
Multi-level Partition of Unity Implicits

Yutaka Ohtake
MPI Informatik

Alexander Belyaev ∗

MPI Informatik
Marc Alexa

TU Darmstadt
Greg Turk

Georgia Tech
Hans-Peter Seidel
MPI Informatik

Abstract
We present a new shape representation, the multi-level partition of
unity implicit surface, that allows us to construct surface models
from very large sets of points. There are three key ingredients to our
approach: 1) piecewise quadratic functions that capture the local
shape of the surface, 2) weighting functions (the partitions of unity)
that blend together these local shape functions, and 3) an octree
subdivision method that adapts to variations in the complexity of
the local shape.

Our approach gives us considerable flexibility in the choice of
local shape functions, and in particular we can accurately represent
sharp features such as edges and corners by selecting appropriate
shape functions. An error-controlled subdivision leads to an adap-
tive approximation whose time and memory consumption depends
on the required accuracy. Due to the separation of local approxima-
tion and local blending, the representation is not global and can be
created and evaluated rapidly. Because our surfaces are described
using implicit functions, operations such as shape blending, offsets,
deformations and CSG are simple to perform.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: partition of unity approximation, error-controlled sub-
division, adaptive distance field approximation, implicit modeling.

1 Introduction
There are many applications that rely on building accurate models
of real-world objects such as sculptures, damaged machine parts,
archaeological artifacts, and terrain. Techniques for digitizing ob-
jects include laser rangefinding, mechanical touch probes, and com-
puter vision techniques such as depth from stereo. Some of these
techniques can yield millions of 3D point locations on the object
that is being digitized. Once these points have been collected, it
is a non-trivial task to build a surface representation that is faithful
to the collected data. Some of the desirable properties of a sur-
face reconstruction method include speed, low memory overhead,
the creation of surfaces that approximate rather than interpolate the
data (when noise or mis-registration is present), faithful reproduc-
tion of sharp features, and robustness in the presence of holes and
low sampling density.

In this paper we introduce a new class of implicit models that
was specifically designed to meet these requirements for rapidly
and accurately creating surfaces from large collections of points.
We use the name Multi-level Partition of Unity implicits (MPU)

∗ Currently with the University of Aizu, Aizu-Wakamatsu, Japan.

Figure 1: The Stanford Lucy, consisting of 14 million points, is reconstructed as an
MPU implicit with a 0.01% max-norm approximation accuracy; the left part of the
model is colored according to the subdivision level which increases from blue to red.
The four models in the back are reconstructed from the point set with increasing ap-
proximation error.

because at the heart of our method is a set of weighting functions
that sum to one at all points in the domain. Given a set of points
P = {p1, . . . ,pN} sampled from a surface in R

3, an MPU implicit
f : R

3 → R provides an adaptive error-controlled approximation of
the signed distance function from the surface. The approximation
is accurate near the surface and rough far from the surface. The sur-
face itself is then approximated by the zero level set of the distance
function. We assume that the points of P are equipped with unit
normals N = {n1, . . . ,nN} that indicate the surface orientation. In
practice, these normals can be estimated either from initial scans
during the shape acquisition phase or by local least-squares fitting
to P . We also consider the case when the surface is approximated
by a mesh and P is the set of mesh vertices. Then the normals N

are the mesh vertex normals.
To create our implicit representation, we start with a box that

bounds the point set and create an octree-based subdivision of this
box. At each cell of the octree, a piecewise quadratic function (the
local shape function) is created that fits the points in the cell. These
shape functions act much like a signed distance function, and take
on the value zero near the data points and become positive (inside)

or negative (outside) away from the data points. The approximate
normals of the points are used to distinguish this inside/outside ori-
entation locally. If the shape function approximation is not accurate
enough (doesn’t match the points well), the cell is subdivided and
the procedure is repeated until a certain accuracy is achieved. Fig-
ure 1 shows how the octree-levels adapt according to the relation
between local shape complexity and desired accuracy. In locations
near the common boundary of two or more cells, the shape func-
tions are blended together according to weights from the partition
of unity functions. The global implicit function of the surface is
given by this partition of unity blending of the local shape approxi-
mations at the octree leafs.

MPU implicits are conceptually simple, easy to implement, and
are capable of providing a fast, accurate, and adaptive reconstruc-
tions of complex shapes from scattered point data containing mil-
lions of points. The complexity of the approach is output sensi-
tive in the sense that the creation time and memory consumption
depend on the complexity of the reconstructed shape rather than
the number of data points. Since MPU implicits can deliver high-
accuracy shape approximations, function-based operations such as
shape blending, offsets, deformations and CSG can easily be ap-
plied. All of these same operations can be performed for data that
was originally in a parametric or polygonal form simply by con-
verting these shape descriptions to the MPU representation.

Previous work. Implicit shape representations are attractive be-
cause they allow a complex shape to be described by one for-
mula, they unify surface and volume modeling, and several com-
plex shape editing operations are easy to perform on such models
[Bloomenthal et al. 1997]. On the other hand, traditional pure im-
plicit surface modeling techniques lack local shape control. This
drawback has become especially noticeable with the development
of modern shape acquisition techniques that can generate data sets
consisting of thousands, millions, or even billions of points (see,
e.g., [Levoy et al. 2000]). The main advantages of using implicits
for shape reconstruction from scattered data are data repairing capa-
bilities and opportunities to edit the resulting objects using standard
implicit modeling operations.

