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Abstract

For the analysis and design of Multiple-Input Multiple-Output
(MIMO) wireless communication systems with frequency
diversity features, e.g., MIMO-Orthogonal Frequency Division
Multiplexing (MIMO-OFDM) systems, it is often desirable to
develop a channel model that can characterise the three-
dimensional (3-D) space-time-frequency (STF) correlation
properties over the links of the underlying MIMO channels.
In this paper, we propose a generic 3-D STF correlation
model, which includes many well-known existing models as
special cases, with closed-form expressions of the STF
correlation properties. Based on the developed theoretical
reference model, a deterministic simulation model is then
proposed and its 3-D STF correlation properties are also
investigated by providing closed-form expressions. It is
shown that the correlation properties of the simulation model
fit those of the reference model very well when the
parameters of the simulation model are determined by using
the Lp-norm method (LPNM).

1 Introduction

MIMO systems have recently received much attention because
of their potential for achieving higher data rate and providing
more reliable reception performance compared with traditional
single-antenna systems for wireless communications. In order
to theoretically analyse and design high performance MIMO
wireless systems under various circumstances, it is of great
importance to have proper theoretical reference models [20] for
the underlying MIMO wireless channels. Furthermore, for the
practical simulation and performance evaluation of MIMO
systems, it is advantageous to develop accurate MIMO channel
simulation models [14]. Nowadays, 3-D STF correlation models
are required to comprehensively understand the behaviour of
MNMO wireless channels with frequency diversity features, e.g., in
MIMO-OFDM systems [4].
Most existing models, e.g., [1,2,6,14], were proposed to
investigate 2-D space-time (ST) correlation properties of
narrowband MIMO wireless channels, but the frequency
correlation properties of two sub-channels in a MIMO channel

were not well understood. In [19], only 2-D time-frequency
(TF) correlation reference and simulation models were
studied for frequency correlated single-input single-output
(SISO) channels under isotropic scattering assumptions. The
authors in [13] investigated space, time, and frequency
correlation properties separately of MIMO channels based on
the elliptical geometry of scatterers for microcellular environments.
However, in [13], no one generic STF correlation function (CF)
was given. Moreover, the integral expressions ofthe derived space
and time CFs can only be numerically evaluated as no closed-
form expressions were found. Rad and Gazor proposed non-
geometric 3-D STF correlation models for MIMO outdoor
channels [8,15,16], where the angle of arrival (AoA) and angle
ofdeparture (AoD) were assumed to be independent.
In this paper, we first derive a generic theoretical reference
model in order to study the 3-D STF correlation properties
between the impulse responses of two sub-channels with
different carrier frequencies in a narrowband MIMO channel.
Different from [13], the proposed reference model is based on
the well-known geometrical one-ring scattering model [1,6],
which has widely been used for modelling MIMO channels in
macrocelluar environments due to its simplicity, and has a
closed-form expression of the generic STF CF. In contrast to
non-geometric models [8,15,16], the proposed model
characterises the AoA using the von Mises angular probability
density function (PDF) [2], which is applicable to both isotropic
and non-isotropic scattering environments, and considers the
interdependence between the AoA and AoD. More importantly,
we will demonstrate that the derived generic closed-form
expression is valid not only for the 3-D STF CF, but also its
degenerate 2-D and 1-D CFs, e.g., ST CF and frequency CF.
This means that all the CFs have a uniform expression but
with different parameters. The derived new 3-D STF
correlation model is a generalization of many existing models
[1,2,6,7,10,11].
Due to its infinite complexity, the proposed narrowband one-
ring STF MIMO reference model cannot be realized directly
in software or hardware. Therefore, the corresponding simulation
model is very important in practice for the performance
evaluation of MIMO wireless communication systems. The
second part of this paper uses the reference model as the
starting point for the derivation of an efficient simulation
model by taking into account all the 3-D STF correlation
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properties of MIMO channels. The proposed procedure is
based on the principle of deterministic channel modelling [12].
Closed-form expressions will be provided for all the 3-D, 2-D,
and 1-D CFs of the simulation model. This allows us to assess
the performance of the simulation model analytically by
comparing its correlation properties with those of the
developed generic reference model. It is shown that the
designed MIMO channel simulator matches the underlying
reference model very well with respect to temporal, spatial,
and frequency properties.
The paper is structured as follows. The one-ring narrowband
MIMO channel model is introduced in Section 2 and the new
generic closed-form 3-D STF CF is derived in Section 3. In
Section 4, an efficient deterministic simulation model is
proposed and its corresponding 3-D STF CF is derived as a
closed-form expression. Some simulation results are presented and
the performance of the resulting simulation model is evaluated
in Section 5. Finally, conclusions are drawn in Section 6.

