield

Ik(h) =

π/2∫
−π/2

dθ

ρ(θ)k
=

π/2∫
−π/2

dθ[√
R2 − (R− h)2 sin2 θ − (R− h) cos θ

]k
=

∫ π/2

−π/2

[√
R2 − (R− h)2 sin2 θ + (R− h) cos θ

]k/[
2Rh− h2

]k
dθ

=
1

hk

∫ π/2

−π/2
cosk θ dθ +

k

2Rhk−1

∫ π/2

−π/2
cosk−2 θ sin2 θ dθ +O

(
1

hk−2

)
which implies that

Ik(h) = ck h
−k + dk h

1−k/R+O
(
h2−k) , as h→ 0. (9)
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with ck =
∫ π/2

−π/2
cosk θ dθ and dk = ck−2/ 2.

The case of negative curvature (see the right image of
Fig. 7) is considered similarly:

1
/
ρ(θ)k =

[
(R+ h) cos θ −

√
R2 − (R+ h)2 sin2 θ

]−k
=

[
(R− h) cos θ +

√
R2 − (R+ h)2 sin2 θ

]k/[
2Rh+ h2

]k
.

The integration limits are −α and α, where 2α is the angle
made by the two rays originating from x and tangent to the
osculating circle, sinα = R/(R+ h). This leads to

Ik(h) = ck h
−k − dk h

1−k/R+O
(
h2−k) , as h→ 0. (10)

Asymptotics (9) and (10) suggest that the second term is
proportional to the curvature of S at the point closest to x.

In the nD case, for a single (n − 1)-dimensional mesh
tetrahedron (a mesh triangle in 3D), we have

ϕk(x) =
∫
dΩy
ρk

=
∫
h dSy
ρk+n

, ρ = |x− y|.

So we arrive at a generalization of (8) for the multidimen-
sional case

(k + n)ϕk+2(x) =
1
h2

ϕk(x)− 1
h

∂ϕk(x)
∂h

.

It is shown in [4] that ϕ1(x) = vn−1/h + O(1), as h → 0,
which justifies that c1 = vn−1 in (6).

The multidimensional case of smooth S is much more
computationally demanding and can be analyzed by using
osculating paraboloids for local approximations of S.

Proof of Proposition 3. Differentiation of (1) w.r.t x
yields

∆φk(x) = k(k + n)φk+2(x).

For k = 1 and σ(y) ≡ 1 this formula coincides with
that obtained in [4]. Obviously φk(x) is positive if surface
generalized-dipole density σ(y) is positive. Assume that
φk(x) has a local maximum at some point inside the do-
main bounded by S. Then ∆φk(x) ≤ 0 at that point. We
arrive at a contradiction which completes the proof.
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