Most implicit shape reconstructions from point sets are based
on Blinn’s idea of blending local implicit primitives [Blinn 1982].
Muraki [1991] uses a linear combination of Gaussian blobs to fit
an implicit surface to a point set. Hoppe et al. [1992] locally es-
timate the signed distance function as the distance to the tangent
plane of the closest point. Lim et al. [1995] use blended union
of spheres for implicit reconstruction of solids from scattered data.
They obtain an initial configuration of spheres from the Delaunay
tetrahedralization and a nonlinear optimization is then applied. Ba-
jaj et al. [1995] and Bernardini et al. [1999] combine algebraic
fitting with point data triangulation by adaptive α-shapes [Edels-
brunner and Mücke 1994]. A volumetric approach of Curless and
Levoy [1996] introduced for shape reconstruction from range scans
is based on estimating the distance function from a reconstructed
model. Savchenko et al. [1995], Carr et al. [2001], and Turk
and O’Brien [2002] use globally supported radial basis functions
(RBFs) while Morse et al. [2001], Kojekine et al. [2003], and
Ohtake et al. [2003] employ compactly supported RBFs to recon-
struct smooth surfaces from point cloud data. It seems that the state-
of-the-art in constructing implicit functions from large sets of scat-
tered points are RBF-based methods [Carr et al. 2001; Dinh et al.
2002; Turk and O’Brien 2002]. While RBF-based methods are es-
pecially useful for the repair of incomplete data, they face serious
difficulties in accurate reconstruction of sharp features [Dinh et al.
2001], may require a user intervention like choosing an appropriate
carrier solid [Kojekine et al. 2003], and can generate extra zero-
level sets [Ohtake et al. 2003]. In addition, since RBF solutions are
global in nature, processing millions of points seems to be beyond
the capabilities of most present day PCs.

The level set method [Zhao and Osher 2002] is another good can-
didate for reconstructing the signed distance function. However, its
current implementation becomes expensive in time and memory if
high accuracy reconstruction is required (although this might be im-
proved if adaptive grids are used). Projection-based approaches to
shape approximation [Alexa et al. 2001; Fleishman et al. 2003] have
the advantage that they are local (i.e. independent of the number of
data points) and directly yield a point on the surface. However, the
projection step requires the solution of a non-linear moving least
squares problem, which makes most practical shape operations ex-
pensive.

Our approach can be seen as a blend of several known techniques
that, together, result in an attractive method for reconstructing an
implicit function. One common RBF technique is to first divide
the data domain into several cells so that the data is broken into
manageable pieces [Beatson et al. 2000; Schaback and Wendland
2000; Iske 2001; Iske and Levesley 2002; Wendland 2002]. As a
particular method for domain decomposition, the partition of unity
approach (PU) of Franke and Nielson [1980] has been used as a
general FEM method in computational mechanics [Babuška and
Osborn 1994] and recently has become popular because it avoids
the topological overhead of constructing a mesh [Babuška and Me-
lenk 1997; Griebel and Schweitzer 2000; Griebel and Schweitzer
2002]. Our strategy for avoiding extra zero level sets is reminiscent
of [Moore and Warren 1991; Warren 1992], where an adaptive and
recursive volumetric subdivision was used. One could view our
MPU representations as being similar to adaptively sampled dis-
tance fields [Frisken et al. 2000], with the difference that the MPU
approach uses continuous rather than sampled functions.

When used with an appropriate choice of local shape approx-
imations, our approach has the following attractive features: the
ability to create high quality implicit surfaces from very large point
datasets, the accurate reconstruction of sharp features, and fast and
easy local shape access.

2 Partition of Unity Approach
The partition of unity approach is typically used to integrate lo-
cally defined approximants into a global approximation. Important
properties such as the maximum error and convergence order are
inherited from the local behavior. The basic idea of the partition
of unity approach is to break the data domain into several pieces,
approximate the data in each subdomain separately, and then blend
the local solutions together using smooth, local weights that sum up
to one everywhere on the domain.

More specifically, consider a bounded domain Ω in a Euclidean
space (we will work in 3D) and a set of nonnegative compactly
supported functions {ϕi} such that

∑i ϕi ≡ 1 on Ω.

Let us associate a local approximation set of functions Vi with each
subdomain supp

(

ϕi

)

. Now an approximation of a function f (x)
defined on Ω is given by

f (x) ≈ ∑i ϕi(x)Qi(x), (1)

where Qi ∈Vi.
Given a set of nonnegative compactly supported functions

{wi(x)} such that
Ω ⊂

⋃

i
supp

(

wi

)

,

partition of unity functions {ϕi} can be generated by

ϕi(x) =
wi(x)

∑n
j=1 w j(x)

. (2)

Approximation by means of Eqs. 1 and 2 constitutes the core of
the partition of unity finite element methods [Babuška and Osborn
1994]. They resemble the Modified Shepard’s method of Franke

and Nielson [1980] (see also [Renka 1988]), where polynomial lo-
cal approximations Qi(x) are used in combination with “inverse-
distance” singular weights

{

wi(x)
}

for interpolation purposes.
Given a set of scattered points P equipped with normals N , we

approximate the signed distance function f (x) from P . In contrast
to the approaches mentioned above, we introduce an adaptive pro-
cedure for generating the subdivision and problem-specific approx-
imation sets. First, we use an octree-based adaptive space subdivi-
sion of Ω. This allows us to control the error of the approximation
while adapting the complexity of the representation to the complex-
ity of the shape (see Section 3). Second, we use piecewise quadratic
functions resulting from Boolean operations for the accurate repre-
sentation of sharp features. The classification of local shapes and
appropriate approximation sets are discussed in Section 4.

