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Abstract. This paper demonstrates potential advantages of using implicit finite differencing and filtering
schemes for fast, accurate, and reliable differentiating and filtering of multidimensional signals
defined on regular grids. In particular, applications to image enhancement and Gaussian image
deblurring are considered. The theoretical contribution of the paper is threefold. The first adapts
the Fourier-Padé-Galerkin approximation approach for constructing compact implicit finite differ-
ence schemes with desirable spectral resolution properties. The second establishes a link between
implicit and explicit finite differences used for gradient estimation. Finally, the third one consists of
introducing new implicit finite difference schemes with good spectral resolution properties.
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1. Introduction. The main goal of this paper consists of demonstrating advantages of
using compact implicit finite differencing and filtering schemes for basic image processing
applications.

1.1. Previous work on image derivative estimation. Fast and reliable estimation of image
derivatives is among the most fundamental tasks of low level image processing. Unfortunately,
the image processing literature often provides the reader with a set of recipes given without
appropriate mathematical analysis. For example, for image gradient estimation, the image
processing textbooks usually refer to the Prewitt and Sobel operators while mentioning that
these operators are not so good at preserving the rotation equivariance property of the gradient
[22], [39, Chapter 15].

Typically, for a two-dimensional image defined on a regular grid with spacing h, image
processing textbooks recommend using a 3 x 3 kernel

, 10 1 . N
1.1 Dy=— | - =—[-101
(L.1) 2hw+2) | 8 N on L1 0 VxS N

and its 7/2-rotated counterpart D, for estimating the z-derivative and y-derivative, respec-
tively. Here w is a parameter: setting w = 1 in (1.1) yields the Prewitt mask and w = 2
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corresponds to the Sobel mask. Searching for an optimal value of w in (1.1) remains an active
research area [9, 18, 2, 21, 42, 25, 3] (see also the references therein).

More than 60 years ago W. G. Bickley, a British applied mathematician, noted that
(1.2)

2
Dw‘w:4 = ﬁ (4 + "oy + e_ht’%> {eha% - e_ha%} = (1 + %A) 5% + O(h*) as h — 0,
where A is the Laplacian, and, therefore, (1.1) with w = 4 has optimal rotation-invariant
properties for small grid spacing h. After its introduction in [9], the Bickley kernel was
rediscovered at least twice [29, 35], and was even patented [49], but nevertheless remains little
known to the graphics and imaging communities.

Recently Scharr and co-authors [42, 25] suggested using (1.1) with w = 10/3. Their anal-
ysis is based on a frequency-based optimization of rotation-invariant properties of (1.1). The
Scharr mask works very well in practice [51] and quickly gained popularity among computer
vision researchers and practitioners [11, Chapter 6].

Bigger stencils for estimating image derivatives were also widely considered. In particular,
Simoncelli and Farid proposed a general frequency-based framework for the design of discrete
multidimensional differentiators [43, 19]. Sophisticated gradient estimation filters were studied
in [7, 1, 24] in connection with high-quality volume visualization isosurface rendering problems.

1.2. Previous work on compact implicit filters and finite differences. Although implicit
finite differences had become known to a general audience of numerical mathematicians and
computational physicists after Collatz’s book [15], their heyday began after Lele’s seminal
paper [30], where a remarkable performance of implicit finite differences for computational
problems with a range of spatial scales was analyzed and demonstrated. At present compact
implicit finite difference schemes constitute advanced but standard tools for accurate numerical
simulations of physical problems involving linear and nonlinear wave propagation phenomena
[16], [38, section 5.8], [31, Chapter 5].

Implicit filtering schemes were first considered by Raymond [40] and Raymond and Garder
[41] in connection with meteorology studies. They were reintroduced in [30] and currently are
widely used in computational aeroacoustics [16, 26].

In the signal processing language, compact implicit finite differences and more general
implicit filtering schemes are described by infinite impulse response (IIR) filters. In image
processing applications, finite impulse response (FIR) filters continue to dominate over IIR
image filtering schemes [32, 33]. Notable exceptions include works of Unser and co-workers
on B-splines, their generalizations, and applications [47, 48, 10, 45] and very recent studies
on accurate visualization of volumetric data [1, 24], where sophisticated implicit gradient
estimation schemes were developed.

1.3. Paper contribution. We believe that the potential of implicit finite difference schemes
for image processing applications is largely underestimated and consider this work as an at-
tempt to demonstrate the usefulness of implicit finite differences for basic image processing
tasks. Other contributions of the paper include the following:

e adapting Fourier-Padé-Galerkin approximations for designing high-quality implicit
image differencing schemes (the second half of section 4);
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e establishing a link between implicit and explicit finite differences used for gradient
estimation (section 3);
e introducing new implicit differencing schemes and evaluating their properties;
e demonstrating usefulness of implicit differencing and filtering schemes for various im-
age processing tasks including image deblurring and sharpening.
All the mathematical derivations presented in this paper are elementary and based on
straightforward calculations. The main results of this paper were previously reported by the
author in conference proceedings [5, 6].

2. Estimating the derivative for univariate signals. Consider a uniformly sampled signal
f(x). Let us recall that the Nyquist, or folding, frequency is the highest frequency that can
be represented in the signal. It equals one-half of the sampling rate.

