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Abstract
We propose a simple and effective method for detecting view- and
scale-independent ridge-valley lines defined via first- and second-
order curvature derivatives on shapes approximated by dense tri-
angle meshes. A high-quality estimation of high-order surface
derivatives is achieved by combining multi-level implicit surface
fitting and finite difference approximations. We demonstrate that
the ridges and valleys are geometrically and perceptually salient
surface features and, therefore, can be potentially used for shape
recognition, coding, and quality evaluation purposes.
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1 Introduction
Ridge-valley lines, curves on a surface along which the surface
bends sharply, are powerful shape descriptors. Robust extraction
of ridge-valley structures is important for image analysis [Monga
et al. 1992; Ĺopez et al. 1998], quality control of free-form surfaces
[Hosaka 1992], geomorphology [Little and Shi 2001], analysis and
registration of anatomical structures [Grenader and Miller 1998;
Pennec et al. 2000], and face recognition [Hallinan et al. 1999].
(See also references therein.) In geometric modeling, there has been
considerable effort to develop robust methods for crease detection
on dense triangle meshes [Watanabe and Belyaev 2001; Hubeli and
Gross 2001; Page et al. 2002; Stylianou and Farin 2003] and point-
sampled surfaces [Gumhold et al. 2001; Pauly et al. 2003].

In this paper, we deal with surface creases defined via extrema of
the principal curvatures along their corresponding curvature lines.
Our motivation to consider curvature extrema is based upon the fol-
lowing analogy with edges of grey-scale images.

A widely used definition for edges in image processing describes
them as the sets of pixels where the magnitude of the gradient of the
image intensity has a local maximum in the direction of the gradi-
ent. Consider a surfaceS and its Gauss map which associates with
every pointp of S the oriented normal vectorn(p). The derivative
∇n(p) (Jacobian matrix) of the Gauss map measures the variation
of the normal vector nearp, i.e., how the surface bends nearp.
Since the eigenvalues and eigenvectors of∇n(p) are the principal
curvatures and principal directions ofS atp, respectively, the max-
imal variation the surface normal is achieved in the principal direc-
tion of the principal curvature maximal in absolute value. Thus it
is natural to define surface creases as loci of points where the pos-
itive (negative) variation of the surface normal in the direction of
its maximal change attains a local maximum (minimum). We have
arrived at the following definition of surface creases: the loci of
points where the largest in absolute value principal curvature takes
a positive maximum (negative minimum) along its corresponding
curvature line.

The extrema of the principal curvatures along their correspond-
ing curvature lines can be described as surface points where osculat-
ing spheres have high-order contacts with the surface. See [Koen-
derink 1990; Porteous 1994; Belyaev et al. 1997]; [Hallinan et al.
1999, Chapter 6], and references therein for rigorous mathemati-
cal treatments revealing beautiful properties of these curvature fea-
tures. However practical detection of curvature extrema is widely
considered a difficult computational task since, it involves estimat-
ing of high-order surface derivatives.

Developing methods for reliable computation of curvature mea-
sures for discrete surfaces is currently a subject of intensive re-
search. The two main approaches to curvature tensor estimation
consist of using finite differences [Meyer et al. 2003; Cohen-Steiner
and Morvan 2003] and polynomial fitting [Cazals and Pouget 2003;
Goldfeather and Interrante 2004]. A robust estimation of first-order
curvature derivatives may require a combination of both these ap-
proaches [Stylianou and Farin 2003]. In general, local methods
show worse performance in estimating curvature derivatives than
global ones. Indeed, moving from one mesh vertex to another
changes discontinuously the local vertex neighborhood where a lo-
cal curvature estimation scheme is used and results in jerky behav-
ior of estimated curvatures and curvature derivatives.

The idea of using global smoothing methods for robust detection
of curvature extrema on height data was considered in [Kent et al.
1996] where globally supported radial basis functions (RBFs) were
used for smoothing. Unfortunately, a straightforward use of glob-
ally supported RBFs for interpolating and approximating large 3D
data is computationally expensive, and sophisticated mathematical
techniques are needed to accelerate the fitting procedure [Carr et al.
2001]. In our work, we employ compactly supported radial basis
functions (CS-RBFs) for global smoothing purposes. Specifically,
we use a slight modification of the method developed in [Ohtake
et al. 2003b] which is fast, not difficult to implement, and can be
used either for approximation or interpolation.

Given a triangle mesh, we approximate it by a CS-RBF surface
and project the mesh vertices onto the surface. The curvature tensor
and curvature derivatives at a mesh vertex are estimated by those at
the corresponding surface point. Finally we detect curvature max-
ima and minima on mesh edges and trace ridges and valleys.

We believe that in this paper, for the first time, a reliable de-
tection of ridge-valley structures defined via first- and second-
order curvature derivatives is achieved on surfaces approximated
by dense triangle meshes generated from typical laser scanner data.

