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Abstract
The paper demonstrates advantages of using implicit finite differences for fast, accu-

rate, and reliable differentiating and filtering of multidimensional signals defined on reg-
ular grids. In particular, applications to image enhancement and edge detection problems
are considered. The theoretical contribution of the paper is threefold. The first adapts the
Fourier-Padé-Galerkin approximations approach for constructing compact implicit finite
difference schemes with desirable spectral resolution properties. The second establishes
a link between implicit and explicit finite differences used for gradient direction estima-
tion. Finally, the third one consists of introducing new implicit finite difference schemes
with good spectral resolution properties.

1 Introduction
The main goal of this paper is demonstrating advantages of using compact implicit finite
difference schemes for basic image processing applications.

Previous work on image derivative estimation. Fast and reliable estimation of image
derivatives is among the most fundamental tasks of low level image processing. Unfortu-
nately the image processing literature often provides the reader with a set of recipes given
without appropriate mathematical analysis. For example, for image gradient estimation, the
image processing textbooks usually refer to the Prewitt and Sobel operators while mention-
ing that these operators are not so good in preserving the rotation equivariance property of
the gradient [17], [31, Chapter 15].

Typically, for a 2D image defined on a regular grid with spacing h, image processing
textbooks recommend to use a 3×3 kernel
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and its π/2-rotated counterpart Dy for estimating the x-derivative and y-derivative, respec-
tively. Here w is a parameter: setting w = 1 in (1) yields the Prewitt mask and w = 2
corresponds to the Sobel mask. Searching for an optimal value of w in (1) remains to be an
active research area [2, 3, 6, 13, 16, 20, 33] (see also references therein).

More than sixty years ago W. G. Bickley, a British applied mathematician, noted that
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+O(h4), as h→ 0, (2)
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where ∆ is the Laplacian, and, therefore, (1) with w = 4 has optimal rotation-invariant prop-
erties for small grid spacing h. After its introduction in [6], the Bickley kernel was rediscov-
ered at least twice [23, 29], was even patented [36] but nevertheless remains little known to
the graphics and imaging communities.

Recently H. Scharr and co-authors [20, 33] suggested to use (1) with w = 10/3. Their
analysis is based on a frequency-based optimization of rotation invariance properties of (1).
The Scharr mask works very well in practice [37] and quickly gains popularity among com-
puter vision researchers and practitioners [8, Chapter 6].

Bigger stencils for estimating image derivatives were also widely considered. In par-
ticular, E. P. Simoncelli and H. Farid proposed a general frequency-based framework for the
design of discrete multidimensional differentiators [14, 34]. Sophisticated gradient estima-
tion filters were studied in [1, 4, 19] in connection with high-quality volume visualization
isosurface rendering problems.

Previous work on compact implicit finite differences. Although implicit finite differ-
ences had become known to a general audience of numerical mathematicians and computa-
tional physicists after Collatz’ book [9], their heyday began after Lele’s seminal paper [24]
where a remarkable performance of implicit finite differences for computational problems
with a range of spatial scales was analyzed and demonstrated. At present compact implicit
finite difference schemes constitute advanced but standard tools for accurate numerical sim-
ulations of physical problems involving linear and non-linear wave propagation phenomena
[10], [30, Section 5.8], [25, Chapter 5].

In the signal processing language, compact implicit finite differences and more general
implicit filtering schemes are described by infinite impulse response (IIR) filters. In image
processing applications, finite impulse response (FIR) filters continue to overwhelmingly
dominate over IIR image filtering schemes [26, 27] in spite of existence of highly com-
putationally efficient implementations for the latter [12]. A notable exception is given by
very recent studies on accurate visualization of volumetric data [1, 19] where sophisticated
implicit gradient estimation schemes were developed. The schemes combine FIR deriva-
tive filters with generalized interpolation of Blu, Thévenaz and Unser [7, 35] and similar
spline-based interpolation methods. It is also worth mentioning works of W. H. Raymond
with coworkers [32], in which low- and high-pass implicit filters were considered.