2 The one-ring narrowband MIMO model

A one-ring narrowband MIMO channel model was first proposed
in [6] and further developed in [1]. The one-ring model is
appropriate for describing scattering environments where the
transmitter base station (BS) is elevated and unobstructed,
whereas the receiver mobile station (MS) is surrounded by a
large number of local scatterers. Each scatterer is assumed to
be reflected only once. Let us consider a one-ring narrowband
MIMO channel model shown in Fig. 1. The BS and MS have
nBS and nMS omni-directional antenna elements in the
horizontal plane, respectively. Without loss of generality, we
consider uniform linear antenna arrays with nBS = nMS = 2 (a
2 x 2 MIMO channel). The antenna element spacings at the
BS and MS are designated by Sr and JR, respectively. The
local scatterers are located on a ring surrounding the MS with
radius R. It is usually assumed that R is much smaller than D,
denoting the distance between the BS and MS. Furthermore,
it is assumed that both R and D are much larger than the
antenna element spacings Sr and JR, i.e., D>>R>>maAr, 9R}.
The multi-element antenna tilt angles are denoted by a and ,/.
The MS moves with a speed v in the direction determined by
the angle of motion y. The angle spread seen at the BS is
denoted by Al, which is related to R and D by
A z arctan(R/D) R/D.
Without a line-of-sight component, the sub-channel complex
impulse responses at two different carrier frequencies fc
and fcJ can be expressed as:
hlp (t) = 14,1p (t)+ jh2,lp (t)

= lim 1/ >exp[jVn --24fz,'p,n +2fzDtcos(0 -y)](,

hmq(t) = htmq(t)+ j11 mq(t)

=lim -=exp4j[LV,-2gC rnq,, +2igDtco4- y)(,
with 1,m = 1,2,...,nMs, p, q = 1,2,..., nBS, TIp,n = (fpn +-nl)/c and

wave through the link T, - S, - RI ( Tq - Sn - Rm ) scattered by
the nth scatterer, Sn , and c is the speed of light. The AoA of
the wave travelling from the nth scatterer towards the MS is
denoted by OnR, while ,n , nl , dn , and jnm are the distances
as functions of ¢,nR as shown in Fig. 1. According to [1], we have the
following approximate equations

fpn n - 2 [cos(a)+Asin(a)sin(n )1 (2a)
2

fqn Sn + 2 [cos(a)+ Asin(a)sin(OnR)1
2

jnl/ Z-R RcoS(on O8),

Inm R +-RcOs(R -g ),
2

(2b)

(2c)

(2d)

4; z D + Rcos(4R ). (2e)
The phases V, are independent and identically distributed

(i.i.d.) random variables with uniform distributions over [0,2ff);

fD is the maximum Doppler frequency; hi,,(t) (hitmq(t))

h2,1(t) ( h mq(t) )

components of the complex impulse response hi, (t) ( himq(t)),
respectively; and N is the number of independent scatterers,
Sn around the MS.
In the literature, many different scatterer distributions have been
proposed to characterise the AoA, 5nR , such as the uniform
[17], Gaussian [3], wrapped Gaussian [18], and the cardioid
PDFs [5]. In this paper, the von Mises PDF [2] is used, which
can approximate all the above mentioned distributions. In [2],
it was shown that this PDF fits the real data very well. The
von Mises PDF is defined as [2]

exp[kcos(eR _'U~)]
f(^R )_= l2kcIo (k) )I OR E [0,2zT), (3)

where O5R iS the continuous denotation of ¢5nR when N is infinite,

Io(.) is the zeroth-order modified Bessel function of the first

kind, , E [0,2zT) accounts for the mean value of the AoA,IOR I

and k ( k 0 ) is a real-valued parameter that controls the angular
spread of the AOA O)R For k = 0 (isotropic scattering), the von

Mises PDF reduces to the uniform distribution, while for k>O
(non-isotropic scattering), the von Mises PDF approximates
different distributions depending on different values of k [2].