For approximation purposes we use the quadratic B-spline b(t)
to generate weight functions

wi(x) = b

(

3
∣

∣x− ci

∣

∣

2Ri

)

(3)

centered at ci and having a spherical support of radius Ri.
If an interpolation of P is required, we use the inverse-distance

singular weights [Franke and Nielson 1980; Renka 1988]

wi(x) =

[
(

Ri −
∣

∣x− ci

∣

∣

)

+

Ri

∣

∣x− ci

∣

∣

]2

, where (a)+ =

{

a if a > 0
0 otherwise (4)

3 Adaptive Octree-based Approximation
The algorithm for constructing an MPU implicit is driven by re-
peated subdivision of the region of space that is occupied by the
input set of points. First, the points in P are rescaled so that an
axis-aligned bounding cube has a unit-length main diagonal. We
then apply an adaptive octree-based subdivision to the bounding
cube. Consider a cubic cell that was generated during the subdivi-
sion process, and let c be the center and d the length of the main
diagonal of the cell.

We define the support radius R for the weight function (3) for the
cell to be proportional to its diagonal:

R = αd. (5)
We typically use α = 0.75. A larger value for α yields better
(smoother) interpolation and approximation results at the expense
of computation time. Time complexity is roughly quadratic in α .
Figure 11 illustrates the effect of α , especially for the accurate ap-
proximation of the distance function away from the zero level set.

For each cell generated during the subdivision process, a local
shape function Q(x) is built using a least-squares fitting procedure,
as shown in the left drawing of Figure 2.

Sometimes (especially if the density of P is not uniform) the
ball of radius R for a cell does not contain enough points for a robust
estimation of Q(x). If the number of points is less than Nmin (in our
implementation we set Nmin = 15), a ball with increased radius R̂
is determined that contains at least Nmin points. This is done by
starting with R̂ = R and then iterating

R̂ = R̂+λR (6)
until the ball contains the minimum number of points (in our im-
plementation we set λ = 0.1). Now the points enclosed by the ball
of radius R̂ are used to estimate a local shape function Q(x), as
demonstrated in the right drawing of Figure 2.

We use a kd-tree partitioning for efficient solving of these range
searching problems.

If the ball around an octree cell with initial radius R = αd is
empty, an approximation of the distance function is computed as
explained above and it will not be subdivided further. Otherwise, a
local max-norm approximation error is estimated according to the
Taubin distance [Taubin 1991]

ε = max
|pi−c|<R

|Q
(

pi

)

|
/∣

∣∇Q
(

pi

)∣

∣ . (7)

R
c

i

i

i

f

Q x()=0

x()=0

R

c
R̂

Q()=0x

Figure 2: Left: adaptive subdivision coupled with least-squares fitting. Right: enlarg-
ing the spherical domain for the local approximation to make it more robust.

Figure 3: Left: a set of points equipped with normals. Middle: the circles (2D balls)
corresponding to the adaptive subdivision are shown here at 50% of their real size.
Right: the distance function is reconstructed, and the zero level set is located between
the yellow and green bands.

If ε is greater than a user-specified threshold ε0, the cell is subdi-
vided and the fitting process is performed for the child cells.

Figure 3 demonstrates how our adaptive subdivision scheme
works in 2D.

The following pseudocode describes a recursive procedure for
assembling an MPU approximation at point x with precision ε0.

EvaluateMPUapprox(x,ε0)

SwQ = Sw = 0;
root->MPUapprox(x,ε0);
return SwQ/Sw;

MPUapprox(x,ε0)

if (|x− ci| > Ri) then return;
if (Qi is not created yet) then

Create Qi and compute εi;
if (εi > ε0) then

if (No childs) then Create childs;
for each child

child->MPUapprox(x,ε0);
else

SwQ = SwQ +wi(x)∗Qi(x);
Sw = Sw +wi(x);

Here, Sw and SwQ denote ∑wi(x) and ∑Qi(x)wi(x), respectively,
see Eqs. 1 and 2.

This procedure is easy to implement. We hope that this will make
our approach and its implementation accessible to a wide range of
users.

Note that we abandon the local approximations that are con-
structed at the non-leaf cells of the octree. This allows us to use
different local approximations of the distance function far from P

and near to P , as well as specific sharp feature approximations,
without compensating for the effects of coarse approximations. In-
heriting coarse approximations would also require us to counteract
already generated zero-sets in empty balls. In addition, avoiding
coarse approximations saves memory and results in faster evalua-
tion of the implicit function.

4 Estimating Local Shape Functions
Our local fitting strategy depends on the number of points in the
ball of a given cell and the distribution of normals of those points.
At a given cell we use the most appropriate one of these three local
approximations:

(a) a general 3D quadric,
(b) a bivariate quadratic polynomial in local coordinates,
(c) a piecewise quadric surface that fits an edge or a corner.

Roughly speaking, (a) is used to approximate larger parts of the
surface, which could be unbounded or contain more than one sheet,
(b) is used to approximate a local smooth patch, and (c) is employed

w

u,v

R

c

Q x()=0

R

c

q

1

2

= q

d2

d1

Q x()=0

Figure 4: Left: fitting a bivariate quadratic polynomial. Right: local fit of a general
quadric; auxiliary points located at the cell center and corners are used in order to
achieve an accurate approximation of the distance function.

to reconstruct sharp features. Actually (c) consists of a number of
tests (an edge test and corner tests) in order to determine the type
of approximation surface that should be used.

A few simple tests are performed to select from among the three
types of local shape functions. If there are more than 2Nmin points
in the local ball, we use a function of type (a) or (b). An average
normal direction is computed for the points and if the maximum
deviation of normals to the average is more than π/2 then we fit
with (a), otherwise we use type (b). If there are fewer than 2Nmin
points associated with a cell, more detailed checks are made to see
if an edge or corner is present, and details of this are given below.
Why don’t we look for sharp features when there are more than
2Nmin points? Because the sharp feature detection adds computa-
tional complexity and the octree subdivision procedure takes care of
this, anyway. Should the surface actually contain a corner or edge
near such a cell, then the quality-of-fit measure (7) will cause the
cell to be divided, and the sharp feature will be fit by one or more
child cells.