Paper contribution. We believe that the potential of implicit finite difference schemes
for image processing applications is largely underestimated and consider this work as an
attempt to demonstrate usefulness of implicit finite differences for basic image processing
tasks. Other contributions of the paper include

• Adapting Fourier-Padé-Galerkin approximations for designing high-quality implicit
image differentiation and filtering schemes (the second half of Section 4);

• Establishing a link between implicit and explicit finite differences used for gradient
estimation (Section 3);

• Introducing new implicit differencing schemes and evaluating their properties (implicit
Scharr and Fourier-Padé-Galerkin schemes).

Citation
Citation
{Bickley} 1948

Citation
Citation
{Kumar} 2004

Citation
Citation
{Mulat, Donias, Baylou, Vignoles, and Germain} 2008

Citation
Citation
{Wang, Luo, and Alfaraj} 2010

Citation
Citation
{J{ä}hne, Scharr, and K{ö}rkel} 1999

Citation
Citation
{Scharr, K{ö}rkel, and J{ä}hne} 1997

Citation
Citation
{Weickert and Scharr} 2002

Citation
Citation
{Bradski and Kaehler} 2008

Citation
Citation
{Farid and Simoncelli} 2004

Citation
Citation
{Simoncelli} 1994

Citation
Citation
{Alim, M{ö}ller, and Condat} 2010

Citation
Citation
{Bentum, Malzbender, and Lichtenbelt} 1996

Citation
Citation
{Hossain, Alim, and M{ö}ller} 2011

Citation
Citation
{Collatz} 1960

Citation
Citation
{Lele} 1992

Citation
Citation
{Colonius and Lele} 2004

Citation
Citation
{Petrila and Trif} 2005

Citation
Citation
{Li and Chen} 2009

Citation
Citation
{Lim} 1990

Citation
Citation
{Lu and Antoniou} 1992

Citation
Citation
{Daniel and Willsky} 1997

Citation
Citation
{Alim, M{ö}ller, and Condat} 2010

Citation
Citation
{Hossain, Alim, and M{ö}ller} 2011

Citation
Citation
{Blu, Th{é}venaz, and Unser} 1999

Citation
Citation
{Th{é}venaz, Blu, and Unser} 2000

Citation
Citation
{Raymond and Garder} 1991



ALEX BELYAEV: ON IMPLICIT IMAGE DERIVATIVES AND THEIR APPLICATIONS 3

2 Estimating the derivative for univariate signals
Consider a uniformly sampled signal f (x). Let us recall that the Nyquist, or folding, fre-
quency is the highest frequency that can be represented in the signal. It equals one-half of
the sampling rate.

Consider the simplest central difference operator

f ′(x)≈ 1
2h

[ f (x+h)− f (x−h)] (3)

and its corresponding mask
1
2h

[−1,0,1] (4)

defined on a grid with spacing h. For the sake of simplicity we assume that h = 1, which
is equivalent to rescaling the x-coordinate: x→ x/h. The eigenvalues of the linear opera-
tors corresponding to the left and right hand sides of (3) and subject to periodic boundary
conditions are found by setting f (x) = exp{ jωx}, j =

√
−1, −π < ω < π , in (3):

jωe jωx ≈ 1
2

[
e jω(x+1)− e jω(x−1)

]
≡ j sinωe jωx, jω ≈ j sinω.

The frequency response function (the eigenvalue for eigenfunction exp{ jωx}) j sinω corre-
sponding to the central difference operator in (3) delivers a satisfactory approximation of the
frequency response function jω of the ideal derivative only for sufficiently small frequencies
(wavenumbers) ω (see, for example, [18, Section 6.4]). One way to improve (3) consists in
using implicit finite differences.

Implicit finite differences for univariate signals. One can say that (4) adds to the true
derivative a certain amount of smoothing applied to non-zero wavenumbers. A natural way
to compensate for smoothing introduced by (4) consists of adding approximately the same
amount of smoothing to the derivative. This simple idea leads us immediately to the concept
of implicit finite differences.