3 The new generic STF CF

From (1), it follows that the correlation properties of hi (t) and

htmq (t) are completely determined by the underlying real Gaussian

noise processes h1,,,(t)
and h,mq(t) ( u, v = 1,2 ). Therefore, we

can restrict our investigations to the following STF CF

vmhqjphT (4)
v ,mq

Tmq,n = ('Cqn + Cnm )/c, where rl,,,, (Tmq ) is the travel time of the
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where E[.] denotes the statistical average with respect to )R
and V, . It should be observed that (4) is a function of the
time separation, , space separation, ST and SR, and frequency
separation, X = fLi - f, -
Substituting (1)-(3) into (4) and after some mathematical
manipulations, the 3-D STF CFs between h1,i11(t) and h,,mq(t+T),
and similarly between h11 ,l (t) and hU,mq (t + T), are given by

Phihf(i'X) = Ph2hJ(7-h2 )

4I1 {ek o [(A jB)12]+ e-cIo [(A + jB)12 (5a)

Phl ihT (C,X) Ph2 iphT (C'X)
2,mq l,mq

(k){eJo [A+B)1!2] ec
j

( B)112 (5b)
=j 1k fie jIo(A+jB) /]-eicIo[(A-Bl2

respectively. Since the derivations of (5a) and (5b) are similar,
only the derivation of (5a) is given in the Appendix. Consequently,
the 3-D STF CF between the complex impulse responses hi, (t)

and htq (t) can be directly obtained as

PhiphT (T )X) 2PhliophT(T jBX)/21Phl,hT ((6) X)
mq l,mq 2,mq

= cIk eJIo [A-jB)112 (6)

where
A = k2 _x2 _ y2 _ z22sin2 a - 2yzAsin asin,8

+ 2xy cos(,8 - y)+ 2xzAsin asin y-_X2J
+ 2xXK - 2yXL - 2zXM,

B = 2k[x cos(y -,u) - y cos(,/ -,u)- zAsin a sin, - XS],
C =zcosa+XT,
with
x = 2fDZ,
y = 2)g-, RIc,y=2JfCSR/c,

X = 2zxf/c,
J = 2 + (ST/4)A sin2 a+,5R24

+ RSR cos8g+ (STSRI2)A sin ausing,
K = R cos y+ (ST/2)A sin a sin y+ (SR/2)cos(, -y),
L = R cosg8 + (ST/2)A sina sing8 +(SR/2),
M = (ST/2)A2 sin2 a + (SR/2)A sin a sin f,
S = R cos, + (ST/2)A sina sinf, +(SR/2)cos(, -,u),
T = (Sr/2)cosa+D+R.

(8a)
(8b)
(8c)
(8d)

B = 2k[xcos(y -,u) -ycos(, -,u) -zAsin a sinu], (9b)
C = zcosa. (9c)
From (5b), we find that the STF CF Phl = h

2,mq

Ph2lphT (r X)=Oif B =O and C =O . From (7b), it is clear

that B = 0 if k = 0 holds. This means that B = 0 in isotropic
scattering environments. By setting the space separation at the
BS T = 0 (z-O) and the frequency separation X = 0 (X=O) in
(7c), we can get C=O for the 2-D ST CF (single-input
multiple-output (SIMO) case) and 1-D time CF. This clearly
indicates that the 2-D ST CF phi,iph2,lq (z) -Ph2 jphi lq (iz) 0 (SIMO
case) and 1-D time CF ph,2 p([) ph2iphip(i) 0 in isotropic
scattering environments. When setting the frequency separation
X=O (X=O) and the tilt angle of the BS c=r/2 in (7c), we can
also obtain C = 0 for the 2-D ST CF (MIMO case), 1-D space
CF, and 1-D time CF. This means that in isotropic scattering
environments, the 2-D ST CF Phuph2 mq(/) ph2]phi mq(/) 0 (MIMO