In the following sub-sections we will describe each of the three
local shape functions in more detail. The notation we use in these
sections is as follows. Let c be the center of a subdivision cubic cell
where we want to construct a local shape function Q(x). We denote
by P ′ the points of P that are inside the ball of the cell. Let n
be a unit normal vector assigned to c. This normal n is computed
from the normalized weighted arithmetic mean of the normals of
P ′ taken with the weights defined by (3). Let θ be the maximal
angle between n and the normals N ′ assigned to the points of P ′.

(a) Local fit of a general quadric. If
|P ′| > 2Nmin and θ ≥ π/2

a 3D quadratic surface is fitted. Usually this corresponds to a sit-
uation sketched in the right drawing of Figure 4. A local shape
function is given by

Q(x) = xTAx+bT x+ c (8)
where A is a symmetric 3×3 matrix, b is a vector of three compo-
nents, and c is a scalar. In order to determine the unknowns A, b,
and c we make use of auxiliary points

{

qi

}

to help orient the local
shape function. These points are chosen as the corners and the cen-
ter of the subdivision cell, as demonstrated in the right picture of
Figure 4.

Each auxiliary point q is tested for whether it can be used to
obtain a reliable estimate of the signed distance function. For each
q, its six nearest neighbors p(1),p(2), . . . ,p(6) from P ′ are found
and the scalar products

n(i) ·
(

q−p(i)
)

, i = 1,2, . . . ,6, (9)

are computed. If not all the scalar products have the same sign,
q is removed from the set of auxiliary points. The geometric idea
behind this test is explained by the left drawing of Figure 5.

If the set of remaining auxiliary points is empty, the cell is sub-
divided.

For each remaining auxiliary point q, an average distance d, the
arithmetic mean of the scalar products (9), is computed

d =
1
6

6

∑
i=1

n(i) ·
(

q−p(i)
)

. (10)

q
q

Figure 5: Left: Testing whether an auxiliary point q can be used to obtain a reliable
estimate of the signed distance function. The green q is reliable, but the magenta q is
not. Right: Detection of sharp features is done by clustering of point normals.

Finally the unknowns in (8) are found by minimizing

1

∑w
(

pi

) ∑
pi∈P ′

w
(

pi

)

Q(pi)
2 +

1
m

m

∑
i=1

(

Q(qi)−di

)2
, (11)

where m is the number of remaining points q.

(b) Local fit of a bivariate quadratic polynomial. If

|P ′| > 2Nmin and θ < π/2

a bivariate quadratic polynomial is locally fitted. Let us introduce
local coordinates (u,v,w) with the origin of coordinates at c such
that the plane (u,v) is orthogonal to n and the positive direction of
w coincides with the direction of n. A quadratic shape function at c
is given by

Q(x) = w−
(

Au2 +2Buv+Cv2 +Du+Ev+F
)

, (12)

where (v,u,w) are the coordinates of x in the new coordinate sys-
tem. The unknown coefficients A, B, C, D, E, and F are determined
by minimizing

∑
pi∈P ′

w
(

pi

)

Q(pi)
2. (13)

The left drawing of Figure 4 illustrates the geometric idea behind
local fitting of a bivariate quadratic polynomial.

(c) Local approximation of edges and corners. The
quadratic functions (12) and (8) considered above are not capable
of accurately capturing sharp edges and corners. If there are just
a few points associated with a cell (|P ′| ≤ 2Nmin), we try to fit a
piecewise quadratic function instead of a quadratic approximation.

We perform automatic recognition of edges and corners using a
simple but effective procedure proposed by Kobbelt et al. [2001].
The idea is based on clustering of normals, as demonstrated by the
right drawing of Figure 5.

Following [Kobbelt et al. 2001] we assume that the surface has a
sharp feature if

mini, j

(

ni ·n j

)

< 0.9. (14)

If (14) is not satisfied, we go to (b) and local bivariate polyno-
mial (12) is fitted to P ′. Otherwise we check whether the detected
feature is a corner. We consider n3 = n1 × n2, the normal vector
to the plane determined by the normals n1 and n2 enclosing the
maximal angle. If the deviation of the normals ni from the plane is
sufficiently large

maxi

∣

∣ni ·n3

∣

∣> 0.7 (15)

the feature is recognized as a corner.
If (14) is satisfied and (15) is not, we expect the surface to have

an edge and subdivide the set of normals
{

ni

}

into two clusters
according to their angles with n1 and n2 (two spherical Voronoi
subsets corresponding to n1 and n2). Denote by P ′

1 and P ′
2, P ′ =

P ′
1∪P ′

2, two subsets corresponding to the clusters of the normals.
Now the quadratic fit procedure is applied separately to P ′

1 and
P ′

2 and a non-smooth local shape function approximation P ′ is
constructed via the max/min Boolean operations of Ricci [1973].

If (14) and (15) are satisfied, we subdivide N ′ into three sets.
First N ′

1 and N ′
2 are constructed as above. Next we check whether

∣

∣

∣
n1,2 ·ni

∣

∣

∣
<
∣

∣n3 ·ni

∣

∣ and add point pi to the third cluster if the in-

equality is satisfied.

Figure 6: Left: Eye from Stanford’s reconstruction of Michalangelo’s David (scanned
at 1mm resolution). Right: The eye is reconstructed as an MPU implicit with relative
accuracy ε0 = 10−4.

We also treat separately corners of degree four: test (14) is ap-
plied to the normals of the third cluster and if (14) is satisfied, the
cluster is subdivided into two pieces. If the resulting four clusters
of normals correspond to either a convex or concave corner, it is
reconstructed via Boolean operations. Otherwise, we go to (a) and
a general quadric (8) is fitted to P ′.

