Practical Aspects of Microwave Filter Design and Realization IMS'05 Workshop-WMB

Microstrip Filter Design

Jia-Sheng Hong

Heriot-Watt University Edinburgh, UK

J.Hong@hw.ac.uk

Design considerations

Design examples

Summary

Introduction - Driving forces

Recent development of microstrip filters has been driven by applications -

- Wireless communications
- Wireless sensor/radar systems
 - Driven by technologies -
 - High temperature superconducting
 - Micromachining

 - **Ferroelectric**

Introduction- Microstrip Filter Publications

Total 600+ in recent 10 years

Year

Design Considerations- Topologies

Design Considerations- Topologies

The choice of a topology depends on

- Characteristics of filters, such as chebyshev or elliptic
 Bandwidth
- ✓ Size
- ✓ Power handling

Design Considerations- Substrates

The choice of a substrate depends on

✓ Size

- ✓ Higher-order modes
- ✓ Surface wave effects
- ✓ Implementations couplings, line/spacing tolerances, ...

✓ Dielectric loss

- ✓ Temperature stability
- ✓ Power handling dielectric strength (breakdown), thermal conductivity

Design Considerations- Higher-order modes

✓ Keep operating frequencies below the cutoff frequency of the 1st higher-order mode, $f_c = \frac{c}{\sqrt{\varepsilon_x}(2W + 0.8h)}$

Design Considerations- Surface waves

 Keep operating frequencies below the threat frequency of the lowest surface wave mode,

$$f_s = \frac{c \tan^{-1} \varepsilon_r}{\sqrt{2\pi h} \sqrt{\varepsilon_r - 1}}$$

at which the surface mode couples strongly to the dominant mode of microstrip because the phase velocities of the two modes are close.

Design Considerations- Losses

There are three major losses in a microstrip resonator:

Conductor loss

$$Q_c \propto \pi \left(\frac{h}{\lambda}\right) \cdot \left(\frac{377\Omega}{R_s}\right)$$

Dielectric loss

$$Q_d \propto \frac{1}{\tan \delta}$$

Radiation loss

$$\frac{1}{Q_u} = \frac{1}{Q_c} + \frac{1}{Q_d} + \frac{1}{Q_r}$$

Design Considerations- Power handling

Peak power handling capability –

when the breakdown occurs in substrate

$$P_p \propto \frac{V_o^2}{2Z_c}$$

 V_o is the maximum breakdown voltage of the substrate

 $Z_{\rm c}$ is the characteristic impedance of the microstrip

Narrower band filters result in higher electric field density, leading to a lower peak power handling

Design Considerations- Temperature effect

Temperature characteristic of a microstrip half-wavelength resonator on RT/Duroid substrate with $\varepsilon_r = 10.2$, h = 1.27 mm

Copper CTE (coefficient of thermal expansion) = 17 ppm/°C **Substrate CTE** = 24 ppm/°C

Substrate TCK (thermal coefficient of ε_r) = -425 ppm/°C

At 23 °C	f0 = 1929.8 MHz	$\Delta f = 0$
At 73 °C for copper CTE only	f0 = 1928.1 MHz	$\Delta f = -1.7 \text{ MHz}$
At 73 °C for substrate thickness CTE only	f0 = 1929.9 MHz	$\Delta f = 0.1$ MHz
At 73 °C for substrate TCK only	f0 = 1949.4 MHz	$\Delta f = 19.6 \text{ MHz}$
At 73 °C (consider all)	f0 = 1947.8 MHz	$\Delta f = 18.0 \text{ MHz}$

Frequency variation versus temperature is mainly due to dielectric constant change vs temperature

From: Jia-Sheng Hong and M.J.Lancaster, Microstrip Filters for RF/Microwave Applications,

John Wiley & Sons. Inc. New York, 2001

>Specifications:

Center frequency	985MHz
Fractional Bandwidth	10.359%
40dB-Rejection Bandwidth	125.5MHz
Passband Return loss	-20dB

Design parameters for an 8-pole filter:

$$\begin{split} M_{1,2} &= M_{7,8} = 0.08441 & M_{2,3} = M_{6,7} = 0.06063 \\ M_{3,4} &= M_{5,6} = 0.05375 & M_{4,5} = 0.0723 \\ M_{3,6} &= -0.01752 & Q_{ei} = Q_{eo} = 9.92027 \end{split}$$

