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Abstract 
This paper will cover the work done to produce a convolutional neural network being used to 

filter low-light images, using a deep learning approach. 
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1. Introduction 

Deep learning is a machine learning approach which is currently revolutionising a number of disciplines 

including image processing and computer vision. This paper will attempt to apply deep learning to image 

filtering, specifically low-light image enhancement. To do this, a literature review will be undertaken to 

analyse existing work done in this field, in an attempt to take inspiration for methods and functions 

which could be applied to the final network. Work will then be done to produce a fully functioning image 

filtering system using deep learning, which will allow the network to be trained using Supervised 

Learning [1], and filtered output images to be saved to a file. 

Overall the network was successful, producing output images which can clearly be seen to be filtering 

low-light images. The network will need to be run for a greater amount of time to see the best possible 

results the network can output, and this has been discussed in the Results section of this report. 

Project Aims 

The aim of this project is to produce a neural network which can take images captured in low light 

conditions and output a filtered image which is exported to a file and can be viewed. The network will be 

trained with square greyscale 28x28 images and will filter images of the same size. The restrictions are in 

place because of hardware limitations which will be discussed in the Technical Discussion of this report. 

2. Literature Review 

Low-Level Light Enhancement 

Low-level light enhancement is a common aim in the field of image processing. Images captured in low-

light, or due to a low-exposure, suffer from low contrast and brightness, which both degrades the visual 

quality of the image and can hinder further image processing algorithms (e.g. object detection [2]). There 

have been many attempts to correct for low-level light noise, from regular histogram-based methods as 

discussed by Shen et al. in [3] to adaptive gamma correction in [2] and illumination map estimation as 

discussed by Guo et al. in [4]. Figure 1 shows two examples of images captured in low-light, compared to 

their filtered alternatives, produced by the downloadable LIME code by Guo et al. in [5].   
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Figure 1: Low-level light images vs filtered images 

Low light images have been enhanced successfully using histogram and saturation based methods, for 

example Lim et al. [6] and Yoo et al. in [7]. While these methods have generated promising outputs, the 

running time for each process can be large. With deep learning, the network is trained (which takes 

significant time) and produces a filter which can be run quickly and with minimal processing, for example 

on a smartphone. 

Deep learning has been used to filter low-light images, with successful results. Figure 2 shows the result 

of the method proposed by Schwartz et al. in [8]. 

 

Figure 2: Low-level light filtering with deep learning 

Due to the successes of using deep learning for low-level noise reduction, this paper will attempt to 

analyse different methods of applying deep learning to image filtering. 

What is Deep Learning? 

Deep learning is a branch of machine learning which attempts to replicate the human brain in machine 

form [9], to perform complex problems which would typically be difficult for a computer to do, such as 

pattern recognition. It’s beginning to become more widely used in industry, with applications such as 

cancer detection in healthcare [10], speech recognition [11] and autonomous or partially autonomous 
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vehicles [12]. Deep learning has become widely used in recent years due to the increase of parallel 

processing capabilities through the use of GPUs [13]. 

Deep Learning Issues 

There are a number of challenges in deep learning, as discussed by Parth Shrivastava in [14]. Hardware 

requirements such as the amount of data required and the amount of processor capacity required will be 

discussed later on in this report. 

Deep learning algorithms often have issues with overfitting, when complex networks struggle to 

generalise the data being used to train the network with, resulting in a large overall network accuracy in 

training but a low accuracy when the network is tested with new unseen data [15]. A simple but 

processor-heavy solution to this is simply increase the batch size, which is why most papers that have 

been examined for this project don’t mention overfitting. However, a technique called dropout 

regularization is commonly used and basically ignores a subset of randomly selected neurons when the 

network is being trained, reducing the sensitivity of the network and reducing the effects of overfitting. 

This has been discussed more thoroughly by Jason Brownlee in [16]. Due to time constraints this hasn’t 

been implemented for the final network produced, but would be something to look at if the project were 

to continue. 

In training, networks often converge further from the optimum than expected, due to the kinetic energy 

of the learning rate as discussed further in [17]. Essentially the learning rate as the network progresses 

becomes too high, causing the optimization function to jump continuously between a high and low value 

and never converging. Learning rate decay as discussed in [18] is a common solution, where the learning 

rate is reduced as the network progresses to allow the network to converge at a better optimum. 