Differential geometry preliminaries and terminology. For
a smooth oriented surfaceS let us denote bykmax and kmin the
maximal and minimal principal curvatures,kmax≥ kmin. Let tmax
and tmin be the corresponding principal directions. Consider the
derivatives of the principal curvatures along their corresponding
curvatures directionsemax= ∂kmax/∂ tmax andemin = ∂kmin/∂ tmin.
Notice thatemax andemin are defined locally in neighborhoods of
non-umbilical points. The extrema of the principal curvatures along
their curvature directions are given by the zero-crossings ofemax
andemin, and the ridges and valleys are characterized by

emax = 0, ∂emax/∂ tmax < 0, kmax > |kmin|, (ridges),

emin = 0, ∂emin/∂ tmin > 0, kmin <−|kmax| (valleys).

Since the ridges and valleys turn into each other as surface orienta-
tion is changed, without loss of generality we can consider only the
ridges.



2 Curvature Estimation
We assume that a given meshM is rescaled so that the length of a
main diagonal of an axis-aligned bounding cube is equal tod. 1

Implicit surface fitting. For each mesh vertexv we estimate the
normal vectorn(v) as the normalized weighted sum of the normals
of triangles incident to the vertex. Then we construct an implicit
surfaceF(x) = 0 approximating the set of the mesh vertices and
normals.

The approach of [Ohtake et al. 2003b], which we use to build
F(x) = 0, can be considered an extension of techniques developed
in [Floater and Iske 1996; Iske and Levesley 2002] from scattered
height data fitting to scattered 3D data fitting. It consists of the fol-
lowing. Given a set of pointsP sampled from a smooth surface,
a hierarchy of point sets

{

P1,P2, . . . ,Pn = P
}

is created such
that Pk is a simplification ofPk+1 and is obtained fromPk+1
by clustering subsets ofPk+1. Then a bottom-up approach is em-
ployed to construct implicit surfacesFk(x) = 0 interpolatingPk,
k = 1, . . . ,n, respectively. The interpolation process starts from
P1. GivenFk(x) = 0 interpolatingPk, a partition of unity (PU)
approximation ofPk+1 is constructed by blending local quadratic
approximations ofPk+1. FunctionFk+1(x) whose zero-level set
interpolatesPk+1 is then obtained as the sum ofFk(x), the PU ap-
proximation ofPk+1, and a sum of CS-RBFs.

The modifications we propose to adapt the method of [Ohtake
et al. 2003b] for our needs consist of employing smoother Wend-
land’sC3∩PD3 functions [Floater and Iske 1996] with double sup-
port size compared with that used in [Ohtake et al. 2003b], blending
local linear approximations instead of quadratic ones, and switch-
ing from interpolation to approximation via a regularization of
the corresponding RBF interpolation matrices: instead of inverting
RBF interpolation matrixΦΦΦ, its regularizationΦΦΦ + λ I is inverted.
We use a regularization parameterλ = 0.1 in all our experiments.

Estimating curvatures and their derivatives. After the im-
plicit surfaceF(x) = 0 approximating meshM is constructed, for
each mesh vertexv, its projectionv̂ onto the implicit surface is
found and the curvature tensor and curvature derivatives atv are
estimated by those computed analytically atv̂.

To find v̂ we use the Newton-iterative process:

v̂0 = v, v̂k+1← v̂k−
F(v̂k)∇F(v̂k)

‖∇F(v̂k)‖2
until

|F(v̂n)|
‖∇F(v̂n)‖

<
ε
d

, (1)

whereε is a user-specified precision parameter andd is the length
of a main diagonal of the bounding cube ofM . We have found
that stopping criterion in (1) withε = 10−4 is quite sufficient for
an accurate projection of the mesh vertices onto the approximating
implicit surface. Usually only a few iterations of (1) are required
sincev is already close toF(x) = 0.

The unit normal atv is estimated byn = (n1,n2,n3) = ∇F/|∇F |
at v̂. The two non-zero eigenvalues of∇n and their correspond-
ing eigenvectors are used to approximate the curvature tensor atv.
The derivative of a principal curvaturek along its corresponding
principal directiont = (t1, t2, t3) is given by [Monga et al. 1992],
[Porteous 1994, Exercise 11.8]:

e= ∇k · t =
(

Fi jl t
it j t l +3kFi j t

in j
)/

|∇F |, (2)

whereFi j andFi jl denote the second and third partial derivatives of
F(x), respectively, and the Einstein summation convention is used.
Now emax andemin at mesh vertexv are estimated according to (2)
computed at̂v.

3 Tracing Ridges
Detection of ridge vertices. Once we can estimate the curva-
ture tensor and curvature derivativeemax(v) at each mesh vertexv,

1d = 20
√

3 in our current implementation.

we are ready to check whether the mesh edge[v1,v2] contains a
ridge vertex.