case), 1-D space CF phi}ph2,mq = P2,1Pkmq =0 and 1-D time CF

Ah,Iph2,lp Oc) = p2,1Pk,,lP Oc) =° -

The proposed generic 3-D STF correlation model with a
closed-form expression (6) includes many existing models as
special cases. For a SISO case, the time CF given in [2] is
obtained by setting iS = SR = 0 and X = 0 in (6) with k . 0. If

by further setting k =0 (isotropic scattering) in (6), the Clarke's
time CF in [10] is obtained. For a SIMO case, the Lee's ST CF in
[11] is obtained by substituting iST =0° =0 ,,6= I and

k = 0 into (6). For a multiple-input single-output (MISO)
case, the ST CF in [6] is obtained by
substituting SR = 0 , X = 0 , and k = 0 into (6). If further
substitutingfD = 0 into (6), the space CF given in [7] is obtained.
For a MIMO case, the ST CF shown in [1] is obtained by
setting X = 0 in (6) with k .0 .

4 The deterministic simulation model

(8e) In this section, an efficient deterministic simulation model is
proposed, which is obtained from the reference model by

(8f) utilizing only a finite number of scatterers, N, and keeping all
(8g) the model parameters fixed. Hence, the impulse responses h40(t)
(8h) and hitq (t) ofthe deterministic simulation model are modelled as
(8i)

(8j)
It is worth stressing here that (5) and (6) are the generic
expressions which apply to the 3-D STF CF and the
subsequently presented 2-D and 1-D CFs differ only in values
of A, B, and C. The corresponding expressions ofA, B, and C for
the degenerate 2-D and 1-D CFs can be easily obtained from (7)
by setting relevant terms to zero. For example, setting the
frequency separation X = 0 (X=O) in (7) gives the following
expressions ofA, B, and C for the 2-D ST CF:
A = k2 _x2 _ y2 _z2tA sin2 a - 2yzAsin asinf8 (9a)

+ 2xy cos(8 - y)+ 2xzAsin a sin y,

h/, (t) = h1, 1, (t)+ jh2 1, (t)
1 exp{j wn - 2fzpf,+2gfDt cosQpfs

)]J
-

hm&fq (t) = 2fl+fq(t)+ jh2(mq (t)

= i> xp{j[!-n - 2)fz tmq,n + 2)rDt cos(0nR -7)lJ,

(lOa)

(lOb)

where the phases Vln are simply the outcomes of a random
generator uniformly distributed over [0,2ZT), the discrete AoAs

¢5,/ will be kept constant during simulation, and the other
symbol definitions are the same as in (1). Therefore, we can
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analyse the properties of the deterministic channel simulator
by time averages instead of statistical averages. Similar to (4),
the 3-D STF CF can be defined as

Ph, iphT ('Z,X) Khu ip (t)hvtmq (t + )(11)
v,mnq

where K.) denotes the time average operator. Substituting (10)
into (11), it is shown that (11) can be expressed in the closed-form as

Phlmh(q * Ph2,mhq;

- [coCs(C) cos(P cos QR + Q sin ¢R) (12a)
2N,,

sin(C)sin(P cos 0 R + Q sin 0 R)]
Phi iph (r, X) Ph2,1phT(Zi X)

2,mq l,mq

2--E [sin(C) cos(P cos tnR + Q sin nR) (12b)

+ cos(C) sin(Pcos Gn + Q sin (n
By analogy with (6), we can further get the 3-D STF CF
between hkp (t) and hk,q (t) as

2 (-r, j2~~~~i- ~Ph1pht (r,%) 2Phi iphT (r, X) 2Phi iphT X
mq l,mq 2,mq

N
EJCeJ(PCOS0R+QS1n4H) (13)

N n=1
where C is the same as in (6), while
P = XY + ycos, - xcosy, (14a)
Q = XZ + y sin/, + zAsin a - x siny, (14b)
with
Y = R+ (5R/2)cos,8 (15a)
Z = (d/2)Asin a + (dR/2)sin/,. (15b)
Note that x, y, z, and X are the same as defined in (8a)-(8d)
above. Similarly to (5) and (6), (12) and (13) are the generic
expressions which apply to all the 3-D, 2-D, and 1-D CFs of
the deterministic simulation model with different C, P, and Q.
The corresponding expressions ofP and Q for the degenerate 2-D
and 1-D CFs can easily be obtained from (14) by setting some
relevant terms to zero. Comparing (14) with (7), we can relate
A and B to P and Q by
A = a2 +b2 _(P2+Q2 (16a)
B = -2(aP + bQ). (16b)

From (12) and (13), it is obvious that only {ton}n needs to be
determined for this deterministic simulation model.