The final issue that will be discussed is the vanishing gradient problem. This is a problem which occurs in 

optimisation functions using gradients to minimise cost. These terms will be discussed in greater detail 

later on in this report. The problem is discussed more thoroughly by Muhammed Fawzy in [19], but 

results in neurons in the early layers of a network learning more slowly than neurons in the later layers 

of a network, due to back propagation. This is an issue because the early layers of a network perform 

fundamental operations needed throughout the rest of the network. There are solutions to this problem, 

with this paper focusing on the activation function to minimize the effects. 
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Deep Learning in Image Processing 

In image processing, deep learning is often used for image classification [20] [21] but has also been used 

for image filtering. One of the biggest issues in applying deep learning to image processing is how to 

input the image data into the neural network. A simple approach would be to have each pixel being an 

input to the neural network. However, with a standard photograph size of 5”x7”, a typical resolution is 

630x450 pixels [22]. If the image is in RGB form as opposed to grayscale, this value gets multiplied by 3. 

This requires a neural network with 850,500 input notes, which can rapidly increase the size of the 

network if multiple hidden layers are used, dramatically increasing the required computation time for 

the network to be trained. 

To combat this issue, convolutional neural networks (CNNs) were created and will be used as the 

foundation of this project. These are a type of neural network which is designed specifically to be used 

with images, and differ slightly from traditional neural network structure. Each layer in a CNN is a 3D 

structure of nodes, as opposed to a 1D structure in regular neural networks. This can be seen more 

clearly in Figure 3. 

 

Figure 3: Traditional vs Convolutional Neural Networks [17] 

Another key property of CNNs is that they are not fully connected [23] [24], where every node in a layer 

is connected to every node in the previous layer. There are three main elements to a CNN: 

• Convolutional layer 

• Pooling layer 

• Fully connected layer 

These will be discussed in the following sections. 
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Convolutional Layer 

The convolutional layer is a layer (or series of layers) that consists of a sequence of filters. The nature of 

these filters is trained by the neural network. The image gets convolved by each one of these filters, with 

the output being stored in an n by n-dimensional “slice” of the next layer, the blue cuboid shown in 

Figure 3. An example of this can be seen in Figure 4, with the blue matrix being the input image, and the 

green layer being the output. It’s the convolutional layers which process the image, resulting in a filtered 

output from the network. 

 

Figure 4: Convolutional Layer Example [25] 

Pooling Layer 

The pooling layer is simply there to reduce the dimensionality of the previous layer so it is a more 

appropriate size for the next layer of the network. Typically this is done with max-pooling, which takes 

the maximum value of the window the filter is looking at, convolved across the image [26] [27]. A CNN 

can have any number of convolutional and pooling layers, in any order, with the only limitations being 

computation power and time, and the risk of overfitting [28].  

Fully-Connected Layer 

The fully connected layer is a regular neural network and is typically used as the final step in a 

convolutional neural network being used for image classification, where the desired output is an m 

element array (with m being the number of categories of images) containing probabilities of the image 

being of a particular category. 

Deep Learning in Image Filtering 

In image filtering applications such as this, both the input and output of the CNN should be an image. 

Because of this, and for reasons mentioned previously when discussing why traditional neural networks 

are unsuitable for image processing applications, the fully-connected layer is not needed for networks 
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which are being trained for image filtering. This can be seen more clearly in Figure 5, where an example 

CNN structure for image filtering is shown. 

 

Figure 5: Image Filtering CNN 

As shown in Figure 5, there is no need for a fully connected layer, since the output is a 2D or 3D image. 

Because of this, one will not be included in the final network structure implemented in this project. 

The pooling layer may also not be needed. Since pooling is designed to reduce the dimensionality of a 

layer, if the desired output image is greater than or equal to the size of the input image, dimensionality 

reduction may not be required. 

To gain a better understanding of the ideal network structure and relevant parameters, this report will 

look at work already done in the field of using deep learning for image filtering, in order to gain some 

insight into potential ways the final network could be constructed. Seven properties will be investigated: 

1. The network structure, in terms of number and size of layers 

2. Whether a pooling layer is used 

3. The cost function 

4. The activation function 

5. The evaluation function 

6. The number of epochs the network is being trained for 

7. The batch size 

Points 3 to 7 are discussed in greater detail below. 