If the number of points used to estimate the coefficients of bi-
variate quadratic polynomial (12) is less then six, we set all the
unknown coefficients in (12) equal to zero.

Given the above approach, more complex types of sharp fea-
tures (for example, a saddle corner of degree 4) are approximated
by smooth functions. Notice however that “generic” sharp features
are obtained from the intersections of two or three surfaces, and
therefore consist of edges and corners of at most degree 3. It is not
a generic event for four smooth surfaces to intersect at one point.

5 Visualization

Conventional techniques for visualizing implicit models include
polygonization (isosurface extraction), ray tracing, and volume ren-
dering. From among these various visualization methods, we use
Bloomenthal’s polygonizer [Bloomenthal 1994] because of its nice
continuation properties and the Hart sphere tracing method [Hart
1996]. These two methods both work well using the approximate
distance functions of MPU implicits.

If our goal is to create a polygonal mesh, we can save time and
memory by computing MPU approximations on the fly during the
polygonization process. We have found that an approximation ac-
curacy of ε0 = 10−4 (that is, 0.01% of the length of the main diag-
onal of the bounding box) is quite sufficient for the reconstruction
of fine features, as demonstrated by Figure 6.

If a non-adaptive surface extraction routine is used with an im-
plicit model that has sharp features, a fine sampling density is re-
quired to capture these features. An example of this can be seen
in the top and bottom left images of Figure 7. An alternative is
to use adaptive sampling and remeshing strategies such as those in
[Kobbelt et al. 2001; Ohtake and Belyaev 2002; Ju et al. 2002]. We
find it attractive to combine a low resolution Bloomenthal polygo-
nization with a postprocessing mesh optimization technique devel-
oped in [Ohtake and Belyaev 2002], as shown in the top middle, top
right, and bottom middle images of Figure 7.

Even higher quality rendering can be achieved using ray trac-
ing techniques. The sphere tracing method of Hart [1996] works
well together with MPU implicits since it uses the distance function
representation and it is quite capable of rendering implicit models
with sharp features. The bottom right image of Figure 7 shows an
MPU implicit model of the fandisk model that was rendered with
sphere tracing. The left image of Figure 8 shows sphere tracing of
a more complex implicit model. This model was generated from
a function-based operation (subtraction) applied to the dragon and
the David model, both represented as MPU implicits. Notice how
well the sharp features are reconstructed and rendered.

Figure 7: Visualization of the fandisk model implicitized with MPU. Top left: Bloo-
menthal polygonization was used; in spite of sufficiently high polygonization resolu-
tion (200K triangles) one can notice small aliasing defects along sharp features. Top
middle: a low resolution polygonization is applied. Top right: an optimized mesh (17K
triangles) is obtained from the low resolution mesh, the sharp features are accurately
reconstructed. Bottom left: a magnified part of the high resolution mesh. Bottom mid-
dle: the same part of the optimized mesh. Bottom right: a part of the model rendered
using Hart sphere tracing.

6 Results & Applications
In this section we discuss results and applications of approximat-
ing or interpolating MPU implicits for surface reconstruction from
range scans and incomplete point data, and function-based opera-
tions.

Approximation and Interpolation. Most of the illustrations in
this work have been generated using approximating MPU implicits
as described in Section 4. However, our MPU approach can also
be adapted to exact data point interpolation if we use a local inter-
polation method such as Franke and Nielson’s singular weights (4)
instead of (3).

Since MPU with (4) requires a deeper octree-based subdivision
(every nonempty subdivision cell contains only one point of P),
our interpolation procedure requires more memory resources than
the approximation one. For interpolation with singular weights (4)
the subdivision stops only when all of points of P have been placed
in their own cells. The ball around a nonempty octree cell is cen-
tered at the interpolated point inside the cell. We set α = 1.25 in
(5) in order to ensure that we cover the bounding box by the balls
around the octree cells.

For each cell containing one interpolated point p of P , its local
shape function Q(x) is defined by (12), where the origin of coor-
dinates of local coordinate system (u,v,w) is located at p (hence
F = 0 in (12)) and the positive direction of w coincides with the di-
rection of the averaged normal at p. We don’t use the normal of N

assigned to p because of stability problems common for Hermite-
like interpolation schemes. The unknown coefficients are deter-
mined by minimizing quadratic energy (13) with c = p. Now (1)
interpolates P because partition of unity functions

{

ϕi(·)
}

defined
by (2) satisfy

ϕi(p j) = δi j =

{

1 if i = j
0 if i 6= j and ∇ϕi(p j) = 0.

The right image of Figure 8 shows results of applying the MPU
interpolation and shape modeling operations (Boolean subtraction,
twisting) to the Stanford Buddha model.

Reconstruction from incomplete data. Reconstruction from
scattered point data with MPU implicits is robust with respect to
variations of point density, as demonstrated in Figure 9.

Reconstruction from range scans. MPU implicits can be used
to reconstruct 3D models from a collection of range scans. We have

Figure 8: CSG operations applied on MPU implicits. Left: sphere tracing of the sub-
traction of two MPU approximations. Right: boolean subtraction and twisting opera-
tions are applied to interpolating MPU implicits.

Figure 9: Reconstruction from a scattered point dataset with non-uniform density of
points.

found that if several range scans overlap, better results are obtained
if we take into account per-point measurement confidences during
the reconstruction process. If we treat all points the same, artifacts
can arise. If the accuracy threshold (7) is small, the MPU implicit
approximating the scan points can have wrinkles in the overlapping
regions. On the other hand, if (7) is not small enough, the MPU
implicit does not capture the fine geometric details of the scanned
model. In practice, a given position on the object can be measured
more accurately from some scanning directions than from others.
This notion of using confidence during surface reconstruction was
advocated in [Turk and Levoy 1994; Curless and Levoy 1996].