4.1 Parameter computation method

In this subsection, we will apply the LPNM [12] to compute

the model parameters {qn=R}oof the deterministic simulation
model based on corresponding properties of the reference
model. The 1-D time CF phiphlq (r) , 1-D frequency
CF pl hT (X) and 2-D space CF phiphmq are identified as key

hiph
properties. Then the LPNM requires the numerical
minimization of the following three Lp -norms:

E(p) ='{ f Phlphip (J,hhphip (i) dr}
max

12 hlhf(/- h hf dX}

(17a)

(1 7b)

r 1 max max 1/p
E(p):=i f hphmq -Phiphmqd&dTdR , (17c)

where p = 1,2,... Note that Tmax , Xmax , and yTmax and 3RmaX
define the upper limits of the ranges over which the
approximations pA,p (r) z ph,p(r) , PpT (&) ~ZiphT (X) and

Phiphmq hiph,mq are of interest. For PhiphJ (X) and hphmq, if we

replace 0,R by ¢>R and ¢> R, respectively, the three error norms

E(P), E(p) and E(P) can be minimized independently.

5 Simulation results

In this section, due to the limitation of space, we will only
focus on the frequency correlation properties based on (6),
and will evaluate the performance of the simulation model.
The basic parameters are as follows: fC=I GHz, fD=93 Hz,

c=3x108 m/s, D=1200 m, R=100 m, k=3 ,u=z,
a=ff/6, g =fT/3, andy= 7fT/12 .
Figs. 2 and 3 illustrate the 2-D space-frequency (SF) CFs
against the frequency separation and space separation at the
BS and MS, respectively. Comparing them, we find that the
influence of the normalized antenna space at the MS is greater
than at the BS, since the angular spread, AI, at the BS is
generally small for the macrocellular case. Fig. 4 shows the 2-
D TF CF along with the frequency separation and time
separation. As shown in Figs. 2-4, the 2-D CFs take the
maximum values when the frequency separation X=0 and
decrease with the increase of the frequency separation. Figs.
2-4 reveal that the shapes of CFs depend on time separation,
frequency separation, and antenna spacing. Comparing (a)
with (b) in Figs. 2-4, it is obvious that the normalized antenna
space at the MS or BS has a large effect on the 2-D SF CFs,
while its influence on the 2-D TF CF is negligibly small.
A plot of the function phphip (r) of the reference model is shown
in Fig. 5. This figure also shows the resulting 1-D time CF
phiphip (') of the simulation model designed with the LPNM
using p = 2, N = 30, and Tmax = 0.08 s. Fig. 6 depicts the 1-D

frequency CF PhphT (x) of the reference model and Phiph (%)

of the simulation model, when applying the LPNM with
p = 2, N =30, andXmax = 8 MHz. Fig. 7 depicts the 2-D

space CF phiphmq of the reference model and phiphmq of the

simulation model, withN = 30. The discrete AoAs 0) R have
been obtained by applying the LPNM on the error

norm E"(P) in (17c) with p = 2 , 5Tm = 30k, and dR) = 3/ .
Figs. 5-7 clearly demonstrate that the proposed deterministic
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simulation model can fit the underlying reference model very
well in terms of time, frequency, and space correlation properties.

6 Conclusions

In this paper, based on the well-known narrowband one-ring
MIMO channel model, we have proposed a novel generic 3-D
STF correlation reference model. The developed reference model
is suitable for the analysis and design of MIMO wireless
communication systems with frequency diversity features, e.g.,
MIMO-OFDM systems. The proposed 3-D STF reference model
is general enough to include many well-known existing models
as special cases. Depending on the developed theoretical
reference model, a deterministic simulation model is then proposed.
The corresponding 3-D STF CFs of the simulation model are
derived with the closed-form expressions. Numerical results
show that the correlation properties of the simulation model
match those of the underlying theoretical model very closely.