Cost Function (AKA loss function or error function) 

The cost function in a network is used give feedback to the network about how badly it performed. It is 

this parameter which the network attempts to minimize [29] and which results in the “learning” part of 

deep learning. In order to train the network to minimise the result of the cost function, an optimizer 

must be used, with the Adam Optimizer (Adaptive Moment Estimation Optimizer) being a popular choice 
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[30]. Figure 6 compares the Adam Optimizer with other stochastic optimizers and can be seen to have 

the best results in terms of minimizing cost over time.  

Ruder [31] compares this optimiser with seven other gradient 

descent optimisers and finds that it outperforms the others due to 

its inclusion of momentum and bias-correction which causes an 

increase in learning rate compared to the other seven methods. As 

well as this, because of the momentum term the optimizer also 

includes an element of learning rate decay, allowing the network 

to converge at a better optimum as discussed previously. Because 

of this, the Adam optimizer will be used in the final network. 

The Adam Optimizer is a stochastic gradient descent optimizer, which requires the cost function to be 

differentiable, as with all gradient descent optimisers. A differentiable cost function which is widely used 

is the Mean Square Error, described in more detail by Zheng in [32], and computes the average of the 

squared error pixel-by-pixel between the output image and the desired output image. Due to its 

simplicity, it is widely used in deep learning as a cost function, however, does not take any statistical 

features about the image into account, so isn’t perfect. Due to its computational simplicity, however, 

when combined with an appropriate optimization function such as the Adam Optimizer, it can produce 

better results (according to the evaluation functions discussed below) more quickly than some of its 

more complex alternatives. 

Zhao et al. [33] compared five different cost (or loss) functions in terms of perceptual quality to the 

human eye when being applied to restoration. 

Activation Function 

Once an image has been completely convolved with a filter from the following layer, the output is put 

through an activation function. The activation function is in place to introduce non-linear properties to 

the network [34] which allows the network to solve more complex non-linear problems than its linear 

alternative. 

Figure 6: Adam Optimizer [22] 
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An activation function commonly used with convolutional neural networks is the Rectified Linear Unit 

(ReLU) [35]. It is defined as the following: 𝑓(𝑥) = max⁡(𝑥, 0). Figure 7 compares the ReLU activation 

function to another popular activation function, the sigmoid.  

 

Figure 7: Sigmoid vs ReLU Activation Function [36] 

As can be seen, the sigmoid activation function is prone to saturation, when the input is large the output 

approaches 1. With the ReLU activation function, when the input is large the output is also large. This 

solves the vanishing gradient phenomenon found in deep learning [37] and as discussed previously. 

Krizhevsky et al. [38] also found that this activation function converges much quicker than the sigmoid or 

tanh activation functions, making it a popular choice of function in image classification problems. 

However, since this activation function only inhibits values which are less than 0, it is prone to exploding 

gradients as discussed by Cai et al. in [39], who propose an alternative activation function called the 

Bilateral Rectified Linear Unit (or BReLU), and is discussed later on in this report. 

Evaluation Function 

The evaluation function is different to the cost function in that it’s not used by the network, it’s simply a 

parameter so we can see how well the network is doing over time. 

Two common evaluation functions in image filtering applications are the Peak Signal to Noise Ratio 

(PSNR) and Structural Similarity Index (SSIM). Ding et al. [40] describes both of these in further detail, but 

in summary: 

• Peak Signal to Noise Ratio (PSNR) is easy to compute and measures the cumulative squared error 

between the desired output image and the actual output image in decibels [41]. While it’s a good 

cheap-and-cheerful evaluation function, it acts purely pixel-by-pixel and ignores the 

characteristics of the image 

• Structural Similarity Index (SSIM) is a slightly more computationally complex function which 

again compares the desired output image and the actual output image but focuses on the 

structural information of the image 
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Another less-used evaluation function is the Naturalness Image Quality Evaluator (NIQE). This is an 

evaluation metric proposed by Zhang et al. in [42] and focuses on the perceived quality of an image, or 

how good an image looks to the human eye. Although not used that frequently it is perfectly suited to 

applications where the appearance of the input image will change significantly when being converted to 

the output image, as is the case for low-level light enhancement. A paper which uses this evaluation 

function as a measure of the image quality in low-level light applications will be discussed later on in this 

report. 