For example, the two simplest implicit schemes for approximating the first-order deriva-
tive of a function f (x) are based on the following relations [9, p. 538]

f ′(x−h)+4 f ′(x)+ f ′(x+h) =
3
h

[ f (x+h)− f (x−h)]+O
(

h4
)

, (5)

f ′(x−h)+3 f ′(x)+ f ′(x+h) =
1

12h
[ f (x+2h)+28 f (x+h)−28 f (x−h)− f (x−2h)]+O

(
h6
)

.(6)

The corresponding implicit finite differences

f ′i−1 +4 f ′i + f ′i+1 = 3( fi+1− fi−1) , (7)

f ′i−1 +3 f ′i + f ′i+1 =
1
12

( fi+2 +28 fi+1−28 fi−1− fi+2) (8)

are often called the 4th- and 6th-order tridiagonal Padé schemes, respectively, since (5) and
(6) are derived using classical Padé rational approximations and since (7) and (8) lead to
tridiagonal systems of linear equations. It is interesting that (7) can be obtained if the grid
data { fi} is first B-spline interpolated and then processed by the central difference filter (4).
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Taking into account a similarity between the Bickley mask (1) with w = 4 and (7) let us
call the latter the implicit Bickley scheme. Note that (2) can be rewritten as

∂

∂x
=
(

δ +
h2

12
∆

)−1

Dx
∣∣
w=4

+O(h4)

which immediately leads to the implicit Bickley scheme (7).
One can observe that the frequency response function

Sw(ω) =
w+2cosω

w+2
(9)

corresponds to the smoothing kernel

1
w+2

[1,w,1]T . (10)

The frequency response functions corresponding to (7) and (8) are given by

j sinω · 1
S4(ω)

and j sinω · S28(ω)
S3(ω)

(11)

respectively. It is easy to verify that these two frequency response functions deliver, re-
spectively, fourth- and sixth-order approximations of jω , the frequency response functions
function corresponding to the ideal derivative, at ω = 0.

Thus the amount of smoothing introduced (4) is compensated in (11) by applying (10)
with w = 4 to the derivative. Finite difference scheme (8) delivers a more accurate approx-
imation of the true derivative: smoothing by (10) with w = 3 applied to the derivative is
balanced by the amount of smoothing introduced (4) plus smoothing by (10) with w = 28
applied to the sampled function itself.

It is natural to evaluate the quality of a finite difference approximation by its resolving ef-
ficiency, the range of frequencies (wavenumbers) ω over which a satisfactory approximation
of the exact differentiation is achieved. Since it is not possible to get a reasonably good ap-
proximation when ω is close to π , the frequency range for the optimization is often specified
by 0≤ ω ≤ rπ with some 0 < r ≤ 1.

Although a quantitative study of the resolving efficiency of finite difference scheme is
a straightforward task [24], everywhere below we make our judgements based on a visual
analysis of graphs of the corresponding frequency response functions.

In the left image of Fig. 1, we provide the reader with a visual comparison of the resolv-
ing efficiencies of j sinω corresponding to central difference (3) and frequency response
functions (11). In addition, we plot the graph of

j sinω · 1
S10/3(ω)

≡ j sinω · w+2
w+2cosω

∣∣∣∣
w=10/3

(12)

which we call the implicit Scharr scheme, since it can be considered as a counterpart of the
original Scharr kernel (1) with w = 10/3 introduced in [20, 33]. One can observe that the
resolving efficiency of the implicit Scharr scheme is comparable with that of (8) in spite of
the fact that the latter has a wider stencil.
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Figure 1: Left: Resolving efficiency of various finite difference schemes is demonstrated by
plotting the graphs of their corresponding frequency response functions. Note good resolving
efficiency of the implicit Scharr scheme. Right: A graphical comparison of the resolving
efficiency of various frequency response functions corresponding to implicit finite difference
schemes. A high resolving efficiency of both the Fourier-Padé-Galerkin schemes is clearly
demonstrated.

