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Abstract—A cognitive radio (secondary) network can reuse the
under-utilized spectrum licensed to a primary network on a non-
interruptive basis. In this paper, we study the uplink capacity
of a secondary network where a secondary base station (BS) is
located at the center while multiple secondary users are uniformly
distributed within a circular cell of radius R. Primary users
are assumed to be distributed in the same plane according to a
Poisson point process with a density parameter ),. To protect
primary services, secondary users can only transmit under a
peak interference power constraint which guarantees that the
instantaneous interference power perceived by any primary user
is not larger than a certain threshold. In addition, we assume
an opportunistic scheduler at the BS which exploits multi-user
diversity among M secondary users and stochastically maximize
the cell capacity. We first study the capacity with a simple channel
model considering only the path loss and derive the closed-form
cumulative distribution function (CDF) of the capacity. We then
study the capacity with realistic fading channel models using a
semi-analytical approach. The impacts of the parameters R, ),
and M on the capacity are quantified and discussed. Moreover,
we find that shadowing and fading only have limited impacts on
the distribution of the capacity.

I. INTRODUCTION

The radio spectrum is a precious natural resource that
underpins various wireless services. The spectrum is tradition-
ally regulated by a fixed frequency assignment policy which
assigns frequency bands to license holders for exclusive use.
Such a static spectrum licensing policy eliminates interfer-
ences among different radio systems in a brutal-force way but
results in very inefficient spectrum utilization [1]. Dynamic
spectrum access (DSA) has been proposed as a promising
approach to improve the spectrum utilization by allowing new
wireless systems to dynamically access/share the licensed band
on a negotiated or an opportunistic basis [2].

DSA strategies can be broadly categorized into three models
[2]: dynamic exclusive use model, open sharing model, and
hierarchical access model. The first model maintains a rigid
license-based policy but introduces more flexibility to allow
license holders to lease or trade their spectrum freely by means
of spectrum property rights or dynamic spectrum allocation.
The open sharing model embraces an unlicensed philosophy
and allows peer users to have equal spectrum access rights
and utilize a common spectrum locally without interfering
with each other. The last model adopts a hierarchical access
structure with primary and secondary users. It allows the
secondary users to access the licensed spectrum under the
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condition that no harmful interference is caused to the primary
users (licensees). To achieve this, it is usually a requirement
for secondary users to be aware of the radio environment
and dynamically adjust their transceiver parameters. Therefore,
“secondary network” is also often referred to as “cognitive
radio network” in the literature [3], [4]. In this paper, we re-
strict our study on cognitive radio networks in the hierarchical
access model.

The coexistence of primary and secondary networks is a
two-fold problem. First of all, the quality-of-service (QoS) of
the primary network should not be (significantly) degraded
due to the presence of the secondary network. Technically,
this can be achieved by controlling the interference power
perceived at primary receivers to fulfill certain constraints
such as peak interference power constraint [6], [7], average
interference power constraint [6], [7], or interference outage
constraint [8]. To this end, several interference models have
been proposed in [9]-[11] to provide metrics of measuring
such interferences.

On the other hand, a secondary network needs to provide
a reasonable capacity to justify its deployment cost. Unlike
conventional licensed networks, the capacity of a secondary
network is significantly affected by the coexisting primary sys-
tem [12]. Such a capacity is first bounded by the interference
constraint which in turn limits emission powers of secondary
transmitters. Moreover, interferences generated by the primary
network will further degrade the secondary network capacity.
The information-theoretic capacity of a secondary/cognitive
radio link has been analyzed in [13] in Gaussian channels.
In [6], [7], the capacities have been investigated in fading
channels under peak or average interference power constraints.
These analyses [6], [7], [13], however, are restricted to the
capacity of a single link without taking into account the effects
of user distribution and path loss. In our previous work [14],
[15], we have extended the capacity analysis to the network
level under average interference power constraints. In this
paper, we focus on the capacity of a secondary network under
peak interference power constraints.

The remainder of this paper is organized as follows. Section
II describes the system model. In Sections IIT and IV, we study
the capacity of the secondary network with simple channel
models and realistic channel models, respectively. Numerical
results and discussions are presented in Section V. Finally,
conclusions are drawn in Section VI.
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II. SYSTEM MODEL

The system model is shown in Fig. 1 where primary users
(TV receivers) and secondary users (mobile phones) coexist
on a plane. The primary users are denoted as V; (1 <1 < 00)
and their distribution follows a Poisson point process with a
density parameter \p, which denotes the average number of
primary users per unit area. We consider a secondary circular
cell with a BS located at the center and M secondary users,
denoted as U; (1 < j < M), uniformly distributed within the
cell. The cell radius is denoted as R. In this paper, we focus
on the uplink capacity analysis of the secondary cell, while the
same approach can be easily extended for downlink analysis.