Epochs and Batch Size 

An epoch is a measure of how long the network will be running for. One epoch equates to the entire 

dataset being used to train the neural network being passed through the network a single time [43]. The 

batch size is how many input/output pairs the network is being presented with each epoch. 

Analysis of Existing Methods 

To investigate the above properties, nine papers were examined. These have been discussed in the 

following sections. 

Haze Reduction 

Cai et al. [39] propose a system for removing haze in affected images. In hazy images, the contrast 

between pixels is lost. The proposed system was an attempt to improve on traditional histogram- and 

saturation-based methods. 

Their system takes an image as an input, producing a medium transmission map (a property specific to 

haze reduction and discussed in greater detail in [44]) which is combined with the input image using a 

pixel-wise operation to produce the filtered image. 

Their system proposes a Bilateral Rectified Linear Unit (or BReLU) as an alternative to the commonly 

used ReLU activation function, discussed above. BReLU is proposed to improve image restoration 

accuracy compared to the ReLU, and the differences can be seen in Figure 8. Since the BReLU inhibits 

data both when it is less than 0 and when it is greater than tmax, it removes the possibility of exploding 

gradients which can appear while using the ReLU as discussed above. 
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Figure 8: ReLU vs BReLU [39] 

The network structure consists of three convolutional layers, one max pooling layer, a maxout unit 

discussed in [45], and a BReLU activation function. They use a Mean Squared Error cost function 

combined with a stochastic gradient descent optimisation function to train their network. They use mean 

squared error, structural similarity index and peak signal to noise ratio as their evaluation functions. 

In order to create their training data, they select a number of noise-free images from the Internet and 

randomly sample them to produce the noise-free images the cost function will be compared to the 

output of the neural network. These samples are of pixel size 16 x 16, and then put through a filter aimed 

a reproducing the effects of haze. 

Super Resolution 

Kim et al. [46] proposed a system designed to generate high-resolution images from low-resolution 

images. They have a network structure of 20 layers, with each layer except the first and last being of size 

3 x 3 x 64, and the final layer being a reconstruction layer used to map the previous layer to a 1-

dimensional output layer the same size as the input layer. Since each hidden layer is the same size, this 

removes the need for max-pooling, as discussed previously. The output of their network is a residual 

image, which is added to the input image to produce a final filtered image. This is the same approach as 

used by Cai et al. in the previous example. 

A Rectified Linear Unit (ReLU) activation is used, with these layers placed after each convolutional layer, 

and a mini-batch gradient descent optimization function is used to evaluate the cost function. The cost 

function is defined as the Euclidian distance between the filtered image 

(the sum of the input and output of the network) and the ideal noise-free 

image. They use Peak Signal to Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM) as evaluation methods. 

Figure 9: Residual CNN Output [39] 
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Both Kim et al. and Cai et al. use their networks to compute a residual image as opposed to a filtered 

image. This residual image is then summed with the input image to produce the filtered image. He et al. 

[47] put forward this idea, testing a network trained to produce a network which does exactly this, as can 

be seen in more clearly in Figure 9. The network generated promising results when applied to image 

classification. 

One added advantage of this type of training is it reduces a 3-dimensional RGB image into a 1-

dimensional greyscale image, which is then reconstructed into an RGB image. This reduces the size of the 

network significantly, by a factor of 3 for a network which takes the RGB input and immediately reduces 

it to greyscale. However, as mentioned by Kim et al. [46], this process works best when the input and 

output image is largely similar. In low-level light applications, however, the input images and output 

images are often largely different. Also, as previously discussed the input image to the network created 

for this project will be a grayscale image to reduce complexity, removing one of the advantages for 

generating a residual image as an output. Because of this, the output of this network will be a filtered 

image and not a residual image. An application which directly reduces noise due to low-level light is 

discussed below. 