3 Estimating image gradient
Now it becomes clear in which way (1) improves the standard central difference (4): smooth-
ing due to the use of the central difference operator instead of the true x-derivative is compen-
sated by adding a certain amount of smoothing in the y-direction. Thus (1) and its y-direction
counterpart do a better job in estimating the gradient direction than in estimating the gradient
magnitude.

If the goal is to achieve an accurate estimation of both the gradient direction and magni-
tude, we can combine (1) and the corresponding 3×3 discrete Laplacian

Lw =
1

h2(w+2)

 1 w 1
w −4(w+1) w
1 w 1

 (13)

as follows. Let δ = [0 0 0; 0 1 0; 0 0 0] be the 3×3 identity kernel. Note that

δ +
h2

w+2
Lw ≡

1
(w+2)2

 1 w 1
w w2 w
1 w 1

≡ 1
w+2

[
1 w 1

]
· 1

w+2

 1
w
1

 , (14)

which can be considered as simultaneous smoothing (averaging) with respect to both the
coordinate directions. Thus, in order to remove smoothing introduced by (1), it is natural to
use (

δ +
h2

w+2
Lw

)−1

Dx (15)

which combines (1) with an implicit Laplacian-based sharpening. The frequency response
function corresponding to (15) applied to the eigenfunction exp( j(ω1x+ω2y) is given by

H(ω1,ω2) = j sinω1 ·
w+2

w+2cosω1
(16)
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which, in its turn, corresponds to the following implicit finite difference scheme

1
w+2

(
f ′i−1, j +w f ′i, j + f ′i+1, j

)
=

1
2h

(
fi+1, j− fi−1, j

)
. (17)

4 High-resolution schemes
Both (7) and (8) are particular cases of a general seven-point stencil introduced in [24]

β f ′i−2 +α f ′i−1 + f ′i +α f ′i+1 +β f ′i+2 = c
fi+3− fi−3

6
+b

fi+2− fi−2

4
+a

fi+1− fi−1

2
, (18)

where { fi} and { f ′i } are the values of a given function f (x) and its derivative at the grid
points, respectively. Here the coefficients α , β and a, b, c are determined such that the
amount of smoothing introduced by the right-hand side of (18) is compensated by averaging
the derivatives in the left-hand side of (18).

The frequency response function corresponding to (18) is given by

H(ω) =
asinω +(b/2)sin2ω +(c/3)sin3ω

1+2α cosω +2β cos2ω
. (19)

The problem of determining the coefficients α , β and a, b, c in (19) can now be formulated
in a more mathematical way: they are chosen such that H(ω) delivers a good approximation
of ω , the frequency response function of the true derivative.

In his seminal paper [24], Lele used empirical considerations to derive the set of coeffi-
cients

α = 0.5771439, β = 0.0896406,
a = 1.302566, b = 0.99355, c = 0.03750245

}
(20)

which deliver an exceptional resolving efficiency to compare with many other approxima-
tions used currently in computational aeroacoustics [10, Section 4.1.1] (see also references
therein). Below we use Fourier-Padé-Galerkin approximations for improving this Lele’s re-
sult and establishing a general approach to frequency response function design.

Fourier-Padé-Galerkin approximation for derivative. Following [28] let us consider the
linear space of trigonometric polynomials of degree N

TN = span{e jnω | −N ≤ n≤ N}

and define a rational Fourier series by

Rkl(ω) = Pk(ω)
/

Ql(ω), Pk ∈Tk, Ql ∈Tl .