We assume that multiple secondary users transmit in or-
thogonal channels to avoid mutual interferences. In this paper,
we use a time division multiple access (TDMA) scheme,
which implies that at any time slot, the target secondary user
is the only interference source to the primary network. We
refer the underlying channels from secondary transmitters to
primary receivers as interference channels. The instantaneous
channel power gains from the jth secondary user to the ith
primary receiver is denoted as hl{j. The jth secondary user,
once scheduled to transmit, should control its transmission
power P; so that the interference power perceived at primary
receivers I; = Pjh{, j fulfill certain constraints. In this paper,
we consider a peak interference power constraint given by
I; < Iy, where Iy is the maximum interference power that a
primary receiver can tolerate. If we further denote

Imax
hj = m?X(hf,j)

O

as the largest interference channel gain associated with the
jth secondary user, it follows that the maximum allowable
transmit power of the jth secondary user is given by

PP = Jo/hlmex. )

In practice, a secondary transmitter may obtain the information
of h;m*”‘ by means of common control channels [16] or
primary receiver detection [17].

On the other hand, we refer the underlying channels from
secondary transmitters to the center BS as access channels.
The instantaneous channel power gain from the jth secondary
user to the BS is denoted as hj‘. We assume that the channel
state information {h4'} and {hj™>} is known to the BS by
means of channel estimation and feedback from secondary
users. The BS can then estimate the potential received power
given by the jth secondary user as

Sj = PPt = Tohft /himex. €))

The values of S; vary among different secondary users.
Therefore, the BS can exploit this multi-user diversity by
allocating the next available time slot to the secondary user
with the largest S;. This is also known as opportunistic
scheduling which can maximize the cell capacity. With a
perfect opportunistic scheduler, the signal power received at
the BS is given by

§ = max(S;) (1<j<M). @

It follows that the instantaneous uplink capacity perceived at
the BS, normalized over the bandwidth, is given by

C =log,(14+5/9) 5)

where ) denotes the total interference and noise power re-
ceived at the BS. Clearly, the uplink capacity C is a random
variable, whose distribution will be analyzed subsequently.

III. CAPACITY UNDER SIMPLE CHANNEL MODELS

Simple channel models that only consider the effect of
pathloss regardless of random shadowing and fading have
been adopted in some cognitive radio network studies [12],
[14], [15]. The reason of using simple channel models is that
they often lead to elegant analytical results which can reveal
important insights without over-complicating the problem. In
this section, we adopt simple channel models and aim to find
the closed-form CDF of the capacity C.

When only the pathloss is considered, we have

L, = K1)
W = KA /()

)
(M

where K! and K# are pathloss-related constants for the
interference and access channels, respectively, dl{ ; s the dis-
tance between the ith primary receiver and the jth secondary
transmitter, df is the distance between the jth secondary
transmitter and the BS, and « is the pathloss exponent ranging
from 2 to 5 [18]. Substituting (6) to (1), it follows that (2) can
be rewritten as

IO Imin @
PP = gr (&) ®
where dJI.“‘in = min(d] ;) is the distance between the jth sec-
ondary transmitter to the nearest primary receiver. According
to the properties of Poisson point processes [19], (d;r'“‘“)2
follows an exponential distribution given by

f(d;min)2(z) = ApTexp (—Apme) . )

From (8) and (9), the CDF of P;"** can then be derived using
the transformation of random variables [20] with the following
expression

Fpmax (z) =1—exp (—/\p’II'(CIJKI/Io)2/a) . (10)
Substituting (6) and (7) into (1) and (3), we have
KA dI'min o
Sj=107{7< ZiA ) 11
j

Since the secondary users are uniformly distributed in the cell,
(d#)? follows a uniform distribution ranging from 0 to R?.
Using the transformation of random variables, it is easy to
show that the CDF of S; is given by

1 — exp(\pmR%(z/K)%®)
R (/K2

where K is a constant given by K = IoK4/K!. We assume
that the received powers S; from different secondary users

Fs;(z)=1-

(12)
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are mutually independent and follow the same CDF given by
(12). With opportunistic scheduling, the rccelved signal power
S has a CDF given by Fs(z) = [Fs, (x)] . It follows that
the CDF of the uplink capacity C can be obtained as
M
Fo(z) = Fs (Q(2% — 1)) = [Fs, ((2° - 1))] (13)

IV. CAPACITY UNDER REALISTIC CHANNEL MODELS

In this section, we adopt more realistic channel models
considering not only the effects of pathloss but also shadowing
and fading.