Consider a collection of points from range data. Assume that
each point pi is assigned a confidence weight ci, ci ∈ [0,1], that
were computed based on scanning information according to the
rules suggested in [Curless n. d.]. Now the MPU reconstruction
process described in previous sections is enhanced by the modifica-
tions given below.

• For a better estimation of local shape function Q(x), if the sum
of the confidence measures of the points inside the ball is less
than Nmin then the radius growth rule (6) is applied repeatedly
until the sum is above this threshold.

• Instead of (7), a weighted accuracy measure is used:
ε = maxci Q(pi)/|∇Q(pi)|.

• The unit normal vector n of the base plane (u,v) used to fit the
bivariate quadratic polynomial (12) is obtained by averaging
the neighboring normals with weights ciw(pi).

• Weights
{

ciw(pi)
}

are used in (13) and (11) instead of
{

w(pi)
}

.
• The normals in (10) are taken with the confidence weights

assigned to their corresponding points.
Figure 10 demonstrates the MPU reconstruction of the Stanford

Figure 10: Reconstruction of Stanford bunny from range data. Top left: bunny scan
data is rendered as a cloud of points, (all ten original range scans are used); defects
caused by low accuracy of some points and normals are clearly visible. Top middle: a
side range image of bunny is colored according to the confidence measure. Top right:
bunny is reconstructed as an MPU implicit. Bottom left: only six range scans of the
bunny scan data are rendered (an example of incomplete data). Bottom right: an MPU
implicit bunny from six scans.

f = 0.025 f = 0 f = −0.025

f = −0.075, α = 0.75 f = −0.075, α = 1.0

Figure 11: Offsetting of a knot model. The distance function to the knot is approxi-
mated by w = f (x,y,z). The first four models were generated with α = 0.75. For the
last model α = 1 was used and a higher quality offsetting was produced.

bunny from the original range scans. In one case we have used
only six scans, and in the other case we have used the full ten range
scans. Notice the ability of the MPU method to repair missed data.

Function-based shape modeling operations. Using MPU
implicits allow us to extend the power of function-based shape
modeling operations [Bloomenthal et al. 1997] to point set surfaces.
Given several MPU functions defined over the same bounding box
and having possibly different octree structures, at each point of the
box we evaluate the value of the result of applying functional oper-
ations to the functions. Then the level sets of the resulting function
are visualized via a polygonization or ray tracing.

An example of a CSG operation applied to two large and com-
plex point set surfaces was already demonstrated in Figure 8. Re-
sults of offsetting, smooth blending, morphing, and twisting opera-
tions [HyperFun: F-rep Library n. d.], [Pasko and Savchenko 1994]
are shown in Figures 11, 12, 13, 14 and the right image of Figure 8.
In particular, Figures 13 and 14 demonstrate a linear morphing of
two implicit models.1

1The linear morphing of implicit models w = f (x,y,z) and w = g(x,y,z) is an im-
plicit model defined by w = (1− t) f (x,y,z)+ tg(x,y,z).

Figure 12: Left: Smooth blending of the Stanford bunny and Cyberware Igea mod-
els. Right: offsetting of the Stanford dragon model; f = 0.0075 (top) and f = −0.01
(bottom); α = 0.75.

Figure 13: Linear blending of octahedron and cube.

7 Discussion
This paper describes a new implicit surface representation based on
local shape functions, partitions of unity, and an octree hierarchy.
Strengths of the Multi-Level Partition of Unity formulation include:

• Fast surface reconstruction and rendering.
• Representation of sharp features.
• Reconstruction from incomplete data.
• Choice of either approximation or interpolation of the data

and the ability to adaptively vary the approximation accuracy.

Given a point set model processed by the MPU method with a spec-
ified accuracy, the computational time and memory usage depends
on the geometric complexity of the model: the higher the geomet-
ric complexity, the deeper the octree is subdivided. This is clearly
demonstrated by Figure 1 where the reconstruction of fine features
requires a deeper subdivision.

Table 1 presents RAM memory usage and computational time
measurements for simultaneous generating and polygonizing vari-
ous point set models. Note that our method is quite fast. Our exper-
iments with state-of-the-art RBF-based 3D surface reconstruction
techniques such as FastRBF [Carr et al. 2001] and others suggest
that the MPU method is considerably faster than these other tech-
niques. 2

Model Number Relative Peak Number of Comp.

of points error RAM triangles time

Bunny 34,611 2.5×10−3 34 MB 91,104 0:07

Bunny scans 362,272 1.0×10−3 110 MB 219,676 1:46

Dragon 433,375 8.0×10−4 195 MB 819,704 1:39

Buddha 543,625 0.0 442 MB 648,332 6:53

David (2mm) 4,124,454 1.0×10−4 810 MB 1,296,522 10:33

Table 1: Memory and computational time measurements for genera-
tion + polygonization of MPU implicits for various point set models. Computations
were performed on a 1.6GHz Mobile Pentium 4 with 1GB RAM, and timings are
listed as minutes:seconds.

2 Comparing the results of Table 1 with those of Table 2 in [Carr et al. 2001] one
can find that the MPU method is 20-30 times faster than the FastRBF technique [Carr
et al. 2001].

Figure 14: Linear morphing of two head models approximated by MPU implicits, Max
Planck Head and Head of Michelangelo’s David.

Notice that processing time for the Buddha model is more than
three times longer then that for the dragon model which has a sim-
ilar size. This is because we reconstruct the Buddha by the MPU
interpolation which requires a deeper subdivision and wider support
for the corresponding partition of unity functions.