Consider the simplest central difference operator

(21) F1(@) % 5 G+ b) = fa = )
and its corresponding mask
(2.2) S [-1.0.1

defined on a grid with spacing h. For the sake of simplicity we assume that A = 1, which is
equivalent to rescaling the z-coordinate: z — x/h. The eigenvalues of the linear operators
corresponding to the left- and right-hand sides of (2.1) and subject to periodic boundary
conditions are found by setting f(x) = exp{jwx}, j = V-1, -7 <w <, in (2.1):

. 1 oz .. ; . .
jwel T 3 [ejw(”l) — D] = jginwelT, jw &~ jsinw.

The frequency response function (the eigenvalue for eigenfunction exp{jwx}) jsinw corre-
sponding to the central difference operator in (2.1) delivers a satisfactory approximation of
the frequency response function jw of the ideal derivative only for sufficiently small frequencies
(wavenumbers) w. See, for example, [23, section 6.4]. One way to improve (2.1) consists of
using implicit finite differences.

2.1. Implicit finite differences for univariate signals. One can say that (2.2) adds to the
true derivative a certain amount of smoothing applied to nonzero wavenumbers. A natural
way to compensate for smoothing introduced by (2.2) consists of adding approximately the
same amount of smoothing to the derivative. This simple idea leads us immediately to the
concept of implicit finite differences.

For example, the two simplest implicit schemes for approximating the first-order derivative
of a function f(z) are based on the following relations [15, p. 538]:

4
(2:3) =B FAF @)+ F @R = 5 f B~ fo— )]+ e @)+

fl(@—=h)+3f'(x)+ fl(x+h) = [f(x + 2h) + 28f(x + h)

12h
h6

(2.4) —28f(:13—h)—f(:13—2h)]—mfvn(:v)—l—---.
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The corresponding implicit finite differences
(2.5) fia +Af+ fia =3 (firn — fim1)
1
(2.6) fia+ 304 fl= B (fi2 +28fit1 — 28fi—1 — fit2)

are often called the fourth- and sixth-order tridiagonal Padé schemes, respectively, since (2.3)
and (2.4) are derived using classical Padé rational approximations and since (2.5) and (2.6)
lead to tridiagonal systems of linear equations. It is interesting that (2.5) can be obtained if
the grid data {f;} is first B-spline interpolated and then processed by the central difference
filter (2.2).

Taking into account a similarity between the Bickley mask (1.1) with w =4 and (2.5) let
us call the latter the implicit Bickley scheme. Note that (1.2) can be rewritten as

0 h2 \7! .
e = <1+§A> Dy, _, +O(hY),

which immediately leads to the implicit Bickley scheme (2.5).
One can observe that the frequency response function

w + 2 cosw
2-7 Sw = —-——
(27) () w+ 2
corresponds to the smoothing kernel
1
(2.8) — 1, w, 1].

w+ 2

The frequency response functions associated with (2.5) and (2.6) are given by

o 1 o Sag(w)
(2.9) j smwm and j sinw 55(0)
respectively. It is easy to verify that these two frequency response functions deliver fourth- and
sixth-order approximations, respectively, of jw, the frequency response function corresponding
to the ideal derivative, at w = 0.

Thus the amount of smoothing introduced by (2.2) is compensated in (2.9) by applying
(2.8) with w = 4 to the derivative. Finite difference scheme (2.6) delivers a more accurate
approximation of the true derivative: smoothing by (2.8) with w = 3 applied to the derivative
is balanced by the amount of smoothing introduced by (2.2) plus smoothing by (2.8) with
w = 28 applied to the sampled function itself.

It is natural to evaluate the quality of a finite difference approximation by its resolving
efficiency, the range of frequencies (wavenumbers) w over which a satisfactory approximation
of the exact differentiation is achieved. Since it is not possible to get a reasonably good
approximation when w is close to 7, the frequency range for the optimization is often specified
by 0 < w < rm with some 0 < r < 1.

Although a quantitative study of the resolving efficiency of finite difference schemes is a
straightforward task [30], everywhere below we make our judgments based on a visual analysis
of graphs of the corresponding frequency response functions.
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Figure 1. Left: Resolving efficiency of various finite difference schemes is demonstrated by plotting the
graphs of their corresponding frequency response functions. Note the good resolving efficiency of the implicit
Scharr scheme. Right: a graphical comparison of the resolving efficiency of various frequency response func-
tions corresponding to implicit finite difference schemes. A high resolving efficiency of both the Fourier—Padé—
Galerkin schemes is clearly demonstrated.

In the left image of Figure 1, we provide the reader with a visual comparison of the
frequency-resolving efficiencies of jsinw corresponding to central difference (2.1) and fre-
quency response functions (2.9). In addition, we plot the graph of

(2.10) jsinw; = jsinw w2
S1o/3(w)

which we call the implicit Scharr scheme, since it can be considered as a counterpart of the

original Scharr kernel (1.1) with w = 10/3 introduced in [42, 25]. One can observe that the

resolving efficiency of the implicit Scharr scheme is comparable with that of (2.6) in spite of

the fact that the latter has a wider stencil.

e )
w + 2cosw w=10/3

3. Estimating image gradient. Now it becomes clear in which way (1.1) improves the
standard central difference (2.2): smoothing due to the use of the central difference operator
instead of the true xz-derivative is compensated by adding a certain amount of smoothing in
the y-direction. Thus (1.1) and its y-direction counterpart do a better job in estimating the
gradient direction than in estimating the gradient magnitude.