Realisation 2

On RT/Duroid substrate with a relative dielectric constant of 10.8 and a thickness of 1.27mm

Design Examples- Trisection open-loop filters

- Midband or centre frequency : 905MHz
- : 40MHz Bandwidth of pass band
- Return loss in the pass band : < -20dB

Rejection : > 20dB for frequencies \geq 950MHz

On RT/Duroid substrate with a relative dielectric constant of 10.8 and a thickness of 1.27mm

 $f_{01} = f_{03} = 899.471 \,\mathrm{MHz}$ $f_{02} = 914.713 \,\mathrm{MHz}$ $Q_{ei} = Q_{eo} = 15.7203$ $M_{12} = M_{23} = 0.04753$ $M_{13} = -0.02907$

Measured response

Design Examples- Trisection open-loop filters

Midband or centre frequency: 910MHzBandwidth of pass band: 40MHzReturn loss in the pass band: < -20dBRejection: > 35dB for frequencies $\leq 843MHz$

 $f_{01} = f_{03} = 916.159 \text{ MHz}$ $f_{02} = 905.734 \text{ MHz}$ $Q_{ei} = Q_{eo} = 14.6698$ $M_{12} = M_{23} = 0.05641$ $M_{13} = 0.01915$

On RT/Duroid substrate with a relative dielectric constant of 10.8 and a thickness of 1.27mm

Measured response

Design Examples- Trisection open-loop filters

Experimental results on extra transmission zeros, where case 1 to 4 indicate the increase of direct coupling between the two feed lines.

Design Examples- Multi-layer filters

HERIOT WATT Department of Electrical, Electronic and Computer Engineering Heriot-Watt University, UK J.Hong@hw.ac.uk

Design Examples- Multi-layer filters

Design Examples- Multi-layer filters

Experimental results

Design Examples- Slow-wave filters

Design Examples- Slow-wave filters

Centre Frequency : 1335 MHz 3dB Bandwidth : 30 MHz passband Loss : 3dB Max. Min. stopband rejection :

D.C. to 1253 MHz 60dB 1457 to 2650 MHz 60dB 2650 to 3100 MHz 30dB 60dB Bandwidth : 200 MHz Max.

On RT/Duroid 6010 substrate

Design Examples- Slow-wave filters

Type I dual-mode resonator

On RT/Duroid 6010 substrate

Centred at 820 MHz

Electric Field Pattern

Circuit model (No coupling between the two modes)

Frequency response

(a = 15 mm and b = 11.25 mm on a1.27mm thick dielectric substrate with a relative dielectric constant of 10.8)

Frequency (GHz)

a = 15 mm and b = 14 mmon a 1.27mm thick dielectric substrate with a relative dielectric constant of 10.8

Frequency response

On a substrate with a relative constant of 10.8 and a thickness of 1.27 mm

HERIOT WATT UNIVERSITY Department of Electrical, Electronic and Computer Engineering Heriot-Watt University, UK J.Hong@hw.ac.uk

Design Examples- Extract-pole filters

HERIOT WATT UNIVERSITY Department of Electrical, Electronic and Computer Engineering Heriot-Watt University, UK J.Hong@hw.ac.uk

Design Examples- Extract-pole filters

On RT/Duroid 6010 substrate

EM simulated performance

Design Examples- Extract-pole filters

Design Examples- CQ filters

Another 18-pole filter of this type with group delay equalisation will be presented in TH1F session at IMS2005

Design Examples- CQT filters

Design Examples- Wideband filters

Optimum stub bandpass or pseudo highpass

From: Jia-Sheng Hong and M.J.Lancaster, Microstrip Filters for RF/Microwave Applications,

John Wiley & Sons. Inc. New York, 2001

Summary

- Microstrip filter designs involve a number of considerations, including careful choice of topologies and substrates.
- Some design examples of new topologies with advanced filtering characteristics have been described, including –
 - Open-loop resonator filters
 - Multilayer filters
 - Slow-wave filters
 - Dual-mode filters
 - Extract pole, Trisection, CQ and CQT filters
 - Optimum wideband stub filters
- Driven by applications and emerging device technologies, many new and advanced microstrip filters have been developed and their designs are available in open literatures.

