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Abstract — For the simulation of practical diver-
sity combined fading channels, multiple-input multiplie-
output (MIMO) channels, and space-time-selective
fading channels, it is desirable to produce multi-
ple Rayleigh fading processes with specified cross-
correlations. Based on the deterministic sum-of-
sinusoids (SOS) channel modeling approach, we have
developed a simple efficient procedure for generat-
ing an arbitrary number of cross-correlated Rayleigh
fading processes. It is demonstrated by numerical
and simulation results that the resulting deterministic
channel simulator can accurately reproduce all of the
desired statistical properties, such as the autocorrela-
tion functions {ACFs), the cross-correlation functions
(CCFs), and the phase properties.

1. INTRODUCTION

Multiple correlated Rayleigh fading signals are com-
monly cncountered in wireless communication systems,
sucl as MIMO systems, space-time-selective systems, di-
versity systeins, and multicarrier code-division multiple ac-
eoss (MC-CDMAY) systems. For convenience, researchers
stmulacing these systems have rvpically assumed thaf the
received signal envelopes are uncorrelated. However, the
fadings experienced by different diversity branches are of-
ten correlated due to restricted antenna spacing in space
diversity svstems and insufficient frequency separation in
tfrequency diversity systems. Also, significant correlations
way exist among subcarrier fades when the number of
carricrs notably exceeds the degree of system diversity in
practical MC-CDMA systems. Therefore, efficient and ac-
curate computer simulations of multiple cross-correlated
Ravleigh fading chanuels are of great importance for real-
istic performance assessments of those gystems.

Tu the literature. different methods have been presented
for the generation of two [1, 2] or any number [3-8] of cor-
related Ravleigh fading processes. Among them, channel
simnlators based on the filter method [5], the mverse dis-
crete Fourler sransform (IDFTY method [6, 7], and the au-
roregressive (AR) method [8] have become popular. How-
ever, the filter inethod does not provide precise matching of
the desived statistics. The IDFT method requires a large
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storage for the generation of a large number of random
variants. The stochastic AR models are known to be high
quality fading channel simulators, while they have to pay
relatively high comrputational efforts. The deterministic
S0CS channel modeling approach {9-12] is an established
method for simulating Rayleigh fading channels. To the
best of authors’ knowledge, how to use the deterministic
508 method to generate an arbitrary number of correlated
Rayleigh fading processes has not been reported in the lit-
erature to date.

In the present study, a generic procedure for producing
multiple cross-correlated Rayleigh fading envelopes will be
described. For this purpose, multiple uncorrelated fading
processes with given ACFs are first generated by properly
choosing the discrete Doppler frequencies of the determin-
istic SOS channel simulator. Then, a linear transformia-
tion (LT) is applied to produce the desired multiple fad-
ing processes with specified CCFs. The simulated corre-
lated facding envelopes, the corresponding phase processes.
the ACFs, and the CCFs will be illustrated. Compared
with other fading channel simulators, our model stands out
with the ability of both accurate reproduction of all of the
degired statistical properties and efficient implementation
due to the retained deterministic nature.

The remainder of this paper is organized as follows. In
Section I1, a design method for the generation of correlated
Rayleigh fading processes is described. A correspondiug
simulation model based on the deterministic SOS channel
modeling approach is presented in Section III. Section IV
gives some simulation results and discussions. Finally, the
conclusions are drawn in Section V.

II. DEsigN METHOD

It is well known that a Rayleigh process is obtained by
taking the absclute value of a zero-mean complex Gaus-
sian random process. Our goal is to generate £ complex
Gaussian random processes with specified ACFs and any
desired cross-correlations. The idea is simply to factorize
the given correlation matrix, followed by a LT of £ uncor-
related complex Gaussian random processes [4, 13].

Let us denote the desired £th (£ =1,2, ..., L) Rayleigh
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facding process by z4(t), which is given by
ze(th = lye(D] = |yre(t) + Jya.e(8)] - (1)

Hereo ye(t) i3 a complex Gaussian random process with
meal zero, 165 liphase component vy ¢{t) and quadrature
component yo o) are independent real! Gaussian noise pro-
cesses with identical variances o7 and ACFs. A widely ac-
cepted reference model assumes that the plane waves prop-
agate in a two-diensional (2-D} environment and arrive
at the omnidirectional receive antenna from all directions
with equal probability. This model is conunonly referred
to ay Clarke’s 2-D isotropic scattering model [11, 14]. In
this case, the Doppler power spectral density (PSD) of the
svattered components ye(t) has the well-known U-shaped
brandlimited form

2"]2-
b'y, i (j) = { m * Ff| S fm.a.::: (2)
0 * |f| > fmaa:

where foae 18 the maximum Doppler frequency. The in-
verse Fuurier transtorm of Sy, (f) results in the corre-
sponding ACFE ry, ,, (7) of ye(t)

Fyow (T) = 205 J0 (27 FrnaaT) (3)

where Jo(-} devnotes the zeroth-order Bessel function of the
firse kind.