If the goal is to achieve an accurate estimation of both the gradient direction and magni-
tude, we can combine (1.1) and the corresponding 3 x 3 discrete Laplacian

1 1 w 1
(3.1) Ly=i5— | w —4w+1) w
h2(w + 2) 1 w 1
as follows. Let 6 =[000; 01 0; 00 0] be the 3 x 3 identity kernel. Note that
1 w 1 1
h? 1 1 1
(32) o0+ Ly=———|w v w|=—=[1 w 1]x w |,
w+ 2 (w+ 2)? 1w 1 w+ 2 w+2|
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which can be considered as simultaneous smoothing (averaging) with respect to both coor-
dinate directions. Thus, in order to remove smoothing introduced by (1.1), it is natural to
use

h? !
: Ly ) Dy,
(3.3) <5 + o )

which combines (1.1) with an implicit Laplacian-based sharpening. The frequency response
function corresponding to (3.3) applied to the eigenfunction exp(j(wiz + way) is given by

. sinwg
34 H =j—
(3.4) (w1, w2) = j Sw (1)
which, in turn, corresponds to the following implicit finite difference scheme:
1 1
(35) w—_|_2 (fi/—l,j + ?,Ufl/’] + fl’l—l—l,j) = _h (fi—l—l,j - fi—l,j) .

Although the image gradient (/,,I,) is a rotation-invariant quantity, its finite difference
approximations are not. For many image processing and computer vision applications, a
correct estimation of the gradient direction arctan([l,/I,) is of primary importance.

gradient direction error, Sobel 3x3 mask, w =2 gradient direction error, Scharr 3x3 mask, w = 10/3 gradient direction error, implicit Scharr scheme, w = 10/3. gradient direction error, 3x3 explicit scheme, w = 4 gradient direction error, 4th-order tridiagonal Pade.

(b)

gradient error, Sobel 3x3 mask, w =2 gradient error, Scharr 3x3 mask, w = 10/3

(d)

gradient error, explicit 3x3 scheme, w = 4

Figure 2. Gradient direction (top row) and gradient (bottom row) errors calculated using various approx-
imations of the gradient. Cooler color means higher accuracy. (a) Sobel kernel (1.1) with w = 2. (b) Scharr
kernel (1.1) with w = 10/3. (c) Implicit Scharr scheme (3.5) with w = 10/3. (d) Explicit filter (1.1) with
w = 4. (e) Implicit filter (3.5) with w = 4. The Scharr kernel and implicit Scharr scheme deliver very similar
gradient direction accuracy. Notice how good the implicit schemes are in estimating the gradient.

Figure 2 shows results of our numerical experiments with sinusoidal grating
I(z,y) = sin (3:2 + yz) ,
where x and y are ranging from —16 to 16 with step-size h = 0.1. It means that the frequencies
vary from 0 to 0.51 cycles/pixel. The images of the top row show gradient direction errors

|arctan (17Pr [ 1PPT) — arctan (I,,/ L))
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calculated using various approximations of the gradient for each pixel. The images of the
bottom row present gradient errors

VT = 172 4 (1, — )2

for various approximations of the gradient at each pixel. Comparing the images obtained
using the Scharr (w = 10/3) and Bickley (w = 4) kernels (1.1) with their implicit counterparts
justifies our theoretical results and demonstrates the advantages of using implicit schemes for
gradient estimation.

3.1. Implicit low-pass filtering. Inspired by [30] let us consider a simple one-parameter
family of implicit low-pass filters

1 p P 1 1
(3.6) 5 [t wfit fun] = Sfi4 i+ ).
The corresponding frequency response function is given by
w4 2 1+ cosw So
3.7 T = ==,
(37) w(®) w + 2 cosw . 2 Sw

Here we assume that w > 2. Observe that (3.6) combines smoothing kernel [1/4,1/2,1/4]
with the inverse of

(3.8) wiw (1, w, 1].

It turns out that (3.7) belongs to the family of so-called implicit tangent filters intro-
duced by Raymond [40] and Raymond and Garder [41] and described by their corresponding
frequency response functions

-1
(3.9) Tep(w) = <1 + etan?? %) , p=1,23,...,

where € and p are user-specified parameters. Namely, substituting p = 1 and € = g—:_g in (3.9)
gives (3.7). Monotonicity of (3.9) for 0 < w < 7 and asymptotics

2
1—e¢ (%) g O(w?+2) as w— 0,
Tep(w) =

L 2p+O((w—7T)2p+2) as w— T
€ 2

justify remarkable properties of the implicit tangent filters. The left image of Figure 3 displays
the frequency response function (3.9) for p = 2 and various values of e.
Note that

(a+2)(b+2)
a—1b

8+a+b_ab 4 6
3(a+2)(b+2)w —i—O(w) as w — 0,

(3.10) [Th(w) — To(w)] = w? +

where the fourth-order term disappears if b = (a+8)/(a—1). Thus (3.10) delivers an accurate
implicit approximation of the second-order derivative for low frequencies w.
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In particular, the limit case a — 4 (if a = 4, then b = 4 and (3.10) is not properly defined)
corresponds to (2.5) applied twice. Setting a = 10 (therefore b = 2) yields the simplest Padé
scheme for the second-order derivative

(3.11) S 1087 + fily = 12(fix1 — 2fi + fi1)

which can be found in [15, p.538]).