Low-Light Image Enhancement 

Shen at al. [3] proposes a system for reducing noise as the result of low-level light, improving the clarity 

of images and allowing them to be processed further for different applications. The input to the network 

is an RGB noisy image, with the output being an RGB filtered image of the same size. The network 

consists of 10 convolutional layers and no pooling layer. They use an Adam optimizer with the angular 

error cost function, defined as: 

𝜀 = arccos(
〈𝑌, 𝑌̂〉

‖𝑌‖. ‖𝑌̂‖
) 

Where ԑ is the error function or cost function, 𝑌 is the expected output and 𝑌̂ is the output of the 

network. The structural similarity index (SSIM) and naturalness image quality evaluator (NIQE) have been 

used as evaluation functions. 
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The training dataset consisted of 10,000 pairs of input/output images and was produced in the same way 

as Cai et al. in the DehazeNet network, with each of the 1000 images taken from the internet sampled 

and filtered to produce 10 input/output pairs. 

Summary 

For the final six papers, the key information discussed in previous sections has been extracted. The 

results of this can be seen in Table 1. F. in this table stands for function. This has been combined with the 

key information as discussed in the previous sections. 

Ref Application Structure Pooling? Activation F. Cost F. Evaluation F. 

[48] Joint image 

filtering 

3 x 3 layer convolutional 

networks 

No ReLU Sum of 

squared 

losses 

Root mean 

squared error 

[49] Removing rain 

from a single 

image 

Multiple convolutional, 

batch normalization and 

ReLU layers  

No ReLU MSE SSIM 

[50] Image Super-

Resolution 

Two convolutional layers 

and a reconstruction layer 

No ReLU MSE PSNR 

[51] Image denoising Multiple convolutional, 

batch normalization and 

ReLU layers 

No ReLU MSE PSNR 

[52] Demosaicing Multiple convolutional 

layers, each followed by a 

ReLU layer 

No ReLU Normalised 

error 

PSNR 

[53] Low-light image 

enhancement 

A combination of 

convolutional and pooling 

layers 

Yes ReLU, tanh Multi-scale 

SSIM 

Mean Opinion 

Score 

[39] Dehazing Three convolutional 

layers, max pooling layer, 

maxout unit 

Yes BReLU MSE MSE, SSIM and 

PSNR 

[46] Image super-

resolution 

20 convolutional layers, 

reconstruction layer 

No ReLU Euclidian 

distance 

PSNR, SSIM 

[3] Low-light image 

enhancement 

10 convolutional layers No ReLU Angular 

error 

SSIM, NIQE 

Table 1: Analysis of CNN Parameters for Image Filtering Applications 

As can be seen, despite the reservations suggested by Cai et al. [39], the rectified linear unit is the most 

common activation function in these papers. Because of this, and combined with the property of the 

ReLU which removes the effect of the vanishing gradient problem as discussed previously, the ReLU will 

be used as the activation function for this project. Similarly with mean squared error (MSE), despite it 

not taking structural information into account, it is widely used and the simplest of all cost functions 

mentioned so will be used as the cost function for this project. 
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The structure of the networks varies widely between networks. Because of this, for this project, an 

attempt will be made to find a simple network which maintains the same shape throughout the network, 

without having to perform max pooling. This is purely because it is the easiest to implement, and will 

allow time to be spent on other areas of the project. 

Finally, for the evaluation function, despite PSNR being a commonly used evaluation function, in this 

case, the evaluation functions used in the low-level-light noise reduction network proposed by Shen et 

al. [3] will be used, as these give a clear indication of the best results specific to low-level-light 

enhancement. The implementation for the NIQE is relatively unclear, so the structural similarity index 

will be the main focus for this project. 

3. Technical Discussion 

TensorFlow 

In order to build and train the network, the platform TensorFlow was used. As described on their 

website, “TensorFlow is an open source library for numerical computation using dataflow graphs” [54]. It 

uses multidimensional arrays known as tensors to represent data and was developed by Google Brain 

[55], being specifically designed to be used in machine learning. It can run on a CPU or GPU and is a 

large-scale system designed to be run in a number of different environments. Further information can be 

found in the paper by the Google Brain team who designed the system at [56]. TensorFlow has been 

used in a wide range of machine learning applications, such as intelligent mobile interfaces, data 

classification and image filtering. Examples of such applications can be found at [57], [58], [59], and [60]. 

TensorFlow supports multiple languages, but Python has been used for this project as it seems to be the 

most widely used and most supported by TensorFlow documentation. 