Appendix
Derivation of (5a):
In this appendix, we derive the 3-D STF CF phjph1(T , )of

lPhmq

hl,lp (t) and h1tmq (t + r) according to (4):

Pl,mqt(X=Eh,l()lm(+)
= lim -E E{cos[Vn - Ip,n + 2;TD cos(¢ -r)]N-x>-Nn 1cos (AR 2-Ty)(t+ ) j

x cos[Vfn - 2TfeTnmq n+ 2JTfD coso'~ Y)(t + r)l
i Nco[2T,z.,= lim E - (

N-->- 2N n=cl
- 2;7Tmq,n + 2;T cos( rk

=- cos[-2;Tf (mq -Tip )-2;ZTmq

+ 2zD cos(R -R_)r](R )dR ,

(18)

where rp =(,papR + .R/ )/C Tmq = (dq:pR + fRm )/C * The terms

pR JpOR , f:op/, and JOR, are obtained by replacing ¢

by O5R in (2). Substituting all the above mentioned terms and

PDF into (18) and considering (14), we have
~~~~~~~1

hl,Phimq 4,zIo (k)

x exp [kcos ,cos O + k sing sin R ] (19)

xcos [C + Pcos R + Q sin OR ]OR
The definite integral in the right hand side of the above
equation can be solved by using [9, eq. 3.937-1, pp. 522].
After some manipulations and considering (16), the closed-
form expression for the 3-D STF CF PhilphT (Zr, ,) is given by (5a).
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Fig. 1. Geometrical configuration of a 2 x 2 narrowband one-

ring channel model with local scatters around the mobile user.
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Fig. 2. The 2-D SF CF Phh, (X) versus the frequency separationX and
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the normalized antenna spacing at the MS iR/ (a) the normalized

antenna spacing at the BS iT/ = 0 (SIMO) and (b) the normalized
antenna spacing at the BS d5/Z = 5 (MIMO).

c

,15 0.5-

u)

6O

c

0

30 30
5 22.5 1 25

7.5 ~15 75 751
% (MHz) 10 0 6T/X (wave length) x (MHz) 10 0 611X (wave length)

(a) (b)
Fig. 3. The 2-D SF CF Phiph, (Z) versus the frequency separationX and

mq

the normalized antenna spacing at the BS dT/IA: (a) the normalized
antenna spacing at the MS idR/iA = 0 (MISO) and (b) the normalized
antenna spacing attheMS idR/l = 0.5 (MIMO).

.t ,X

*~0.5-

u)
0 Oj

0
2.5-

2 1-
o

~Cu 0.5-

u)

0 Ol

40 40
- ZVN 20 207.5 10 7.5 20

x (MHz) 10 0 X (ms) x (MHz) 10 0 X (ms)

(a) (b)
Fig. 4. The 2-D TF CFp(Pph ) versus the time separation r and

frequency separation X : (a) the normalized antenna spacing at the
BS ir/IA = 0 and at the MS idR/Il =0 (SISO) and (b) the normalized
antennaspacingattheBS r/TZ = 5 andattheMS d6R/) = 0.5 (MIMO).

1 ll

ACF (ref. model)

)8 ACF (sim. model, N=30)

06t
0.6

02

1

ACF (ref. model)

08 ACF (sim. model, N=30)

0.2

..

0 0V '
0 0.02 0.04 0.06 0.08 0.1 0 2 4 6 8 10

Time separation, X(s) Frequency separation, X (MHz)

Fig. 5. The 1-D time CF Ph.ph.p (r) Fig. 6. The 1-D frequency CF
(reference model) and Phiphip (T) phhhhT (y) (reference model) andhiph
(simulation model) with N=30. Phi () (simulation model)hiph

with N=30.

-05 .20 -
*,0.5 ,0.5

0075_ 30 07 30

2.25 75 15 2.25 15
8R/X (wave length) 3 0 &11X (wave length) 8R/X (wave length) 3 0 &11X (wave length)

(a) (b)
Fig. 7. The 2-D space CF versus the normalized antenna
spacing at the BS id/,I and at the MS dR/I (a) phiphmq
(reference model) and (b) phiphmq (simulation model) with
N=30.

)o -(

0S

oe 8 z

I -1

Authorized licensed use limited to: Heriot-Watt University. Downloaded on February 21,2010 at 11:53:56 EST from IEEE Xplore.  Restrictions apply. 