A. Realistic Channel Models

As modifications of the simple channel model in (6) and
(7), the realistic channel models are given by

I _ qprlel a
h' i= K Ei,j”’ilj/(d!j)
hit = K¢t/ (df)

(14)
(15)

where 5,{ ; and "i,j are random variables which model the
effects of the shadowing and mutlipath fading in the inter-
ference channels, respectively. Similarly, {3“ and 77]4‘ represent
random shadowing and fading factors in the access channels,
respectively. We assume that the shadowing factors {5 it
and {5“‘} are mutually independent, each following a log-
normal d1str1but10n with zero mean and a standard deviation o¢
ranging from 5 to 12 dB [18] with 8 dB being a typical value
for macrocellular applicatlons We further assume that the
fading factors {1} ;) and {7]] } are also mutually independent
and follow identical distributions f,(z). When Nakagami
fading channels [18] are assumed, fy(x) is given by a Gamma
distribution [18]
mmzm—l

fo(@) = T(m)

where m is the Nakagami shape factor and I'(-) denotes the
gamma function.

The products {¢] 7]} and {¢/n?} represent composite
shadowing and fading in the interference channels and ac-
cess channels, respectively. They follow identical Gamma-
log-normal distributions with the PDF denoted as fep(x).
According to [18], fen(x) can be approximated by a log-
normal distribution as [18]

exp(—mx),

(16)

1
> -
=3

10 (10log;o x — p)? }
~ - .7
fenle) % o enp { - L0808 (an
In (17), the mean p and variance o2 are given by [18]
= ¢ [1(m) — In(m)] (18)
o = €7%((2,m) + o} 19)

respectively, where € = In(10)/10 is a constant, 1(-) is the
Euler psi function, and {(-, -) is Riemann’s zeta function [18].
When m = 1 this approximation is valid for o¢ > 6 dB, and
for m > 2 the approximation is valid for all ranges of o¢ of
interest [18]. The effect of Nakagami fading is to decrease the
mean 4 and increase the variance o2. Such an approximation

allows us to use a single formula (17) to represent both pure-
shadowing and composite shadowing and fading channels.
When both shadowing and fading are in concern, we use (17)
with  in (18) and o2 in (19). In case only the shadowing is
of interest, we can still use (17) with = 0 and o2 = .

B. Transmit Power Distribution

Substituting (14) into (1) and (2), the CDF of the maximum
allowable transmit power under realistic channels can be
derived as (see Appendix)

Fppes(z) = 1 - exp (~MmQK! /1)) (20)
where 5 2 9
Q=exp( (e,uaa-i;ea))' @

Comparing (20) with (10), we can see that the transmit power
CDFs under simple and realistic channel models only differ by
a factor ). This means that the transmit power CDF obtained
under realistic channel models with a density parameter A,
will be the same as the CDF obtained under simple channel
models with a scaled density parameter A; = A, Q. In Table I,
we show the values of () under typical shadowing and fading
scenarios. We can see that in most cases @ is close to 1,
which indicates that such a scaling effect is not significant
except for deep shadowing cases (o, = 12 dB). From (20),
the corresponding PDF f p;nax(a;) can be easily obtained as

I I\ &
fp]max(.’l,') — pﬂ'Q (K ) pa-1 exp (-—/\pﬂ'Q (mlj—o)
(22)

C. Capacity Distribution
Using the transformation of random variables, the PDF of
h#! can be derived from (15) as

A2/
e R )

where @ is given by (21), ®(-) is the CDF of a standard
Gaussian distribution, and g(z) is given by

In(z) + aIn(R) — In(K4) — p/e — 2(e0)?