Given a 2π-periodic function f (ω), ω ∈ [−π,π], the Fourier-Padé-Galerkin approximation
f (ω)≈ Rkl(ω) determines the unknown coefficients in Rkl from orthogonality conditions∫

π

−π

[Pk(ω) f (ω)−Ql(ω)]g(ω)W (ω)dω = 0 ∀g(ω) ∈Tk+l , (21)

where W (ω) is a properly chosen weighting function. Now (21) yields a system of k + l
linear equations with k + l unknowns.
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As a simple application of the above Fourier-Padé-Galerkin approach, let us use (21) with
W (ω) ≡ 1 to determine the coefficients in (18). Since we approximate f (ω) = ω which is
odd on [−π,π], we set T5 = span{sinnω |1≤ n≤ 5}, use

P3(ω) = asinω +(b/2)sin2ω +(c/3)sin3ω and Q2(ω) = 1+2α cosω +2β cos2ω,

and immediately arrive at

α =
3
5
, β =

21
200

, a =
63
50

, b =
219
200

, c =
7

125
. (22)

We call (19) with (22) a Fourier-Padé-Galerkin scheme. The right image of Fig. 1 demon-
strates advantages of the scheme. The scheme has a good resolving efficiency but suffers
from a slight Gibbs-type phenomenon. A simple yet efficient way to reduce this Gibbs-type
artifact consists of choosing an appropriate weight function W (ω) in (21). In particular, set-
ting W (ω) = 1 for 0 ≤ ω ≤ 0.9π and W (ω) = 0 otherwise gives a quite satisfactory result,
as shown in the right image of Fig. 1.

Note all the calculations involved are very simple. For this particular choice of the
weighting function, the integrals can be evaluated analytically and solving a system of five
linear equations with five unknowns is a simple linear algebra exercise (we use Maple for
both of these tasks).

The right image of Fig. 1 provides the reader with a visual comparison of the resolv-
ing efficiencies of (20) and both the Fourier-Padé-Galerkin schemes. In addition, we also
consider the 6th-order tridiagonal Padé scheme whose frequency response function is also
shown in Fig. 1 and the tenth-order pentadiagonal Padé scheme

α =
1
2
, β =

1
20

, a =
17
12

, b =
101
150

, c =
1

100
(23)

whose frequency response function (19), (23), delivers the maximal approximation order of
f (ω)≡ ω at ω = 0 among the family of five-diagonal schemes (18).

5 Applications
Below we demonstrate advantages of implicit image derivatives and filters for two basic
image processing tasks: feature detection and image enhancement.

Feature detection The classical Canny edge detection scheme is used as our first test for
implicit image derivatives. In Fig. 2 we compare implicit Scharr scheme (12) and Fourier-
Padé-Galerkin scheme (19), (22) with the Sobel mask, Scharr kernel, and Farid-Simoncelli
5-tap filter [14]. We use MATLAB functions from [22] with the same parameter settings
for all the schemes tested. As expected, the explicit schemes add unnecessary blur and,
therefore, are less sensitive to fine image details to compare with the implicit schemes.

Similar results are obtained for the Harris corner detector.

Inverse diffusion In our next test, we deal with image deblurring and sharpening. We take
an image and add a Gaussian blur to it. Then we start a simple deblurring/sharpening process
by the inverse diffusion equation

∂ I/∂ t =−∆I, I(x,y, t)|t=0 = I0(x,y) (24)
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(a) (b) (c) (d) (e)
Figure 2: Canny edge detection with explicit and implicit finite differences, σ = 0.75. (a)
Sobel mask; (b) explicit Scharr mask; (c) Farid-Simoncelli 5-tap filter; (d) implicit Scharr
scheme; (e) Fourier-Padé-Galerkin scheme. Explicit schemes (a), (b), and (c) add unneces-
sary blur and, therefore, are less sensitive to fine image edges. For example, the edge of the
nose is not sufficiently sharp and only appears with implicit schemes (d) and (e).

which we solve numerically by the forward Euler method

I(x,y, t +dt) = I(x,y, t)−dt ∆hI(x,y, t), (25)

where ∆h is a discrete approximation of the Laplacian. Of course, (24) and its discrete
counterpart (25) are highly unstable because they lead to an exponential growth of the non-
zero image frequencies. Two discrete Laplacians are tested: the standard five-point Laplacian
and the Laplacian whose each second-order derivative is estimated via the implicit Bickley
schemes applied twice. The left image of Fig. 3 compares the frequency responce functions
for the standard second-order central difference for estimating the second-order derivative
(it is used in the five-point Laplacian) with the twice-applied implicit Bickley scheme. One
can see that the latter combines a very accurate approximation for the low frequencies with
high quality low-pass filtering. So it is natural to expect that (25) with the second-order
derivatives estimated using the twice-applied implicit Bickley scheme demonstrates better
debluring and sharpening properties. Indeed, Fig. 4 demonstrate advantages of using the
twice-applied implicit Bickley scheme.