The right image of Figure 3 displays graphs of the frequency response functions correspond-
ing to (3.10). The main advantage of using (3.10) for estimating the second-order derivative
is that it is computationally efficient (solving three-diagonal systems of linear equations) and
allows the user to control the amount of smoothing needed for robust differencing of noisy
signals.

It is also worth noting that (3.10) resembles the standard Difference-of-Gaussian (DoG)
filter and, therefore, can be employed for edge detection and nonphotorealistic rendering
purposes (see, for example, [53] and the references therein, where DoG was used for edge-
based image enhancement and abstraction).

A different normalization of Ty(w) — T,(w) yields a two-parametric family of band-pass
filters. The normalization coefficient can easily be found analytically, and the resulting band-
pass filters have low-computational complexity.

no filterin exact 2nd-order derivative
1.6 | ?’It ng 6= 100and b =2 9r standard central difference
ow-pass ittering, - an _p - Pade (implicit) scheme for 2nd-order derivative
14} low-pass filtering, ¢ =4 and p = 2 8t normalized difference of two low-pass implicit filters
low-pass filtering, € = 0.14 and p = 2 1st-order derivative Pade (implicit) scheme applied twice
low-pass filtering, € = 0.03 and p = 2 7L
1.2 low-pass filtering, ¢ = 0.001 and p = 2 o
2 £ 6l
<]
g 1 -3
8 8
= 5 5[
g 0.8 8
@ S 4l
= T
g 9]
8 osf £,
04 ol
0.2f 1
o 0 n , . . , )
0 0.5 1 15 2 25 & 0 0.5 1 1.5 2 25 3
frequency o frequency ©

Figure 3. Graphs of frequency response functions for various implicit filtering schemes. Left: implicit
low-pass filters (3.9). Some of them are used in image deblurring experiments conducted in the paper. Right:
various approrimations of the second-order derivative operator. See the main text for further details.

4. High-resolution schemes for first-order derivatives. Both (2.5) and (2.6) are partic-
ular cases of a general seven-point stencil introduced in [30]

(A1) Bflgtafly+ f+afls +Bfls :cfz‘+36—hfz‘—3 +bfi+2;lfi—2 _i_afi—i-lz_hfi—l,

where h = 1 is the grid spacing, and {f;} and {f/} are the values of a given function f(x)
and its derivative at the grid points, respectively. Here the coefficients «, 5 and a, b, ¢ are
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determined such that the amount of smoothing introduced by the right-hand side of (4.1) is
compensated by averaging the derivatives in the left-hand side of (4.1).
The frequency response function corresponding to (4.1) is given by

casinw + (b/2) sin 2w + (¢/3) sin 3w
(4.2) H(w) =] (b/2) (c/3) .
1+ 2acosw + 23 cos 2w

The problem of determining the coefficients «, § and a, b, ¢ in (4.2) can now be formulated
in a more mathematical way: they are chosen such that H(w) delivers a good approximation
of w, the frequency response function of the true derivative.

In his seminal paper [30], Lele used empirical considerations to derive the set of coefficients

(4.3) a = 0.5771439, B = 0.0896406, } 7

a = 1.302566, b= 0.99355, c = 0.03750245

which deliver an exceptional resolving efficiency to compare with many other approxima-
tions used currently in computational aeroacoustics [16, section 4.1.1] (see also the references
therein). Below we use Fourier-Padé-Galerkin approximations for improving Lele’s result and
establishing a general approach to frequency response function design.

4.1. Fourier—Padé—Galerkin approximations for derivative. Following [34] let us consider
the linear space of trigonometric polynomials of degree N

Vn =span{e/™ | — N <n < N}
and define a rational Fourier series by

Ry(w) = Pp(w)/ Qi(w), Pr€Vy, QreV.

Given a 2m-periodic function f(w), w € [—m, 7], the Fourier—Padé-Galerkin approximation
f(w) = Rgi(w) determines the unknown coefficients in rational function Ry;(w) from orthog-
onality conditions

(4.4) / [Pr(w)f(w) = Qu(w)] g(w)W (w) dw =0 Vg(w) € Vit
where W (w) is a properly chosen weighting function. In practice, since Vi; is a linear space,
the &+ [ unknown coefficients are determined from (4.4) with some k + [ linearly independent
test functions g1 (w), g2(w), ..., gk+i(w). Thus (4.4) leads to a system of k + [ linear equations
with k + [ unknowns.