Hardware Limitations 

One of the key limitations of this project which was immediately expected was with hardware. Dong et 

al. in [50] used a GTX 770 GPU, with training taking 3 days. The only computer I had access to did not 

have a GPU, just a standard dual-core 2.8GHz CPU. 

An article testing the performance of a CPU vs a GPU in TensorFlow [61] found that a good graphics card 

(GeForce 940MX) processed almost 3 times more samples in a second compared to a standard desktop 
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CPU (i7-7500U). By this logic, the network trained in [50] could take up to 9 days to train on the desktop I 

was using. Because this was a 12-week project, and in this time the topic of deep learning needed to be 

researched as well as building up a network, this was expected to be a real challenge. As well as this, the 

CPU I had access to wasn’t a private computer, 21 other people had access to, and would be using, the 

same computer, so I couldn’t guarantee that all processor power was being allocated to running the 

network. 

As well as this, and as discussed in [14], the amount of input data required poses another difficulty. Cai et 

al. in [39] used an input dataset size of 10,000 images in order to generate successful results. In the 

network I was using, each image took around 10 seconds to load into the program, which would take 

almost 28 hours to load. 

This meant that the size of input and output images had to be restricted, so results could be generated 

which proved the network works. Images were limited to 28x28 grayscale images. On the CPU being 

used, a network with a batch size of 586 images and 100 epochs, the network took just over 5 days and 3 

hours to train. 

Implementation 

Network Structure 

The initial implementation is based off a Convolutional Neural Networks Tutorial in TensorFlow [62]. This 

is a tutorial which takes images and labels from the MNIST dataset [63] [64] provided by TensorFlow and 

trains the network to classify handwritten digits (0-9) into numbers. This network has multiple 

alternating convolutional and pooling layers, which get fed into a fully connected layer. This fully 

connected layer outputs to a binary 10-element layer, with all values in the array 0, except the value with 

the highest probability, telling the user that the handwritten digit has been recognised as a digit of that 

value. 

The MNIST dataset is imported directly from TensorFlow, with each of the images being grayscale 28x28 

pixel images. 

Since the implemented network was being used for image classification as opposed to image filtering, 

the network needed to be modified to allow images to be input, and images of the same size to be 
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output. To do this, inspiration was taken from [65], which is a convolutional neural network being used 

for Super Resolution. This example uses Caffe (a machine learning alternative to TensorFlow [66]) and is 

based on the work done by Dong et al. [50]. The network structure has been taken from this example, 

and consists of the following: 

• Three convolutional layers, all designed to perform different functions 

1. Patch extraction: takes the input image and breaks it down into a sequence of feature 

maps using the different convolutional layers of the network 

2. Non-linear mapping: takes the output from the previous layer and non-linearly maps it to 

another high-dimensional vector 

3. Reconstruction: takes the output from the non-linear mapping layer and converts it into 

the final output image. This is compared to the expected output using the cost function 

• After the first and second convolutional layers, activation using the Rectified Linear Unit (ReLU) 

activation function is performed. 

The article cites and gives an example of an updated version of the work done by Dong et al. in 2014 

from the same authors in 2016 [67]. Despite the results [68] showing this updated network slightly 

outperforms the original network, the original network has been used for this project. The network is 

more complex, with more layers that would be slightly more difficult to implement. As well as this, the 

network is designed for super-resolution, not low-level light enhancement so there is no guarantee that 

the same results (in terms of the new network outperforming the old one) would apply to this case. 

From this, the implementation provided in [62] was adapted to this new network structure. Some further 

modification was done to change the cost function and evaluation function for image comparison (as 

opposed to label comparison). As well as this, the mechanism which fed input images and labels which 

could be compared to the network output needed to be changed. 

Training Data Creation 

To create the training data, a similar approach to the approaches used in [39] and [3] was used, where 

multiple images are taken from the internet and then sampled at random points to produce the desired 

output data. Whereas these papers filter the images to produce noisy versions of the originals, this 

project involved taking both the filtered and noisy images from the dataset provided by Schwartz et al. 
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[53], sampling both of them at the same random points to create 28x28 blocks, and then saving the 

image as a png in a format the network can process. 