Because of its local nature, the MPU method is more sensi-
tive to the quality of input data, especially the field of normals,
to compare with the approximation and interpolation techniques
based on globally-supported RBFs [Carr et al. 2001; Turk and
O’Brien 2002]. Nevertheless, according to our experiments, the
MPU method is sufficient for accurate shape reconstruction from
a wide variety of data sets. The parameters in our current imple-
mentation of the MPU approach are adjusted for processing typical
outputs of laser scanner devices. We believe that the parameter
modifications needed for different classes of input are fairly intu-
itive in order to handle scattered data of lower (higher) quality at
the expense of lower (higher) computational speed.

Unlike the crust approach [Amenta et al. 1998], the MPU method
is not supported by rigorous results guaranteeing correct recon-
struction of input data satisfying certain properties described math-
ematically. It is a price we pay for a high speed of our method.

We would like also to stress here that our method is not an RBF
technique. RBF is a global approximation/interpolation method be-
cause of its global variational nature. Our method is a local one. We
make use of two functions, the partition-of-unity weights and the
local piecewise quadratic approximation functions, which is differ-
ent than the single function used by an RBF approach. This two-
function approach gives benefits such as sharp feature reconstruc-
tion that, to date, have not been possible using RBFs.

Smoothness properties of the MPU implicits are determined by
those of weight functions (3). Choosing smoother weight functions
will produce smoother MPU implicits.

Similar to other implicit function shape representation schemes,
the MPU implicits are not capable of representing correctly surfaces
with boundaries.

We see a number of opportunities to improve our approach.
Other estimation of the distance function might be beneficial. The
distance function is a ruled surface with singularities, therefore us-
ing quadratic functions to approximate the distance function is not
optimal. A richer library of local shape approximations could be
generated in order to reconstruct accurately more complex sharp
features. Finally, the MPU approach should be well suited to an
out-of-core implementation due to the local nature of the weighting
functions.

Acknowledgments
The models are courtesy of the Digital Michelangelo Project 3D
Model Repository (Michelangelo’s David and Head of Michelan-
gelo’s David), the Stanford 3D Scanning Repository (Lucy, bunny,
dragon, and Buddha), Cyberware (Igea, fandisk, and vase), Max-
Planck-Institut für Informatik (Head of Max Planck), and the Im-
ager Computer Graphics Laboratory of the University of British
Columbia (knot).

References
ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN, D., AND SILVA,

C. T. 2001. Point set surfaces. In IEEE Visualization 2001, 21–28.

AMENTA, N., BERN, M., AND KAMVYSSELIS, M. 1998. A new Voronoi-based
surface reconstruction algorithm. In Proceedings of ACM SIGGRAPH 1998, 415–
421.

BABUšKA, I., AND MELENK, J. M. 1997. The partition of unity method. Interna-
tional Journal of Numerical Methods in Engineering 40, 727–758.

BABUšKA, CALOZ, G., AND OSBORN, J. E. 1994. Special finite element meth-
ods for a class of second order elliptic problems with rough coefficients. SIAM J.
Numerical Analysis 31, 4, 745–981.

BAJAJ, C. L., BERNARDINI, F., AND XU, G. 1995. Automatic reconstruction of
surfaces and scalar fields from 3D scans. In Proceedings of ACM SIGGRAPH 95,
109–118.

BEATSON, R. K., LIGHT, W. A., AND BILLINGS, S. 2000. Fast solution of the radial
basis function interpolation equations: domain decomposition methods. SIAM J.
Sci. Comput. 22, 5, 1717–1740.

BERNARDINI, F., BAJAJ, C., CHEN, J., AND SCHIKORE, D. 1999. Automatic re-
construction of 3D CAD models from digital scans. International Journal of Com-
putational Geometry & Applications 9, 4, 327–369.

BLINN, J. F. 1982. A generalization of algebraic surface drawing. ACM Transactions
on Graphics 1, 3 (July), 235–256.

BLOOMENTHAL, J., BAJAJ, C., BLINN, J., CANI-GASCUEL, M. P., ROCKWOOD,
A., WYVILL, B., AND WYVILL, G. 1997. Introduction to Implicit Surfaces.
Morgan Kaufmann.

BLOOMENTHAL, J. 1994. An implicit surface polygonizer. In Graphics Gems IV.
324–349.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL, T. J., FRIGHT, W. R.,
MCCALLUM, B. C., AND EVANS, T. R. 2001. Reconstruction and representation
of 3D objects with radial basis functions. In Proceedings of ACM SIGGRAPH
2001, 67–76.

CURLESS, B. VripPack User’s Guide. http://graphics.stanford.edu/software/vrip/.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for building complex
models from range images. In Proceedings of ACM SIGGRAPH 1996, 303–312.

DINH, H. Q., SLABAUGH, G., AND TURK, G. 2001. Reconstructing surfaces us-
ing anisotropic basis functions. In International Conference on Computer Vision
(ICCV) 2001, 606–613.

DINH, H. Q., TURK, G., AND SLABAUGH, G. 2002. Reconstructing surfaces by vol-
umetric regularization. IEEE Trans. on Pattern Analysis and Machine Intelligence
24, 10 (October), 1358–1371.

EDELSBRUNNER, H., AND MÜCKE, E. P. 1994. Three-dimensional alpha shapes.
ACM Transactions on Graphics 13, 1 (January), 43–72.

FLEISHMAN, S., COHEN-OR, D., ALEXA, M., AND SILVA, C. T. 2003. Progressive
point set surfaces. ACM Transactions on Graphics 22, 4 (October).

FRANKE, R., AND NIELSON, G. 1980. Smooth interpolation of large sets of scattered
data. International Journal of Numerical Methods in Engineering 15, 1691–1704.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A., AND JONES, T. R. 2000. Adap-
tively sampled distance fields: A general representation of shape for computer
graphics. In Proceedings of ACM SIGGRAPH 2000, 249–254.