(23)

9(z) = = (24)
For convenience, we rewrite (3) in the dB form

(85)aB = (P;"*)ap + (hA)dB (25)

where (Sj)qp = 10log;y Sj, (Pf*)ap = logyo P, and

(h#)ap = 10logyyhf. In (25), (P"®)ap is a random
vanable whose PDF can be derived from that of Pmax
follows

f(pmax) 5 (2) = €107/ fpmax (10°/10), (26)
Similarly, the PDF of (hf)dg is given by
Jih)ap (@) = €101 f.4(10°/10), @7)
(hf)an 5
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Since (P"**)4p and (h%')4p are mutually independent, the
PDF of their sum (.S;)4p is the convolution of their individual
PDFs, namely,

f(sj)ds (z) = f(P;“”)dB (z) * f(hf)dg (z) (28)

[Tl

where “+” denotes convolution. The CDF Fig,),, () of
(Sj)aB can be obtained by taking the numerical integration
of the PDF f(s;),5(). When opportunistic scheduling is
considered, it follows that the CDF of (S)4p = 10log; S
is given by

M
Fi$)as (@) = [F(5;)45 (2)] (29)

Finally, the CDF of the capacity can be evaluated as
Fo(z) = Fis),s (10logyo (27 - 1))).  (30)

V. NUMERICAL RESULTS AND DISCUSSIONS

Based on the above derived equations, the CDF Fg(z) of
the uplink capacity C will be evaluated numerically in this
section. We focus on understanding the impacts of three key
parameters on the distribution of C: the density of primary
users )y, the cell radius R, and the number of opportunistically
scheduled secondary users M. For other parameters that have
direct scaling effects on the signal/interference strength, we
take a simple treatment and normalize them to one, namely,
we have KA =1, KI =1, I, = 1, and Q = 1. The
pathloss exponent « is taken to be 4, which is a typical value in
terrestrial cellular systems [18]. The default values of the three
key parameters are taken as A, = 0.001 users/m?, R = 100 m,
and M = 10.

Moreover, we study the impacts of shadowing and fad-
ing on the capacity by comparing the capacity CDFs ob-
tained with three types of channel models: the pathloss-only
model, pathloss-shadowing model, and pathloss-shadowing-
fading model. In Figs. 2 to 4, the capacity CDFs obtained
with the pathloss-only and pathloss-shadowing channel models
are compared to reveal the impacts of shadowing on the
capacity. The shadowing standard deviation o¢ is taken as
8 dB. Furthermore, the impact of Nakagami fading on the
capacity is studied in Fig. 5 by comparing the capacity
CDFs obtained with pathloss-shadowing models to that with
pathloss-shadowing-fading models.

Fig. 2 shows F¢(x) with A, ranging from 0.001 to 0.01. For
“pathloss-only” and “pathloss-shadowing” cases, Fo(z) are
calculated based on (13) and (30), respectively. The capacity is
represented in the dB scale to cover the whole dynamic range.
Clearly, the capacity is observed to have a reverse relationship
with A,. This is expected since a denser population of primary
receivers will impose tighter limits on the emission powers of
the secondary transmitters. Since the channel capacity is a
random variable, a particular useful measure of its statistical
behavior is the so-called outage capacity. The 3-outage ca-
pacity Cp is the capacity in (5) that can be surpassed with
probability 3: P(C > Cs) = 3. From Fig. 2 we can see that
such an outage capacity is sensitive to A,. For example, the
difference between the 80%-outage capacities Cy g given by

Ap = 0.001 and ), = 0.01 is roughly 20 dB. This means
that a ten times increase of the primary user density results in
about one hundred times decrease in the 80%-outage capacity
Co.s. Moreover, from Fig. 2 we can see that the effect of
shadowing on the capacity is to decrease the mean and increase
the variance of the capacity distribution.

Similar to Fig. 2, Fig. 3 shows the impact of the secondary
cell radius R on the capacity. Since the transmit powers of
the secondary users are statistically limited by Ap, one should
choose a proper value for the cell radius R so that the BS is
within a reasonable range to establish useful communication
links. Despite the well-expected trend that the capacity de-
creases with increasing R, we observe that a 8 times increase
of R (from 50 m to 400 m) results in roughly 1000 (30dB)
times decrease in the 80%-outage capacity. Therefore, the
outage capacity is even more sensitive to R than Ap. Fig. 3
also shows similar impacts of shadowing on the capacity CDFs
as that shown in Fig. 2.

Fig. 4 aims to show the benefits of opportunistic scheduling
which exploits multi-user diversity. It is shown that a 20 dB
gain on the 80%-outage capacity can be obtained by increasing
the number of scheduled users from 2 to 20.

Finally in Fig. 5, we show the capacity CDFs with pathloss-
shadowing-fading channel models. We change the value of
the Nakagami shape factor m from 1 to 10000 to represent
different fading scenarios. The case of m = 1 corresponds
to Rayleigh fading, whereas m = 10000 approximates a
pathloss-shadowing channel where there is no small scale
fading. The results shows that small scale fading has trivial
effects on the capacity distribution, with a Fo(z) obtained
from m = 1 virtually overlaps with that from m = 10000.