Figure 3: Left: Frequency response functions for the exact 2nd-order derivative and its
finite-difference approximations. Right: The frequency response functions of three filters
from the family of low-pass filters proposed in [21]. Each frequency response function from
the family has a nice monotonically decreasing profiles with an inflection point at ω = kπ

where k parameterizes the family.
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(a) (b) (c) (d) (e)
Figure 4: (a) The original Trui image. (b) The image is severely Gaussian blurred. (c)
The blurred image is restored and even sharpened by 45 iterations of (25) with the Laplacian
approximated via the twice-applied implicit Bickley schemes applied to each dimension (use
zoom to see how well small-scale image details are restored). (d) An attempt to restore the
blurred image by (25) with the standard five-point discrete Laplacian; small image defects
are already observed after 37 iterations of (25) while the blur is not eliminated. (e) After one
more iteration of (25): the blur is not reduced and the defects become much more apparent.

Unsharp masking Our last example is also devoted to image sharpening. This time we use
the Laplacian subtraction filter [5] which consists of one iteration (25) and can be considered
as a variant of unsharp masking. As we know, the Laplacian subtraction filter amplifies high
frequencies and, therefore, may oversharpen small-scale image texture. In order to reduce
such oversharpening one can combine the Laplacian subtraction filter with a low-pass filter.
We already did it for deblurring when a special discrete Laplacian was employed. This time,
however, stronger low-pass filtering is required. We could design a good low-pass filter using
the Fourier-Padé-Galerkin approach with f (ω)≡ 1 and a properly chosen weighting function
W (ω) in (21). Instead we have decided to use an one parametric family of low-pass filters
proposed very recently by J. W. Kim [21]. The right image of Fig. 3 displays the frequency
response functions of three filters from the family. Each frequency response function from
the family has a nice monotonically decreasing profiles with an inflection point at ω = kπ

where k parameterizes the family. In Fig. 5, we demonstrate advantages of our strategy to
combine the Laplacian subtraction filter with low-pass filtering.

(a) (b) (c) (d)
Figure 5: (a) Original Barbara image. (b) High frequency image details extracted using
the k = 0.5 (half the Nyquist frequency) low-pass filter from the right image of Fig. 3. (c)
The original image is enhanced by the Laplacian subtraction filter (unsharp masking), high-
frequency texture details are severely oversharpened. (d) The sharpened image is smoothed
by the k = 0.5 low-pass filter from [21], oversharpening is suppressed.
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6 Discussion and conclusion
Implicit finite differences offer much higher spectral resolving efficiency compared to ex-
plicit finite differences while the computational effort increases only slightly. The resulting
narrow-banded systems of linear equations can be efficiently solved by direct solverr (see,
for example, [15]).

In this paper, we focused on demonstrating advantages of implicit schemes for basic
picture processing tasks and adapted Fourier-Padé-Galerkin approximations for designing
implicit image differentiation and filtering schemes with good spectral resolution properties.

Another theoretical contribution of the paper consists of establishing a simple link be-
tween implicit and explicit finite differences used for gradient direction estimation.

A potential application of our approach consists of using implicit finite differences within
the highly popular HOG approach [11] where it was reported that smoothing introduced by
common gradient estimation schemes decreases performance of the HOG descriptor.

We are sure that implicit image differentiation and filtering schemes deserve to be among
the standard computational tools used by computer graphics and image processing researchers
and practitioners.

Acknowledgements. I would like to thank the anonymous reviewers for thoroughly read-
ing the paper and providing valuable and constructive comments. I am grateful to J. W. Kim
for an enlightening e-mail exchange on implicit filtering schemes.
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