Now. suppose that the desired correlation matrix W
of the complex Gaussian random processes ye(f) (f =
1.2,....£) Is given by

1220 I ) PR 2 Vil
P21 Pz o Pac

W o= o . (4)
Py P2 ot Pl

I (4). each entry pey (LA =1,2,. ... L) of the matrix W
is ealled the correlation coefficient (the normalized correla-
tion function at the origin} bhetween the complex Gaussian

random processes ye(t) and y(t). i.e.,

pix = Pyeps (7) oo . (5)
Py (T gy (7)
Apparently, pge = 1 and pey = pae heold for all £ =
1.2..... L. Consequently, W = W7 holds, where T indi-
cates the matrix transpose. Therefore, W is a symimetric
matriy with unit diagonal values.

Next, a generic procedure will be provided to enable
the generation of the above £ correlated compiex Gaus-
sian randon processes ye(t) (€ =1,2,....L}). To this end,
wa could start by generating £ independent complex Gaus-
sian random processes with the ACFs given by (3). Then,
these uncorrelated processes will be combined in a weight-
ing newwaork {or a coloring matrix} to achieve the desired
correlated processes.

Let us denote the £ statistically independent com-
plex Gaussian random processes as pg(t) (f=1,2..... L).
The inphase component p; o{f) and quadrature coniponent
o ¢(t) iave zero mean and common variance af. It follows
that the magnitude of the complex Gaussian random pro-
cess Co(8) = lpe(t)] has a Ravleigh distribution. The ACF
of pe(t) is given by

7".u‘u.tr(T) = QJng(wamMT) (6)

while the CCF between pp(#) and py(t) is 7., {7) = 0
for £ & Xand 2.4 = 1,2,...,£. Then, the desired cross-

correlated complex Gaussian random processes ye(t) can
be generated as a linear combination of pe(t) [13)

() = () +eopa(t) + o Fargpelt)
v2(t) = carpnlf) + conpn(t) + ook cogpie(t)
yel(t) = ecyn () +egapa(t) + -+ coopelt)

(7)
where the quantities cgr (£.k = 1.2, ..., L) are real values.
In matrix form, {7} can be rewritten as

Y =Cu (8)
where Y = [1n(t) we(t) pe@”, U =
[1 () pa(8) - pe()], and

Al G2 o G
C21 G2 - Cag

C = (9
CL1 Gz o Cog

is called the coloring matrix. It follows from (7) that the
ACF of ye{t} is computed by
c

rg‘,‘:yr-(r) = Z Cﬁf\?"ﬂkl"k t"—) - (l())
k=1

Since the ACFs vy, ,,, (1) areidentical forall k = 1,2... .. L

[see (6)],
L

Tyoye (T) = Tppp (7) Z C?}; (11)

k=1
holds. Under the assumption that vy, (7) = v, (7) [see
(3) and (6)] holds, each row of the matrix C has to fulfill
the following condition

c
dNp=1, t=12...L. (12)
k=1

From (7), it can also easily be shown that the CCF be-

tween ye{t) and ya(t) for £ £ A (£, A =1,2,....L) can he
expressed as

C
Tyrya (T) = 'T,_L‘,#‘.(T) Z CekCrk - (13)
k=1 .
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The expression (13) clearly indicates that the CCFs of any
pair of cross-correlated Gausstan random processes ye(t)
generated by the above approach are restricted to have
the same shape as the ACPEs of the underlying indepen-
dent Gaussian processes pe(t). According to (5), the cross-
correlasion coefficient pgy between ye(t) and yy(t) is given

by
L

Pin =D CoxCak - (14)
k=1
From {12} and {14}, the following matrix form expression
can be obtained

W =0CCT . (15)

The confronted problem now is to find the coloring matrix
C given the symmetric correlation masrix W. A solution
to this problem is the Cholesky decomposition [15], which
recpiires the matrix W to be positive and definite. Hence,
C 1s the Cholesky factorization of W satisfying (15).