Pentadiagonal implicit schemes. As a simple application of the above Fourier—Padé—Galerkin
approach, let us use (4.4) with W (w) = 1 to determine the coefficients in (4.1). Since we ap-
proximate f(w) = w, which is odd on [—7, 7], we set V5 = span{sinnw |1 < n < 5}, use

P3(w) = asinw + (b/2)sin 2w + (¢/3)sin3w and Q2(w) =1+ 2a cosw + 23 cos 2w,

and immediately arrive at

3 21 63 219 7
4.5 = — N - b= — - —.
(4.5) =5 2000 ¢ 50’ 2000 125
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Our Fourier-Padé-Galerkin approach (4.4) can be considered as a generalization of the
least-square fitting procedures used to design explicit [44] and implicit [27] finite differencing
schemes.

Note that all the computations involved are very simple. For this particular example, the
integrals can be evaluated analytically and the resulting system of five linear equations with
five unknowns can be solved by hand. We, however, use Maple for both of these tasks; see
the Maple code below.

> P:=omega->a¥sin(omega)+b*sin(2%omega) /2+c*sin(3*omega)/3;

P:=w — asin(w) + % bsin(2w) + %csin(S w)
> ([:=omega->1+2+*alphax*cos (omega)+2*betakcos(2*omega) ;
Q:=w—1+2acos(w)+2Fcos(2w)
> g:=(k,omega)->sin(k*omega) ;
g = (k, w) — sin(kw)

> c¢l:=int ((Q(omega) *omega-P (omega))*g(1l,omega) ,omega=0..Pi):
> ¢2:=int ((Q(omega) ¥omega-P (omega) ) *g (2, omega) ,omega=0. .Pi):
> c¢3:=int ((Q(omega) *omega-P (omega) ) *g(3,omega) ,omega=0..Pi):
> c4:=int ((Q(omega) *omega-P (omega) ) *g(4,omega) ,omega=0..Pi):
> c¢5:=int ((Q(omega) ¥omega-P (omega) ) *g (5, omega) ,omega=0. .Pi):
> sol:=solve({c1=0,¢2=0,c3=0,c4=0,c5=0}, [alpha,beta,a,b,c]);

21 63 219 LH

3
sobi=llo=56=555 =55 0= 550 ©= 125

The right image of Figure 1 demonstrates advantages of (4.1), (4.5). The scheme has
a good resolving efficiency but suffers from a slight Gibbs-type phenomenon. A simple yet
efficient way to reduce this Gibbs-type artifact consists of choosing an appropriate weight
function W(w) in (4.4). In particular, setting W(w) = 1 for |w| < 0.97 and W(w) = 0
otherwise gives a quite satisfactory result, as shown in the right image of Figure 1.

The right image of Figure 1 provides the reader with a visual comparison of the frequency-
resolving efficiencies of (4.3) and both the Fourier-Padé-Galerkin schemes. In addition, we
also consider the sixth-order tridiagonal Padé scheme whose frequency response function is
also shown in Figure 1 and the tenth-order pentadiagonal Padé scheme

1 17 101 1

1
(4.6) =3 P T YT ¢ T

whose frequency response function (4.2), (4.6) delivers the maximal approximation order of
f(w) =w at w = 0 among the family of five-diagonal schemes (4.1).

Although the right image of Figure 1 suggests that both the Fourier—-Padé-Galerkin
schemes outperform (4.3) (which, taking into account the importance of an accurate estima-
tion of derivatives for computational aeroacoustics problems, would be an important achieve-
ment), we do not claim that. The definition of resolving efficiency depends on a specified
error tolerance, and some additional efforts are required to see how accurate (4.2) with (4.5)
approximates the ideal derivative. However, we consider the right image of Figure 1 as a
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demonstration of the approximation power of the Fourier-Padé—Galerkin approach. A few
other applications of the approach are considered below.

Tridiagonal implicit schemes. 1f we are interested in less accurate but simpler implicit ap-
proximations of the derivatives, we can set

(4.7) b=c=0=4

n (4.1), for example. Now choosing

o B 1 if jw| < 37/4,
(4.8) gk (w) =sin(kw), k=1,2, and W(w)= { 0 otherwise
yields
o 3(22+21m)v2 1 nd 0 (71 +96m +277%) V2 8
T 2(52+ 787 4 2772) 3 T 52478t +2Tn2 T 5

These values of o and a are close to those for the implicit Scharr scheme for which o = 3/10
and a = 8/5.
It turns out we still have room for improvement. For example, selecting

L B [ 14 if w| < 37/4,
(4.9) gk (w) =sin(kw), k=1,2, and W(w)= { 0 otherwise
gives closed-form expressions for o and a which can be approximated by
o = 0.3581542431 and a = 1.573767241.