The format of the input/expected output image is taken from Isola et al. in [69] [70], where the input and 

expected output image is saved as one file of dimensions 2n by n (where n is the length/height of the 

image in pixels) with the unfiltered and filtered images next to each other. This can be seen more clearly 

in Figure 10. A Matlab script was created to generate these images. 

 

Figure 10: Dataset Generation 

Input/Output Data 

Since the original tutorial being used to build the network took input images directly from the MNIST 

dataset provided by TensorFlow, the program needed to be changed to allow images to be imported 

from a file, processed and then converted into a tensor. This ended up causing quite a bit of difficulty, 

with a solution being taken from an article posted on GitHub by Alan Gray [71], where he creates his own 

array of images and imports them to TensorFlow. Processing the data once files had been saved to 

TensorFlow was taken from Isola et a. in [70] as before. 

A similar issue occurred when trying to output an example of the filtered input image to a png file, so a 

user could see the results. Eventually, a solution was found based on the StackOverflow answers [72] and 

[73]. The output data is in png format of size 28 x 28 pixels. 

Cost Function 

To determine the network error, the Mean Square Error function was used, by combining the 

TensorFlow functions tf.square() and tf.reduce_mean(). This output was then put through the Adam 
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Optimizer discussed above using tf.train.AdamOptimizer() with a learning rate of 0.0001 taken from the 

original tutorial in [62]. The network is currently taking a batch size of 330 images and running for 50 

epochs. Each epoch takes around 24 minutes to complete, resulting in a predicted training time of 20 

hours. 

[74] defines the mean square error as: 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑[𝑔(𝑚, 𝑛) − 𝑔(𝑚, 𝑛)]2

𝑁

𝑚=1

𝑀

𝑛=1

 

Where 𝑔(𝑥, 𝑦) is the expected output and 𝑔(𝑚, 𝑛) is the actual output generated by the network. When 

both images are equal, 𝑔(𝑚, 𝑛) − 𝑔(𝑚, 𝑛) = 0, making the rest of the equation zero. The minimum 

mean squared error is 0, and we will be aiming for a mean square error of 0. 

Evaluation Function 

The structural similarity index (SSIM) has been used as the evaluation metric for this project and is 

defined by Wang et al. [75] as: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = ⁡
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 +⁡𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

Where: 

𝜇𝑥 is the average of x and 𝜇𝑦 is the average of y 

𝜎𝑥
2 is the variance of x and 𝜎𝑦

2 is the variance of y 

𝜎𝑥𝑦 is the covariance of x and y 

𝑐1 = (𝑘1𝐿)
2⁡and⁡𝑐2 = (𝑘2𝐿)

2 

𝐿 is the dynamic range of pixels (typically 2(𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑖𝑥𝑒𝑙𝑠) − 1, in this case 255 for an 8-bit image) 

𝑘1 = 0.01 and 𝑘2 = 0.03 

When both images are exactly the same, the SSIM returns a value of 1. This is documented in [75]. 

This is one of the only functions needed that was not already provided by TensorFlow. To rectify this, an 

attempt was made to write a python script that would calculate this SSIM and return a floating point 

value. However, despite managing to implement the function in a script separate from my main running, 

I could not get it to work as a callable function from within the TensorFlow session. Because of this, the 

implementation has been taken from a response posted on StackOverflow, which can be found here 
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[76]. I have not yet given up on the SSIM function, and will continue to work on it until it reaches a 

usable state. The function so far can be found in the Github repository linked to at the start of this paper. 

Another evaluation function I wanted to use was the NIQE, the naturalness image quality evaluator, as it 

is designed to assess the perceptual quality of the image, or how good it looks to the human eye. Mittal 

et al. [77] puts forward this function and defines it as the distance between the natural scene statistic 

(NSS) and the multivariate Gaussian model (MVG). 

Due to the complexity of the function in terms of implementation, this has not yet been attempted but 

would be a goal if the project were to continue. 

4. Results 

The final network was trained for 100 epochs, each taking 586 batches. It ran for just over 5 days and 3 

hours. After each epoch, the network was tested against a common image, with the output converted to 

png format and saved to a file. An example of how the network progressed over the first 45 epochs can 

be seen in Figure 11, with the input image, expected output image, network output at epoch 1 and 

network output at epoch 99 shown at the bottom of the figure. 