The procedure for generating £ correlated Rayleigh fad-
ing processes ze{f) (# = 1,2,....L) is summarized as fol-
lows. We first generate £ uncorrefated complex Gaussian
rancom processes pee(t) with the specified ACFs. Then, we
determine the coloring matrix C from the desired correla-
tion watrix W by applying the Cholesky decomposition.
The resulting coloring matrix C is a lower triangular ma-
rrix such that CCT = W holds. The correlated complex
Gaussiau random processes ye(t) (£ = 1,2,..., L) are ob-
tained by a LT of pe(t), as shown in (7) or {8). At last,
raking the maguitude of each yp{t) will result in the £ de-
sived cross-correlated Rayleigh fading processes z.(t).

II1. DETERMINISTIC SIMULATION MODEL

In thiz section. an efficient deterministic SOS simu-
lation model is presensed. The generic procedure de-
scribed in Section II will be followed here. According to
[12. 16, 17], each of the £ mutually uncorrelated complex
Gaussian random progesses can be modeled as:

fe(E) = fiy,e(2) + jfi2.e(t) (16)
where
N
ﬂ‘f.#'(t) = Z Cin.d COS(Qﬂ-f‘l.n.Et -+ 61‘.",3) 3 i= ]-: 2. (17}
n=1

Here. N defines the number of sinusoids, mainly deter-
wining the realization expenditure and the performance of
the channel simulator. In (17), ¢; 4.0, fin.e, and 6;, ¢ are
called the Doppler coefficients, the discrete Doppler fre-
guencies, and the Doppler phases, respectively. These sim-
ulation maodel parameters have to be determined in such a
way that the statistical properties of the simulation model
call approximate as close as possible the desired theoreti-
cal statistics. It is worth mentioning that the parameters
Gide fine, and 8; ¢ will be initialized during the simula-
sion sexup phase. Afterwards, they are known quantities

and are kept constant during the whole simulation run
phase. Conseguently, ft¢(t) is a deterministic function and
the resulting channel simulator is of deterministic navure.
The ACF of fig{t} is given by

2
Foaone (T) = D T o (7) (18)
i=1
where
N C2
Frsepio(TH= Z _12'2 cos(2mf; e7) - (19)

n=1

In order to ensure that ¥, ., () = 0 and 7., (7) =0
forall £, A=1,2,..., £ and £ # A, the following condition
for the design of the discrete Doppler frequencies f; ,, ¢ has
to be fulfilled [12]

fz.n,e % ifj.ﬂl,/\ (20)
where 4,7 = 1,2, n = 1,2,....Nyy, m = 1,2,. .. Ny,

i=j and £ = A cannot hold at the same time. In [L7}, two
parameter computation methods, namely, the method of
exact Doppler spread (MEDS) and the L,-norm method
{LPNM), have been investigated in detail concerning how
to satisly the inequality (20). For completeness, these two
methods are brieflv reviewed in the following.

By using the MEDS [12], ¢;.n.¢ atid fin.e are given by
2

., (21)

Ci;n.t = 00

and

fi.n.E = fma;r,Si]l1:

respectively, while 8; » ¢ are the outcomes of a random gen-
erator uniformly distributed over (0,2#]. The condition
{20) can be fulfilled if and only if the number of sinusoids
N; ¢ are chosen in such a way that

Ni‘g 2n —1
N 2m—1

holds [17]. Note that relatively large values have to be
chosen for V;, when simulating more than 4 (£ > 4) un-
correlated fading processes, which results in an inefficient
implementation of the channel simulator. This disadvan-
tage can be avoided if we replace f; ¢ by fine+ e when
(23) 1s not fulfilled for only few pairs of (n,m) [17]. Here,
£ is a very small random variable which guarantees that
Jine # ifj,m.)\ and fin-1.2 < fine+e< fing1.e hold.
For the LPNM [12], ¢;.n,¢ and 8;., ¢ in (17) are the same
as those given for the MEDS, while the quantities f; , ¢ are
determined by minimizing the following error norm

S| )

(23)

Tas 1/p

IT#er (T) - Fuf;u« (T)lpdT

EW® 1

Tm ax

p=172... (24)
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where 74, defines an upper boundary value up to which
the approximation of i, 4, (7) is of interest. An optimized
set of discrete Doppler frequencies fi ¢ will be attained
by applving a proper numerical optimization procedure.
The inequality (20) can easilv be satisfied by carrying out
the optimization under any ol rhe following four conditions
i171: 1) choosing N, ¢ such thar the relation Nyp # Nj 3
Lolds. 2) minimizing {24) by using different values of p,
3) miniinizing (24) with different values of Ty, and 4)
winimizing {24) by using different starting values for f; ., .