The left image of Figure 4 compares the frequency-resolving efficiencies of the implicit Scharr
scheme and the schemes corresponding to (4.8) and (4.9).

exact differentiation

exact differentiation 1 3

3 =
a = 8/5, a=3/10 (implicit Scharr scheme) a=1 (simplest cell-centered scheme)
a=8/5a=1/3 a=12/11, a=1/22 (Pade scheme)
25} a = 1.573767240, a=0.3581542430 . 25| = FPG-optimized for a and o ]
FPG-optimized for a,b,a. and

e e ]
= =
% 2[ 1
(2} (2}
c c
o o
Q Q
7] 7]
D15 1215+
3 3
c c
[} [}
3 3
g 1+ g 1t

05 1 05

0 \ \ \ \ \ \ 0 \ \ \ \ \ \
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
frequency o frequency o

Figure 4. Left: a visual comparison the frequency-resolving efficiencies of three diagonal implicit schemes.
Right: a visual evaluation of frequency-resolving properties of implicit cell-centered schemes.
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Cell-centered implicit schemes. The Fourier-Padé-Galerkin approach (4.4) is quite general
and can be used in many other situations. For example, let us consider finite difference
schemes for cell-centered grids. Cell-centered finite differences are closely related to finite
volume approximations and widely used for numerical solving of partial differential equations.
In general, cell-centered finite differences have better frequency-resolving characteristics than
the node-centered schemes considered so far.

The simplest cell-centered approximation of the derivative is given by

Jivr2 — fic1y2
,_
(4.10) fi= —

where, as before, h = 1 is the grid spacing. Let us consider a general implicit scheme

A1) Bt afl + Sl afl b Bl =y T I ST

with four coefficients to be determined. The transfer function corresponding to (4.11) is given
b
y Hw) = 2a slin(w/Q) + (2b/3) sin(3w/2)
+ 2acosw + 20 cos 2w

Setting 8 = 0 = b in (4.11) yields a two-parametric family of tridiagonal schemes. The
Padé approximation corresponds to o = 1/22 and a = 12/11. To demonstrate how the
Fourier—Padé—Galerkin approach deals with this simple case, we use the test and weighting
functions defined by (4.8) and arrive at

(4.12) o = 0.07155774932 and a = 1.120033921.

The right image of Figure 4 suggests that set (4.12) delivers better frequency-resolving prop-
erties than the Padé approximation.

Now let us consider a four-parametric family of pentadiagonal schemes defined by (4.11).
To determine «, 3, a, and b in (4.11) we use (4.4), where we simply set W (w) = 1 everywhere
and select four functions gi(w) = sin(kw), k = 1,2,3,4. The coefficients are given by

(4.13) o 49170 5= 3255 o 1150282357T _ 1785202657T
123803’ 247606 507097088 "’ 507097088
and, as demonstrated by the right image of Figure 4, cell-centered finite difference scheme
(4.11) with the above coefficients has excellent approximation properties.
It is also worth noting here that the Fourier-Padé-Galerkin approach can be easily ex-

tended for dealing with second- and higher-order derivatives and for filter design purposes.

5. Potential applications. Below we demonstrate the advantages of implicit image deriva-
tives and filters for two basic image processing tasks: feature detection and image enhance-
ment.

5.1. Feature detection. The classical Canny edge detection scheme is used as our first
test for implicit image derivatives. In Figure 5 we compare implicit Scharr scheme (2.10) and
Fourier-Padé-Galerkin scheme (4.2), (4.5) with the Sobel mask, Scharr kernel, and Farid-
Simoncelli 5-tap filter [19]. We use MATLAB functions from [28] with the same parameter
settings for all the schemes tested. As expected, the explicit schemes add unnecessary blur
and, therefore, are less sensitive to fine image details to compare with the implicit schemes.
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Sobel derivatives, ¢ = 0.75 Explicit Scharr scheme, ¢ = 0.75 Farid-Simoncelli 5-tap filter, 6 = 0.75 Implicit Scharr scheme, ¢ = 0.75 Fourier-Pade-Galerkin scheme, ¢ = 0.75
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Figure 5. Canny edge detection with explicit and implicit finite differences, o = 0.75. (a) Sobel mask; (b)
explicit Scharr mask; (c¢) Farid-Simoncelli 5-tap filter; (d) implicit Scharr scheme; (e) Fourier—Padé-Galerkin
scheme (4.1), (4.5). Explicit schemes (a), (b), and (c) add unnecessary blur and, therefore, are less sensitive
to fine image edges. For example, the edge of the nose is not sufficiently sharp and appears only with implicit
schemes (d) and (e).

E’a"‘\ 5

5.2. Stabilized inverse diffusion. In our next test, we deal with image deblurring and
sharpening. We take an image and add a Gaussian blur to it. Then we start a simple
deblurring/sharpening process by the inverse diffusion equation

(51) 61/8t = _Alv I($7y7t)|t:0 :IO($7y)7
which we solve numerically by the forward Euler method
(5.2) I(z,y,t +dt) = I(z,y,t) — dt Apl(2,y,1),

where Ay is a discrete approximation of the Laplacian. It is well known that (5.1) and its
discrete counterpart (5.2) are highly unstable because they lead to an exponential growth of
the nonzero image frequencies. Two discrete Laplacians are tested: the standard five-point
Laplacian and the Laplacian whose second-order partial derivatives are estimated via (2.5)
applied twice. The latter, as demonstrated in the right image of Figure 3, combines a very
accurate approximation of the second-order derivative for the low frequencies with high-quality
low-pass filtering. The images of the top row of Figure 6 demonstrate the advantages of using
twice-applied (2.5) over the five-point discrete Laplacian for Gaussian deblurring with (5.2).

