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Absiract - Simulating space-time-selective fading
channels, multiple-input multiple-output (MIMO)
channels, frequency-selective and diversity-combined
fading channels often requires the generation of mul-
tiple uncorrelated Rayleigh fading waveforms. In
this paper, it is shown how the deterministic chan-
nel modeling approach can be applied to simulate
multiple Rayleigh fading processes correlated in time,
but uncorrelated between processes. Two appropriate
parameter computation methods are investigated to
guarantee the uncorrelatedness between different sim-
ulated fading processes. Numerical results show that
the resulting deterministic channel simulator can ac-
curately reproduce all of the desired statistical proper-
ties of the reference model. Moreover, three different
‘'procedures are presented to enable the efficient gen-
eration of multiple sequences of Rayleigh fading pro-
cesses uncerrelated in time and between sequences.
These methods are useful for simulating perfect inter-
leaving channels.

1. INTRODUCTION

Computer simulation of multiple uncorrelated fading
processes has become the subject of considerable research
effort due to the increased interest in using smart antennas
or multiple antennas to improve the reliability of wireless
communication systems. Simulators which enable the ac-
curate and efficient generation of multiple uncorrelated
fading processes are -therefore of theoretical and practi-
cal importance. As well as being useful for simulating
general space-time-selective fading channels and multiple-
input multiple-output (MIMQ) channels, this capability is
also desirable, for example, to simulate frequency-selective
and diversity-combined fading channels.

Jakes' deterministic channel simulator [1] has widely
been used for simulating time-correlated Rayleigh fading
channels. However, it is difficult for Jake’s simulator to
create multiple uncorrelated fading waveforms. Different
modifications of Jakes’ simulator are therefore presented
in [2-5], but they still retain some undesirable proper-
ties. In this paper, we apply the deterministic sum-of-
sinusoids channel modeling approach [6-8] to simulate
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multiple uncorrelated Rayleigh fading processes by appro-
priately choosing the discrete Doppler frequencies. Its ad-
vantage over other forms of fading simulators in [1-5] lies
in both accurate reproduction of all of the desired statis-
tical properties of the reference model and efficient imple-
mentation due to the retained deterministic nature. Two
parameter computation methods {8] are revisited concern-
ing how to design the discrete Doppler frequencies in such
a way that they are disjoint (mutually exclusive) for dif-
ferent simulated processes, which guarantees the uncorre-
latedness between different processes.

For the simulation and performance evaluation of
coded communication systems, it is sometimes also desir-
able to produce multiple sequences of Rayleigh fading pro-
cesses uncorrelated in time and between sequences. The
independent fading in different symbols is established by
means of perfect interleaving/deinterleaving. In this case,
the channel is considered as memoryless, and the output
of the channel can be regarded as a sequence of indepen-
dent and identicalty distributed (i.i.d.) random variables.
In this paper, three modeling methods will be presented
to enable the efficient generation of multiple uncorrelated
iid. Rayleigh sequences.

II. GENERATION OF MULTIPLE UNCORRELATED
RAYLEIGH FADING PROCESSES

The confronted task at hand is to simulate multiple
Rayleigh fading processes correlated in time, but uncorre-
lated between processes. Ideally, these Rayleigh processes
should fulfill the following conditions: 1) The inphase and
quadrature components of each underlying complex Gaus-
sian random process are zero-mean independent Gaus-
sian processes with identical variances and autocorrelation
functions (ACF's); 2) the cross-correlation function (CCF)
of any pair of Rayleigh processes must be zero. )

Suppose now that the desired fth (£ = 1,2,...,L)
Rayleigh fading process (,(t) is given by

Co(t) = |pe(t)] = |pn,e(t) + Fpe2,(2)] (1)

where 1¢(1) is a zero-mean complex Gaussian random pro-
cess, pi1,¢(t) and pge(t) are uncorrelated real Gaussian
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random processes with common variance ¢f. The am-
plitude probability density function (PDF) of ¢.(t) is the
following Rayleigh distribution

x z?
plx) = ;eXP(—m), >0, (2)

0
According to Clark’s reference model [1, 9], the prop-
agation environment is assumed to be two-dimensional
isotropic scattering with an omnidirectional antenna at
the receiver. In this case, the ACF of p,;(t) (1 = 1,2} is
specified as

(3)

whete frmaz is the maximum Doppler frequency and Jy(-)
denotes the zeroth-order Bessel function of the first kind.
As mentioned above, the CCF between the inphase and
quadrature compenents of each complex Gaussian ran-
dom process is zero, i.e., r., ,u,,(T} = 0 holds for all
£ =1,2,...,L. Also, different complex Gaussian ran-
dom processes p(t) and p;(£) are uncorrelated for £ # A
(6,A=1,2,...,L), which indicates that r,,,, (v) = 0.