We flip tmax(v2) if the angle betweentmax(v1) andtmax(v2) is
obtuse:tmax(v2)←−tmax(v2), emax(v2)←−emax(v2). Next we
check the following conditions:

kmax(v) > |kmin(v)| for v = v1,v2 and emax(v1)emax(v2) < 0, (3)

where the latter verifies whether curvature derivativeemax has a
zero-crossing on[v1,v2]. Finally we apply a simple derivative test

emax(vi)
[

(v3−i −vi) · tmax(vi)
]

> 0 with i = 1 or 2 (4)

to determine whetheremax attains a maximum on[v1,v2].
If (3) and (4) are satisfied, we use linear interpolation to approx-

imate a zero-crossing ofemax on [v1v2]

p =
|emax(v2)|v1 + |emax(v1)|v2
|emax(v1)|+ |emax(v2)|

and considerp a ridge vertex.
The above procedure would not work properly near the umbilical

points (kmax= kmin) since the principal directionstmax andtmin are
not defined at the umbilics and a practical detection oftmax andtmin
near the umbilics is unstable. Fortunately it can be easily shown
[Belyaev et al. 1997, Theorem 18.2.8] that the loci of maxima of
kmax and of minima ofkmin along their corresponding curvature
lines do not pass through the generic (typical) umbilics. Therefore
the ridge-valley lines do not approach the generic umbilical points.

Another potential danger arises from points where the angle be-
tween mesh edge[v3−i ,vi ] and principal directiontmax(vi), i = 1,2,
is very close to zero or even vanishes, since the derivative test (4)
may fail there. However, in our numerical experiments, we haven’t
observed any side effect related to such failures.

Connecting ridge vertices. If two ridge vertices are detected
on edges of a mesh triangle, they are connected by a straight seg-
ment. If all three edges of a mesh triangle contain ridge vertices,
the vertices are connected with the centroid of the triangle formed
by the vertices.

Thresholding. We measure the strength of a ridge line by the
integral ofkmax along the line and use the trapezoid approximation
of the integral

∫

kmaxds≈∑
i

kmax(pi)+kmax(pi+1)

2
‖pi −pi+1‖= T. (5)

Note thatT is a scale-independent threshold. We use linear interpo-
lation to estimatekmax at the vertices of the polyline approximation
of the ridge line:

kmax(p) =
|emax(v2)|kmax(v1)+ |emax(v1)|kmax(v2)

|emax(v1)|+ |emax(v2)|
,

where[v1,v2] is the mesh edge containingp.
We ignore those ridge lines for which the right hand-side of (5)

is less than a user-specified value of thresholdT.

Thickness adjustment. For visualization purposes, we deter-
mine the thickness of each segment[v1,v2] of a ridge line according
to the principal curvature valueskmax(v1) andkmax(v2). We have
found that visually pleasant results are obtained if the thickness is
proportional to the arithmetic mean ofkmax(v1) andkmax(v2) with
the same proportionality coefficient for all ridge segments.

We use trilinear interpolation for estimating the principal curva-
ture at a triple junction of a ridge line. Then all the three ridge
line segments incident to the junction are assigned their own thick-
nesses.

4 Results and Discussion
The ridge-valley lines detected on complex shapes with many small
wrinkles usually have poor connectivity. For example, small wrin-
kles on a salient surface crease spawn to many small disconnected
ridges and valleys crossing the crease. Various techniques used to



reduce fragmentation of line features detected on a mesh include
mesh smoothing, geodesic snakes [Grenader and Miller 1998], and
hysteresis thresholding [Hubeli and Gross 2001; DeCarlo et al.
2003]. The approach we use for reducing fragmentation of the
ridge-valley lines can be considered a variation of mesh smooth-
ing. To compute curvature derivativeemax at mesh verticesP, we
use implicit approximationFk(x) = 0 of Pk, k < n, a simplified
version ofP (described in Section 2).

Figure 1 compares the ridge-valley patterns detected on an eye
part of the 1 mm Michelangelo’s David head model when implicit
approximations of simplified setsP7 (middle image) andP8 (right
image) are used.2 The fragmentation of the ridges and valleys is
substantially reduced when simpler implicit function approxima-

tion F7(x) = 0 is used instead ofF8(x) = 0.

Figure 1: Blue ridges and red valleys detected on Michelangelo’s David head model
approximated byF7(x) = 0 (left and middle) andF8(x) = 0 (right), T=0.5.

Figure 2 shows patterns of ridges and valleys detected on various
triangle meshes. Notice how well the ridge-valley lines capture both
salient shape features and small shape variations.

Figure 2: Ridges (blue) and valleys (red) detected on various models,T = 0.5.