Another way to stabilize (5.1) and its discrete approximation (5.2) consists of directly
suppressing high frequencies. Let us combine (5.2) with low-pass filtering

(5.3) I(z,y,t + dt) = (low-pass) [I(x,y,t) — dt ApI(z,y,t)].

The low-pass filtering scheme we use here employs implicit tangent filters defined by (3.9).
As shown in [40, 41], for p = 2 the filters have a particularly simple form

i fi—2
fiea Jic1
(5.4) (S+el)| fi =S| fi
fi—i—l fi+1
| fit2 | fit2
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original image Gaussian blur added

(a) (b)

Gaussian blur added stabilized inverse diffusion, dt = 0.2, niter =66 stabilized inverse diffusion, dt = 0.:

Figure 6. Top row: (a) the original Trui image; (b) the image is Gaussian blurred; (c) the blurred image is
restored and even sharpened by 45 iterations of (5.2) with the Laplacian approzimated by (2.5) applied twice to
each dimension (use zoom to see how well small-scale image details are restored); (d) an attempt to restore the
blurred image by (5.2) with the standard five-point discrete Laplacian; small image defects are already observed
after 37 iterations of (5.2), while the blur is not eliminated; (e) after one more iteration of (5.2): the blur is
not reduced and the defects become much more apparent. Bottom row: (a) Gaussian blur with o =5 is added;
(b)—(e) deblurring of (a) by (5.3); see the main text for details.

with S =[14641] and L=[1 -4 6 —4 1]. Despite its simplicity, (5.4) maintains a
relatively sharp cut-off transition.

The bottom row of Figure 6 demonstrates our experiments with (5.3) and (5.4). We add
blur using a discrete 7 x 7 kernel

00 1 2 1 0 0
0 3 13 22 13 3 0
L1350 o7 59 13 1
K=——1|2 22 97 159 97 22 2
100311 13 59 97 59 13 1

0 3 13 22 13 3 0

(000 1 2 1 0 0,

approximating the Gaussian with ¢ = 1. The original image was convolved 25 times with
kernel K. This is equivalent to adding Gaussian blur with ¢ = 5 and some noise due to
discretely approximating the Gaussian kernel.

We set dt = 0.2 in (5.2) and find out that e = 0.14 (see the middle image of Figure 3,
where the thick line visualizes the graph of the frequency response function corresponding to
(5.4) with € = 0.14) is a good choice for low-pass filtering with (5.4). In theory, o2 /dt = 62.5
iterations are needed to recover the original image. However, discrete Laplacian Ay, introduces
some smoothing, and, therefore, additional iterations of (5.2) are needed.

In Figure 7, we demonstrate how the root mean square error (RMSE) and the structural
similarity (SSIM) [50] between the original and deblurred images vary with the number of
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iterations of (5.2). The RMSE achieves its minimal value after 66 iterations of (5.2) and SSIM
attains its maximal value after 67 iterations. The RMSE and SSIM optimal images seem
underdeblurred, and more iterations of (5.2) are needed.

In our experiments shown in the bottom row of Figure 6, we use (3.11) for approximating
the second-order derivatives. The standard explicit approximations of the Laplacian lead
to slightly worse results, since these approximations are less accurate for low and middle
range frequencies w to compare with the implicit discrete Laplacian obtained from (3.11). A
visually good deblurring result is achieved after 75 iterations of (5.2); see the middle image of
the bottom row of Figure 6.

The RMSE and SSIM graphs suggest that the instability develops quickly after the total
number of iterations goes beyond the RMSE/SSIM optimal values. In practice, however, (5.2)
demonstrates that the visual quality of the the overdeblurred images decreases relatively slow,
as shown by the two right images of the bottom row of Figure 6.

Figure 7 also demonstrates that (5.2) has a low sensitivity to the selection of a discrete
approximation of the Laplacian and choice of parameter € in (5.4). Very similar results are
obtained if implicit filters proposed recently by Kim [26] are used instead of (5.4).

B
¢ = 0.14, p=2, implicit Laplacian is used
& =0.14, p=2, standard isotropic Laplacian is used
7 £ = 0.4, p=2, standard isotropic Laplacian is used 0.9
3 0.85
°
1=
2
<]
|- G g
£
@
e
2 075}
E
@
g
¢ = 0.14, p=2, implicit Laplacian is used
&= 0.14, p=2, standard isotropic Laplacian is used
0.65 ¢ = 0.4, p=2, standard isotropic Laplacian is used
1 n . " . L . , ; n i i T T n L ;
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
number of iterations number of iterations

Figure 7. Graphs of RMSE error (L?-error) and SSIM index for Gaussian image deblurring with (5.2).

It is also worth noting here that Sobolev gradient flows [13, 14, 12] and the closely re-
lated screened Poisson equation approach [8] used for image sharpening are also based on
suppressing high-order image frequencies.

5.3. Unsharp masking. Our other example is also devoted to image sharpening. Possibly
the simplest image sharpening scheme consists of using one iteration (5.2) and can be consid-
ered as a variant of unsharp masking. However, unsharp masking amplifies high frequencies
and, therefore, may oversharpen image texture and other small-scale image details. In order
to reduce such oversharpening we use (5.3) instead of (5.2).