Based on the principle of deterministic channel model-
ing approach (8], the #th (£ =1,2,..., £) Rayleigh fading
process is modeled as

Tuiepie (T) = 03J0(27Tfmaz7)

Ce(t) = |aa(t)] = |fan.e(t) + iz (t)] (4}
where
Nie
i g(8) = cimpcos(rfinet +0ing), i=12. (5)
n=1

Here, N, defines the number of sinusoids, ¢ine, fin.e
and @; , ¢ are called the Doppler coefficients, the discrete
Doppler frequencies and the Doppler phases, respectively.
It is worth mentioning that all these parameters will be
determined at the beginning of the simulation run and
kept constant during simulation. Consequently, j; ¢(t) is a
deterministic function and the resulting channel simulator
is of deterministic feature. The amplitude PDF g;(z) of

Ce(t) is computed by [8, 10]

T
Pelz) = xjo By (zf:os 8) - B, (zsind) db (6)

where
o [ Nue
Pu(z) = 2/0 1_[1 Jo(2me; mev) | cos(2mvz) du,
i=1,2. {7)
The ACF of fi; (t) is given by
Nie 2
Fus oo (T) = ; —2% cos(2m fineT) (8)
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It follows from [8] that the CCF of iy ¢(t} and fiz ¢(t) can
be written as 7, ,,, ,(T) = 0 for all 7, if

fine # Efome (9

holds for all » = 1,2,.. ., Ny, and m = 1;2,...,N2!g. By
analogy, in order to ensure that the different processes
fe(t) and 1, (1) are uncorrelated for £ # A, one merely has
to design the Doppler frequencies f; n ¢ in such a way that
they are disjoint for different processes, i.e.,

fi,n,e 71‘- ifj,m,)\ ) £ '_Jé A + (10)

where 4,5 = 1,2, n = 1,2,.. . Nige, m = 1,2,.. ., N;»,
and 4,0 = 1,2,...,£. Subsequently, two parameter
computation methods will be revisited concerning how to
fulfill the conditions (9) and (10).

A. Method of Ezact Doppler Spread (MEDS)
By using the MEDS [8], & ., ¢ in (5) are the outcomes
of a random generator uniformly distributed over (0, 2x],

while ¢; , ¢ and f; ¢ are given by

2 .

Cing =0T F‘_; (11)
and
fi,n,l = fma:t Sin(q)i.n,l) (12)
respectively, where
Bine = ——(n— 1) (13)
in,é = 2Ni|e 3 .

Since 1 € n £ Ny, it follows that 4—_,\% <Bine £

m™

(A;.-&;l/?) holds. A looser range for ®; ,,is 0 < $; ¢ <
7/2. Note that within this range, fin. [see (12)] are
monotonously increasing values over the interval (0, fraz)
when n increases from 1 to Nj,. Therefore, fine #
—fa,m.e and fin ¢ # —fim can always be satisfied. The
condition (9) can be fulfilled if and only if @1 , ¢ # D2, e
holds, which results in

Nig 2n—1
' Ng,e 2m —1

(14)
for al m = 1,2,...,Nye, m =
1,2,..., L. Analogously,

Ni,g 2n—-1
Nj’,\ 2m —1

1,2,..., Ny, and £ =

(15)

can guarantee that the inequality (10) is satisfied, where
L7 = L2, n=12,..., N m=12,...,N;,, and
LA = 1,2,...,L. From (14) and (13), it is clear that
the ratio of N1¢ to Nz, and the ratio of N, to N;



must be unequal to the ratio of two odd numbers. Conse-
quently, there is at maximum one odd value aliowed for all
Nie(i=1,2and £=1,2,...,L). For simulating 2-by-2
(£ = 4) MIMO channels, a possible set of 8 values for N, 4
is {8,9,10,12, 16, 32, 64, 128}. Note that large values have
to be chosen for IV; ¢ when £ > 4. However, we can select

N; ¢ in such a way that (8) and (16} are not fulfilled for

only few pairs of (n, m). In this case, the cross-correlations
of any pair of processes are so small that they can be ne-
glected in practice. The CCF between f; ¢(t) and fi; 1()
{i =4 and £ = A cannot hold at the same time) is (8]