 

Figure 11: Final Network Image Results 
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As can be seen, epoch 1 brightened the unfiltered image but was blurry with lower contrast in the image 

than expected. Over time, the network tries to improve the contrast and sharpen the image. This can be 

shown more clearly in Figure 12, when the histograms of the original input image and the filtered image 

at epoch 99 are shown. 

 

Figure 12: Histograms of Unfiltered vs Filtered Image 

As can be seen, the image has been brightened considerably and the contrast improved. 

Although there are clear differences between the ideal filtered image and the result at epoch 99, 

considering the network was only run for 5 days on a standard CPU the results are significant. The 

network is attempting to filter the input image and reduce the effects of low light, and the progression 

can clearly be seen across the epochs from the filtered image at epoch 1. The final output has been 

brightened and the contrast improved from the original data. The results of the mean squared error cost 

function and the SSIM evaluation function can be seen in Figure 13 and Table 2. The results in Figure 13 

were plotted using TensorBoard, TensorFlow’s in-built visualization software. 

 
Figure 13: Final Network MSE and SSIM Plot 

 



22 

 

Epoch MSE SSIM Time from start 

0 0.154 0.1413 0s 

20 0.1212 0.1796 1d 1h 28m 11s 

40 0.1185 0.1824 2d 2h 6m 49s 

60 0.1166 0.1863 3d 2h 17m 17s 

80 0.1154 0.1873 4d 2h 51m 16s 

99 0.1146 0.1876 5d 3h 2m 35s 

Table 2: Final Network MSE and SSIM Values 

Table 2 shows the network reached a final mean square error value of 0.1146 and structural similarity 

index value of 0.1876. Figure 13 shows that the difference in values between SSIM and MSE over time 

were decaying exponentially, and the network would likely reach a final MSE value of ~0.114 and SSIM of 

~0.188. This is phenomenon appears frequently when training neural networks, and can be seen in 

Figure 6 with the Adam Optimizer results at the start of this paper. It is attributed to the kinetic energy of 

the learning rate, as discussed in [78]. A solution to this is using learning rate decay, as discussed in [18], 

which should allow the MSE to converge at a value closer to 0, and the SSIM to converge at a value closer 

to 1. Although the Adam Optimizer does include an element of learning rate decay, the decay may need 

increased to allow convergence of the mean squared error at a smaller value. 

5. Future Work 

Now that a network has been built which can take low-light images and output filtered versions of that 

image, work will be done to allow the network to process larger images where more significant results 

can be seen. This will require a lot more training time, meaning future work will likely lean towards 

optimisation of the network, using different network structures, cost functions and learning rates to 

attempt to maximise cost reduction per unit of computation time. As well this, learning rate decay will 

be experimented with to allow the cost and evaluation functions to converge more closely to their 

minimum and maximum values respectively. The network will also be tested for overfitting as previously 

discussed, and dropout regularization will be used to attempt to minimize the effects. Work will also be 

done to fix the SSIM function and implement the NIQE evaluation function as discussed above, in order 

to better evaluate the perceptual quality of output images. 
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6. Conclusion 

This report has documented the work undertaken throughout the B31RA Advanced Reading course, with 

the topic of applying deep learning methods to image processing applications. A huge amount was 

learned throughout this project, specifically with regards to neural networks and the various different 

properties such as cost and evaluation functions, potential difficulties and pitfalls, and the wide range of 

applications deep learning can be used for. There were difficulties faced throughout the project which 

had to be dealt with, specifically with regards to hardware limitations which have been discussed, and 

which have caused the final network to be limited in terms of the size of the images the network can 

filter. 

Overall the project was a success, the final network produced for this project has been proven to be able 

to improve the brightness and contrast of a 28x28 pixel grayscale image being taken in low light, and 

therefore can filter improve the perceptual quality of low-light images. Further work would need to be 

done to see the full effects of the network, since 28x28 pixels is much smaller than a typical image, but 

this would require an extensive amount of training time. 

A massive amount has been gained from this project, both in terms of theoretical knowledge gained in 

researching the properties and applications of neural networks and how best to apply them, and 

practical experience in terms of programming using TensorFlow and analysing output data. The 

experience gained will genuinely help me through the rest of my career, and I would very much like to 

continue the project beyond the final submission date. 
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