This time we employ a one-parametric family of low-pass implicit filters proposed recently
by Kim [26]. Figure 8 displays the frequency response functions of three filters from the family.
Each frequency response function from the family has a nice monotonically decreasing profile
with an inflection point at w = km, where k parameterizes the family.

Figure 9 demonstrates the advantages of using (5.3) for image sharpening purposes.
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no filtering

——— J.W.Kim one-parametric family of low-pass filters, k=0.5
J.W.Kim one-parametric family of low-pass filters, k=0.7
—— J.W.Kim one-parametric family of low-pass filters, k=0.9

Modified wavenumber

0 0.5 1 1.5 2 25 3
Wavenumber o

Figure 8. The frequency response functions of three filters from the family of low-pass filters proposed in
[26]. Each frequency response function from the family has a mice monotonically decreasing profile with an
inflection point at w = km, where k parameterizes the family.

original image high frequencies standard sharpening ‘smoothed after sharpening

(8) (b) (©) @

Figure 9. (a) Original Barbara image. (b) High-frequency image details extracted using the k = 0.5 (half the
Nyquist frequency) low-pass filter from Figure 8. (c¢) The original image is enhanced by the Laplacian subtraction
filter (unsharp masking); high-frequency texture details are severely oversharpened. (d) The sharpened image is
smoothed by the k = 0.5 low-pass filter from [26]; oversharpening is suppressed.

5.4. Perona—Malik diffusion. In our last example, we deal with a variant of the Perona—
Malik nonlinear diffusion [36]

(5.5)  0I/ot =div[g(VI)VI], I(z,y,t)l_g = lo(z,y), g(VI)=exp{—|[VI]|/A},

where A is a properly chosen positive constant. A standard finite difference approximation of
the nonlinear diffusion operator

(5.6) div [¢(VI)V]]

is given by (see, for example, [4])

1

(5.7) Tz (920 Tix1; — Lig) + 9o (Tic1j — Lij) + 9or (Lijo1 — Liy) + go_ (Lij—1 — Iij)] ,

where g, and g,, denote the values of g(VI) at locations ((i & 1/2)h, jh) and (ih, (j £ 1/2)h),
respectively. Thus only cell-centered finite differences are used in (5.7). Usually (see, for
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example, [37]), the simplest cell-centered approximation of the derivative (4.10) is also used
for estimating g,, and g, .

Our finite difference approximation of (5.6) differs from (5.7) by using our cell-centered
implicit finite difference scheme (4.11), (4.12) instead of (4.10). In addition, the same highly
accurate scheme is employed for estimating g,, and g, .

In Figure 10, we compare our finite difference approximation of (5.6) with the standard
one (for the latter, we use the MATLAB source code from [37]). As expected, our scheme
does a better job in preserving high frequencies.

Figure 10. A circular sinusoidal pattern corrupted by noise is filtered by Perona—Malik nonlinear diffusion
(5.5). Left: the original noisy image. Middle: standard finite difference scheme (5.7) is used for approzimating
the Perona—Malik diffusion. Right: Perona—Malik diffusion operator (5.6) is approzimated using highly accurate
cell-centered implicit finite difference scheme (4.11), (4.12). The same parameter settings are applied to both
implementations.

6. Discussion and conclusion. Implicit finite differencing and filtering schemes offer much
higher spectral resolving efficiency compared to explicit schemes, while the computational
effort increases only slightly. The resulting narrow-banded systems of linear equations can be
efficiently solved by direct solvers (see, for example, [20]).

In this paper, we have focused on demonstrating advantages of implicit schemes for basic
picture processing tasks. The main mathematical contributions of the paper include the
following:

e adapting Fourier-Padé-Galerkin approximations for designing implicit image differen-
tiation and filtering schemes with good spectral resolution properties;

e establishing a simple link between implicit and explicit finite differences used for gra-
dient estimation.

An alternative way to construct implicit differencing and filtering schemes consists of using
a generalized interpolation method [10] combined with B-splines and their generalizations [46].
In particular, it leads to schemes capable of delivering high-quality estimates of derivatives
at arbitrary locations and not only at the sample points [1, 24]. Although our Fourier—
Padé-Galerkin approach is less general, it seems more flexible if highly accurate estimates of
derivatives are required at regularly sampled points.

One interesting application of our approach consists of using implicit finite differences
within the highly popular histograms of oriented gradients (HOG) approach [17], where it
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was reported that smoothing introduced by common gradient estimation schemes decreases
the performance of the HOG descriptor. In particular, our experiments on applying HOG
to gait energy images (GEIs) for action recognition purposes [52] clearly demonstrate the
advantages of using our high-resolution finite difference scheme (4.1), (4.5) over the standard
central difference approximation (2.2) employed in [17].

To conclude, implicit image differentiation and filtering schemes deserve to be among the
standard computational tools used by image processing researchers and practitioners.

Acknowledgment. The author would like to thank the anonymous reviewers of this paper
for their valuable and constructive comments.
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