Nig Mja

~ Ciyn,eCj,m, A
Tari ehsn (r)= Z Z = 2‘7 _m_ co8(27 f1m AT + Bm,a

n=1m=1

_ei,n.f) s “if fi,n,! = fj,m,,\ . (16)
Substituting (11) with o9 = 1 into (16), it is clear
that the maximum value 7., of the CCF is Fmar =
NeCineCima/2 = Nef/N; ¢ Njn, where Ne defines the
number of equal frequencies in the sets {f;,,} and
{f;m}. For example, to simulate a 12-path (£ = 12)
frequency-selective channel, a set of 24 values for N,
could be {8,9,11,13, 16,17, 18,19, 22,23, 25, 26, 28, 29,31,
32,34,36, 37,41, 43,47,51,53}. It follows that the max-
imum cross-correlation between fiie(f) and f;a(t) is
Fmaz = 0.1005, which occurs when Ny, = 18 and N;\ =
22. Here, fin¢ = fjm, holds for two pairs of (n,m):
(5, 6) and (14, 17). However, when f;,; = fima
holds, we can further replace f..e by fine + e, where
€ is a very small random variable which guarantees that
fimg # fima and fin—1¢ < fine < fing1,e hold. The
resulting new set {f; ¢} will not degrade too much the
performance of the channel simulator and can satisfy again
the relations (9) and (10).

By making use of (11}, it can be shown that (6)
approaches the Rayleigh distribution (2) if N;, — co
[10]. Substituting (11) and (12) in (8), it can also-be
shown that 7, .. (7} tends to ry, ,,, (7) as N;, — oo.
However, for finite values of N;: we can only write
pe(z) = pel(a) and T, o, (T) & Ty (7). Fig. 1
compares the Rayleigh distribution with an example of
Pe(z) for Ny, = 9 and Nap = 10. The correspending
simulated PDF of the fading envelope is also presented in
the figure to validate the analytical result. It is clear that
the approximation error is small with the given numbers
of sinusoids. Fig. 2 shows the ACF #, ,,, . (r) with
Ny = 16 and the CCF 7, ., ,(7) with N1, = 9 and
Nz = 10 for one simulated fading process by using the
MEDS. The corresponding ACF r, .., () and the CCF
Ty eune(T) of the reference model are also illustrated
in the figure for reasons of comparison. For the CCF,
Py ena,e(T) = Ty s, (7) = 0 holds for all 7. For the
ACF, 7, 4. ,{7) matches almost perfectly the desired one
Pug e (T) if 7 is within the interval [0, Nyy/(2fnas)l,
which includes approximately N;¢ zero-crossings of
Puoepce(T). In case that 7 > Nye/(2fmaz) Fuilepio(T)

and 7y, ., ,(7) will diverge and never converge again,
Let us use Tyner to define an appropriate time interval
[a, Tmam] over which the approximation of the desired
ACF 7y, yp.,(7) is of interest. Then, the required number
of sinusoids is given by Nis > [2fmazTmaz], where
[z} denotes the smallest integer larger than or equal
to . In Fig. 2, for Niy = 10 and fmae = 91 Hz, the
corresponding Tmaz 18 Tmaz = Nig/(2fmaz) = 0.0549 s,
Two uncorrelated sirqulatéd fading envelopes by using
the MEDS are impressively shown in Fig. 3. The numbers
of sinusoids for the two processes are chosen as follows:
Nip =9, Nay =10, Nyz =8, and Nap = 12. '

B. L,-Norm Method (LPNM)

For the LPNM [8], i n.¢ and 6;.,. ¢ in (5) are the same
as those given for the MEDS, while fi . ¢ are determined
by minimizing the following error norm

Tmaa ip

E(p) = . IT.ui,lPi,l (T) - Fﬂi,l“’-i,! (T)IPdT T

Tmazx

p=1,2,.. .. (17)
Then, an optimized set of discrete Doppler frequencies
fin,e will be attained by applying a numerical optimiza-
tion algorithm, e.g., the Fletcher-Powell algorithm {11].
Consequently, the ACF 7, .. (7) of the deterministic
process [, ¢(t) will be fitted closely to the given ACF
Tpy epso (T) Of the stochastic process p; o(t).

It is important to mention that-the global minimum of
E®} cannot be guaranteed to be found by the Fletcher-
Powell algorithm, like any other suitable optimization al-
gorithm. In general, a local minimum of E®) is obtained.
The advantage we may take from this property is that var-
ious Jocal minima lead to various disjoint sets of discrete
Doppler frequencies f; » . Therefore, we can easily satisfy
the inequalities (9) and (10} by taking any of the following
four measures: 1) choosing the number of sinusoids ;
such that the relations (14) and (15) are fulfilled, 2) min-
imizing (17) by using different values of p, 3) minimizing
(17) with different values of Tqx, and 4) carrying out the
optimization by using different starting values for f;n.e.
The method of equal distances, the method of equal areas,
and even the MEDS can, for example, be employed to get
the starting values for f;n ¢ [8].