GRIEBEL, M., AND SCHWEITZER, M. A. 2000. A Particle-Partition of Unity Method
for the solution of Elliptic, Parabolic and Hyperbolic PDE. SIAM J. Sci. Comp. 22,
3, 853–890.

GRIEBEL, M., AND SCHWEITZER, M. A. 2002. A Particle-Partition of Unity Method
– Part III: A Multilevel Solver. SIAM J. Sci. Comp. 24, 2, 377–409.

HART, J. C. 1996. Sphere tracing: a geometric method for the antialiased ray tracing
of implicit surfaces. The Visual Computer 12, 527–545.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE, W.
1992. Surface reconstruction from unorganized point. In Proceedings of ACM
SIGGRAPH 1992, 71–78.

HYPERFUN: F-REP LIBRARY. http://cis.k.hosei.ac.jp/ F-rep/HF lib.html.

ISKE, A., AND LEVESLEY, J. 2002. Multilevel scattered data approximation by
adaptive domain decomposition. Tech. rep., University of Leicester, April.

ISKE, A. 2001. Hierarchical scattered data filtering for multilevel interpolation
schemes. In Mathematical methods for curves and surfaces (Oslo, 2000). Van-
derbilt Univ. Press, Nashville, TN, 211–221.

JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002. Dual contouring of
hermite data. ACM Transactions on Graphics 21, 3 (July), 339–346. Proceedings
of ACM SIGGRAPH 2002.

KOBBELT, L. P., BOTSCH, M., SCHWANECKE, U., AND SEIDEL, H.-P. 2001. Fea-
ture sensitive surface extraction from volume data. In Proceedings of ACM SIG-
GRAPH 2001, 57–66.

KOJEKINE, N., HAGIWARA, I., AND SAVCHENKO, V. 2003. Software tools using
CSRBFs for processing scattered data. Computers & Graphics 27, 2 (April).

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., PEREIRA,
L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG, J., SHADE, J., AND

FULK, D. 2000. The Digital Michelangelo Project: 3D scanning of large statues.
In Proceedings of ACM SIGGRAPH 2000, 131–144.

LIM, C., TURKIYYAH, G. M., GANTER, M. A., AND STORTI, D. W. 1995. Implicit
reconstruction of solids from cloud point sets. In Proceedings of the third ACM
symposium on Solid Modeling and Applications, ACM Press, 393–402.

MOORE, D., AND WARREN, J. 1991. Approximation of dense scattered data using
algebraic surfaces. In Proceedings of the 24th Hawaii International Conference on
System Sciences, IEEE Computer Society Press, Kauai, Hawaii, 681–690.

MORSE, B. S., YOO, T. S., RHEINGANS, P., CHEN, D. T., AND SUBRAMANIAN,
K. R. 2001. Interpolating implicit surfaces from scattered surface data using com-
pactly supported radial basis functions. In Shape Modeling International 2001,
89–98.

MURAKI, S. 1991. Volumetric shape description of range data using “Blobby Model”.
Computer Graphics 25, 4 (July), 227–235. Proceedings of ACM SIGGRAPH 1991.

OHTAKE, Y., AND BELYAEV, A. G. 2002. Dual/primal mesh optimization for poly-
gonized implicit surfaces. In 7th ACM Symposium on Solid Modeling and Applica-
tions, 171–178.

OHTAKE, Y., BELYAEV, A. G., AND SEIDEL, H.-P. 2003. A multi-scale approach to
3D scattered data interpolation with compactly supported basis functions. In Shape
Modeling International 2003. Accepted.

PASKO, A., AND SAVCHENKO, V. 1994. Blending operations for the functionally
based constructive geometry. In Set-theoretic Solid Modeling: Techniques and
Applications, CSG 94 Conference Proceedings, Information Geometers, 151–161.

RENKA, R. J. 1988. Multivariate interpolation of large sets of scattered data. ACM
Transactions on Mathematical Software 14, 2 (June), 139–148.

RICCI, A. 1973. A constructive geometry for computer graphics. The Computer
Journal 16, 2 (May), 157–160.

SAVCHENKO, V. V., PASKO, A. A., OKUNEV, O. G., AND KUNII, T. L. 1995.
Function representation of solids reconstructed from scattered surface points and
contours. Computer Graphics Forum 14, 4, 181–188.

SCHABACK, R., AND WENDLAND, H. 2000. Adaptive greedy techniques for approx-
imate solution of large RBF systems. Numerical Algorithms 24, 239–254.

TAUBIN, G. 1991. Estimation of planar curves, surfaces and nonplanar space curves
defined by implicit equations, with applications to edge and range image segmenta-
tion. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 11, 1115–1138.

TURK, G., AND LEVOY, M. 1994. Zippered polygon meshes from range images. In
Proceedings of ACM SIGGRAPH 1994, 311–318.

TURK, G., AND O’BRIEN, J. 2002. Modelling with implicit surfaces that interpolate.
ACM Transactions on Graphics 21, 4 (October), 855–873.

WARREN, J. 1992. Free-form blending: a technique for creating piecewise implicit
surfaces. In Topics in Surface Modeling, H. Hagen, Ed. SIAM Press, Philadelphia,
473–483.

WENDLAND, H. 2002. Fast evaluation of radial basis functions: Methods based on
partition of unity. In Approximation Theory X: Wavelets, Splines, and Applications,
Vanderbilt University Press, Nashville, L. Schumaker and J. Stöckler, Eds., 473–
483.

ZHAO, H., AND OSHER, S. 2002. Visualization, analysis and shape reconstruction
of unorganized data sets. In Geometric Level Set Methods in Imaging, Vision and
Graphics, Springer, S. Osher and N. Paragios, Eds.