VI. CONCLUSIONS

In this paper, we have studied the uplink cell capacity
of a cognitive radio network with a constraint on the peak
interference power perceived by any primary receivers. We
have considered a secondary cell of radius R to be deployed in
a Poisson field of primary users whose density is given by A,
We have also assumed a secondary BS which opportunistically
schedules among M secondary users to maximize the system
capacity. The capacity has been studied as a random variable
with both simple and realistic channel models. We have found
that the capacity distribution reacts dramatically to smaller
variations of parameters R, A, and M. In addition, it has been
shown that while shadowing can result in slight modifications
on the capacity distribution, fading has neglectable impacts
on the capacity. Our analysis provides a framework for future
design and planning of similar cognitive radio networks.

APPENDIX
DERIVATION OF (20)
The problem is to find the CDF of P"** defined in (2)
where hJI.“'“ and hl{ ; are given by (1) and (14), respectively.
We will first work on the CDF F) rouax (2) of h]I."'a". Assume

that a transmitting secondary user o;lly interferes with primary
receivers within a distance of L. Namely, the disk centered
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at the transmitting secondary user with a radius of L is
considered as the effective interfering area. Given the primary
receiver density A, the probability that there are k primary
receivers within the interfering disk area L2 is given by

_ 2 2\k
felk) = exp ( /\pﬂ'[’;!) (ApmL?)

(k=0,1,...,00).
(€2))
Let fhz,m,x (x) denote the PDF of hI"‘“" Using the conditional

probablhty we have

Pt () = Y Ji (k) fy s (] F) (32)
k=0

where fhfmx (z|k) is the PDF of hI"“"‘ conditioned on k.
Accordmg to the property of Poisson pomt process, given that
there are k primary users in the interfering disk, the location
of these k primary users will follow independent and identical
uniform distributions. Namely, (d} )2 in (14) have identical
uniform distributions within [ Lz] Since the composite
shadowing and fading factor &/ 3771 ; are also independent and
identically distributed, it follows that the distribution of A} i
are independent and identical. We use fhz (x) and thj( x)

to denote the PDF and CDF of A} T respectlvely The CDF of

hI‘“‘"‘ conditioned on k is then given by

F himax (z) = [Fhl{ ; (@]k (33)

The differentiation of (33) gives the conditional PDF of h;m*"‘

k-1
Fuimes @lK) = k [F @] fur (@)

Substitute (34) into (32) and summing the exponential series
we get

Fygmor (@) =

(34)

MpmL2 o (z)exp (—)\pﬂ'Lz (1 — Fur (z))2 .
’ ED)
Taking the indefinite integral of (35) will give the CDF of

hImax as

Byt (z) = exp (—)\,ﬂrL:’ (1 — Fu, (z))) .

Now we wish to obtain Fj,1 () in (36). It turns out that the
deviations can be simplified if we involve another distribution
function Fy,, \-1(z): the CDF of (h{’j)_ . These two CDFs

are related by
FhiI,j (I) =1- F(h{‘j)—l (.Z'_l) .

From (14) and (17), applying the transformation of random
variables we have

(36)

(37

Substituting (37), (38), and (39) into (36) and taking L — oo,
after some mathematical manipulations we get

KI 2
F laax () = exp | —Ap7Q (?) (40)
J
where @ is originally given by
oo
= [ vty (a1)

and can be further simplified to the form given in (21).
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Table. I Vaules of @ given by (21) under different

shadowing and fading scenarios (o = 4)

.% 0.7
»:c—’ 06"

m=1|m=2|m=4|m=16 | m=o0 Sos

o =6dB | 1.0223 | 1.0518 | 1.7803 | 1.1022 | 1.1108 Zo4
o =8dB | 1.1982 | 1.2328 | 1.2639 | 1.2919 | 1.3019 £ 03
oc =10dB | 1.7856 | 1.8371 | 1.8835 | 1.9252 | 1.9401 §0-2
o =12 dB | 4.8633 | 5.0036 | 5.1300 | 5.2435 | 5.2842 o1
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Fig. 2. CDFs of the capacity C' with different values of \p, with and
without shadowing (K4 =1, K’ =1,1°=1,2=1, R= 100 m,
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Fig. 3. CDFs of the capacity C with different values of R, with and
without shadowing (K* =1, KT =1, 1° =1, Q = 1, A, = 0.001,
M =10, and o = 8 dB).
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