Further, the images of Figure 2 suggest that the ridge-valley
lines convey perceptually important information, and we also fore-
see applications of our approach in simulating artistic drawings of
3D objects. The usefulness of the ridge-valley structures for non-
photorealistic rendering is not surprising [Ma and Interrante 1997;
DeCarlo et al. 2003]. Figure 3 shows the ridges and valleys detected
on the Stanford Buddha model for two different values of parame-
terT. One can notice that salient ridges and valleys (T is large) are
particularly good for highlighting garment wrinkles.

Figure 4 demonstrates how much geometric information is car-
ried by salient ridges and valleys. Thus, similar to multiscale image
edges [Mallat and Zhong 1992], multiscale ridge-valley lines can
be used for shape coding purposes.

Our method combines finite difference schemes and analytical
surface fitting techniques used for curvature extrema detection. Ac-
cording to our experiments, detecting the ridge-valley lines from
the principal curvature tensor via non-maximum suppression and
hysteresis thresholding, as suggested in [Hubeli and Gross 2001;
DeCarlo et al. 2003], often produces hairy patterns of poorly con-
nected ridges and valleys. This is especially true for dense irregular
meshes approximating surfaces with smooth curvature variations.

2The full resolution is achieved at octree depth 10.

Figure 3: Filtering ridges (black) and valleys (white) according to their strength con-
trolled by parameterT. Middle: T = 0. Right:T = 2.

Figure 4: Left: salient ridges and valleys detected on the Max-Planck bust model,
T = 2. Middle: the ridges and valleys alone are sufficient for recognizing the model.
Right: only the ridge and valley vertices and mesh normals at them are used for shape
reconstruction via implicit surface fitting.

On the other hand, discriminating between curvature maxima
and minima via the second derivative test∇e· t ≶ 0, wheret is one
of the principal directions ande is defined by (2), is not practical
for processing models with complex geometry.

In Figure 5, four different methods for detecting the ridge-valley
lines on implicit surfaces are compared. The first method (the left-
most image) is the most accurate:∇emax · tmax and ∇emin · tmin
are computed analytically. The second one (second from the left
image) is the method of this paper: we polygonize the surface (a
marching cubes algorithm is used) and then follow the procedure
of Section 2. One can notice how accurate our ridge-valley detec-
tion procedure is. The third method (rightmost) consists of using
a modified MPU fitting method3 instead of the hierarchical CS-
RBFs of Section 2. The modified MPU fitting method has a local
nature and does not deliver a sufficiently accurate surface approx-
imation. Finally, the fourth method (the rightmost image) consists
of computing the curvature tensor at the vertices of the marching
cubes mesh analytically and then applying the non-maximum sup-
pression and hysteresis thresholding operations mentioned above.
One can notice that the ridges and valleys are fragmented. A worse
result is obtained if the curvature tensor is estimated from the mesh.

The left images of Figure 5 also demonstrate that ridge-valley
lines capture small surface details which are below human visual
sensitivity and suggests their suitability for quality evaluation of
various surface fitting methods.

Our implicit surface fitting procedure (described in Section 2)

3In order to achieveC3 continuity we use a smoother blending function
to compare with that used in the original MPU method [Ohtake et al. 2003a].



Figure 5: Ridges (blue) and valleys (red) detected on implicit dodecahedron-like sur-
facex6 + y6 + z6 + 20(x4y2 + y4z2 + z4x2) = 1. Left: second-order curvature deriva-
tives computed analytically are used for discriminating between curvature maxima and
minima. Middle left: the method described in this paper is employed. Middle right:
a modified MPU fitting procedure is used instead of the hierarchical CS-RBFs of Sec-
tion 2. Right: the curvature tensor is computed analytically and then non-maximum
suppression and hysteresis thresholding are applied.

uses a simple octree-based hierarchical clustering which is orien-
tation dependent. That dependence is reduced when local shape
approximations are built. Nevertheless, since the curvature extrema
are very delicate surface features, small differences in the ridge-
valley patterns detected on the same model under different orien-
tation conditions are observed. Figure 6 demonstrates orientation
insensitivity of geometrically salient ridge-valley lines.

Figure 6: Ridge-valley patterns detected on Teeth Casting model (left) and on the same
model after twoπ/4 rotations about two orthogonal axes are applied,T = 0.5.

Another limitation of our approach is its low speed. For example,
detecting the ridge-valley lines on the 1 mm Michelangelo’s David
head model consisting of more than 4 M triangles takes about an
hour on a low-end PC. The most time-consuming stage is comput-
ing the curvature tensor and curvature derivativesemax andemin at
mesh vertex projectionŝv, since the approximating implicit surface
F(x) = 0 is globally defined.

Motivated by the results shown in Figure 4 and the similarity be-
tween the ridge-valley lines and image edges, we plan to adapt the
edge-based image compression method [Mallat and Zhong 1992]
for shape compression purposes.
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