Once multiple uncorvelated processes fig(t) are gener-
ated. the desired multiple cross-correlated processes ge(t)
can be avcomplished by a LT of fi.(t) as follows

Y =CU (25)

where Y = [i1(t) () g, U =
[Au(t) Ao(t) - jz(®)]7, and C is given by (9). It can
easily be shown that the ACF of §(¢} and the CCF be-
wween §e(t) and Ga(t) (LA = 1,2,- . L and £ # A} are

given by

c
Py (T = Z C?k’m‘mmv('r) (26}
h=1
and
L
Py (T} = Z CekCAkT g (T) {27}
k=1

respectively.
IV, RESULTS AND DISCUSSION

In: this section. we demonstrate the ability of the deter-
mintseic SOS chanuel modeling approach to accurately and
efficiently simulate multiple cross-correlated Rayleigh fad-
ing processes. As an example, we consider the generation
of £ =3 fading processes with specified cross-correlation
cocficients g2 = 0.9, g3 = 0.8, and pxy = 0.6 [5].
The resuiting lower trianguiar coloring matrix C from the
Cholesky decomposition of W is as follows:

1 0 0
C =09 04359 0 : (28)
0.8 —0.2753 0.5331

Fig. 1 impressively illustrates the precise matching be-
tween the theoretical ACFs vy, (7) (£ = 1,2,3) and the
approximate ACFs 7y, {7) by using the MEDS and the
LPNM. The numbers of sinusoids for the MEDS were cho-
sen as follows: Ny =8, Noy =9, Nio =10, Nog = 12,
Nig = 16, and Ny 3 = 32, For the LPNM, N; , = 10 was
chosen for all i = 1.2 and £ =1,2.3. The MEDS was em-
ploved to get the starting values of f;,,¢. The upper limit
for the integral in (24) was given by Tra, = 0.0549 5. The
optimization of the ACFs 7, (7), Fus0 (1), and 7,0, (7)
was based on the error norms EW withp =1, p = 2,
and p = 3, respectively. For the LPNM, it is obvicus that
the ACFs 7,y (7) are almost identical since N;p = 10 was

chosen for all i = 1,2 and £ = 1, 2,3. Due to the fact that
different values of N, ; have to be selected when using the
MEDS, the ACFs 7y,y, (7} differ from each other. However,
the performance of all 7y, (7) (£ = 1,2,3) is determined
by the smallest, value of N, ¢, which is given by Ny, = 8.
Consequently, the LPNM provides a better approximation
ta ryoy, (7) than the MEDS for the given numbers of sinu-
soids. The CCFs of the reference model and the simulation
model by using the MEDS and the LPNM are compara-
tively plotted in Fig. 2. Again the LPNM has a better
performance than the MEDS for the given numbers of si-
nusoids. It is important to mention that the approximation
results of the ACFs and CCFs illustrated here are much
better than those presented in [5]. -

Fig. 3 shows the simulated fading envelopes for three
processes by using the LPNM with o2 = 1/2, fames = 91,
and N; ¢ = 10. The envelopes are quite similar for the high
correlation coefficient, while appear to be nearly uncorre-
lated for the low correlation coefficient. The corresponding
simulated phase processes are presented in Fig. 4, demon-
strating that the generated deep amplitude fades have cor-
responding hits in the phase process. This important prop-
erty is a major concern of some applications such as fading
channel equalizer design [18].

V. CONCLUSION

In this paper, it is shown how the deterministic 303
channel modeling approach can be applied for accurate and
efficient simulation of multiple cross-correlated Rayleigh
fading channels. The simulated processes have the at-
tractive properties that their ACFs and CCFs perfectly
match the desired ones. Also, our channel simuiator can
reproduce the important behavior that the phase changes
markedly during deep fades. The described procedure will
be useful for simulating, e.g., practical diversity channels,
MIMO channels, and space-time-selective mobile fading
channels.
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Fig. 2. The CCFs of the reference model and the simulation model
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Fig. 1. The ACFs of the reference model and the simulation model
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Fig. 4. Correlated fading phases by using the LPNM (¢2 = 1/2.
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