Since the relation ¢ e = 09+/2/Ni ¢ applies for both
the MEDS and the LPNM, the obtained amplitude PDF
P¢(z) [see (6]] by using the LPNM will be identical to the
result shown in Fig. 1 with the same parameters. In Fig. 4,
the optimized ACF #,,,,, ,(7) with N;, = 10 and the
CCF 4, yus (1) with N1 s = Ny ¢ = 10 are demonstrated
in comparison with the reference ACF ry, ., ,{7) and
CCF Ty, op0..(T), Tespectively. As starting values for the
discrete Doppler frequencies f; ,, ¢, the expression (12) de-
termined by the MEDS has been used. The upper limit for
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the integral in (16} is still given by 7yna, = 0.0549 5. The
optimization of the ACF #,, ., ,(7) is based on the error
norm E®) with p = 2. The disjoint sets of fi,,.¢ and fo ¢
for the calculation of the CCF 7, ,,, (7} are ensured by
using p = 1 and p = 2, respectively. Apparently, there is
no cross-correlation between the deterministic processes
f1,0(t) and fio o{t), ie., 7 0 (7)) = Tuy s (7) = O holds
for all 7. We observe that the ACF 7, .., ,(7) nearly co-
incides with the desired ry, ., ,(7) when 7 is located in
the interval [0, 7p.z]. Compared with the MEDS, only a
slight improvement is achieved by using the LPNM.

ITI. GENERATION OF MULTIPLE UNCORRELATED 1.I.D.
RAYLEIGH SEQUENCES

In this section, three different methods will be pre-
sented to model efficiently multiple uncorrelated i.i.d.
Rayleigh sequences.

A. Method of Sampled Processes (MSP)

One straightforward method is to directly use the
randomly sampled versions of the above time-correlated
fading processes by assuming that ¢ is a uniformly dis-
tributed'random variable in (4). Ideally, the finite-length
sampled sequence will have the same PDF as a sampled
version of the continuous-time signal. However, the
simulating time Ty, should be sufficiently long and a
sufficient number of samples must be ensured in the
simulation. By using the MSP, the resulting sequence
with 500000 samples are obtained from a fading process
C(t) with 03 =1, frmax =91 Hz, N1 =9, and Ny = 10,
where t ranges from 0 to 60 s. The histogram for the
amplitude is then calculated. The normalized histogram
and the theoretical amplitude PDF are plotted in Fig. 5.
A good agreement between the two PDFs is observed.

B. Equation Transformation Method (ETM)

Another method is the so-called ETM. It is well known
that a Rayleigh distributed sequence is formed by taking
the magnitude of a zero-mean complex Gaussian random
sequence, the inphase and quadrature parts of which are
L.id. It follows that the amplitude of the underlying com-
plex Gaussian random sequence is Rayleigh distributed
and the phase is uniformly distributed over (0,2x]. A
Rayleigh distributed random variable r can be obtained
from a uniformly distributed random variable v € (0, 1]
through the following transformation [12]

r=cgv—2Inu. (18}

Then, according to [13], a complex Gaussian distributed
random variable 2 can be constructed by using four in-
dependent uniformly distributed random variables u; &
(05 1]1 1= 11 27 314)

Hi+ jug = oo/ —2 Inuy cos(2mug)

lu’ =
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+3jo0y/ —2 Inug sin(2muy) .

Using different seeds to generate different u; can easily
guarantee the condition of i.i.d. The simulated amplitude
PDF by using the ETM is also shown in Fig. 5, where
500000 samples are again used. Obviously, the quality of
the approximation to the Rayleigh distribution is slightly
better for the ETM than for the MSP. :

. (19)

C. RANDN Method (RANDNM)

The last method is to directly use the MATLAB func-
tion randn for generating a real Gaussian distributed ran-
dom sequence. Consequently, a Rayleigh sequence can be
obtained by taking the absolute value of a complex Gaus-
sian sequence: { = |gp*xrandn(l, N)+j*rapxrandn(l, N)|,
where N represents the number of samples. Due to the
simplicity, this method is widely employed by many re-
searchers, e.g., in [14]. Fig. 5 also includes the sim-
ulated amplitude PDF by using the RANDNM, where
N = 500000 Monto Carlo trials have been carried out.
The excellent approximation accuracy to the Rayleigh
PDF is observed.

IV. CONCLUSION

Altogether, two methods are presented to generate
multiple uncorrelated Rayleigh fading processes, and three
methods are provided to produce multiple uncorrelated
id.d. Rayleigh sequences. These methods are expected to
be useful for the modeling of MIMO, space-time-selective,
frequency-selective, and diversity-combined multi-path
fading channels.

Compared with the MEDS, the LPNM has slightly
better performance but higher numerical computation ex-
penditure. In order to guarantee the uncorrelatedness be-
tween different simulated fading processes, the LPNM is
a more flexible method than the MEDS. In both cases,
the statistical properties of the simulated processes match
very closely the desired properties of the reference model.

For modeling i.i.d. Rayleigh sequences, it turns out
that the ETM and the RANDNM outperform the MSP,
which has high realization expenditure and therefore takes
a lot of simulation time. Due to the simplicity, the
RANDNM is strongly recommended.
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