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Abstract - In this paper a new procedure for the
computation of seabed altitude information from side-scan
sonar data is presented. Although side-scan sensors do not
provide direct measures of seabed elevation, their images are
directly related to seabed topography. Using a mathematical
model for the sonar ensonification process, approximations to
the seabed characteristics can be inferred from the sonar
image. The problem is however severely under-constrained,
in the sense that not all the parameters involved in the image
formation process can be directly determined from the
side-scan image. To overcome this difficulty, we propose the
utilization of a multi-resolution expectation-maximization
framework to select the most probable parameters from the
solution space. At every iteration the estimated solution is
used to smulate a side-scan image of the observed scene,
which is then be compared to the side-scan image actually
observed; solution parameters are then refined using
gradient-descent optimization. The process is repeated until
convergenceis achieved.

I. INTRODUCTION

Side-scan sonar is one of the most widely used imgag
systems in the underwater environment. It is rneddficheap and
easy to deploy, in comparison with more powerfuisses like
multi-beam systems or synthetic aperture sonar.ik&nithem
however it is unable to directly gather seaflogpttiénformation.
The possibility of overcoming this limitation isetfefore of great
interest for the marine community.

In this paper we describe a multi-resolution exgioh-
maximization procedure for the estimation of batkyny from
side-scan sonar images. Initially the sonar enmatibn process
is approximated by a Lambertian diffuse scattermagel, which
represents the observed image intensities as didanof the
parameters describing the seafloor surface. An @apen-
maximization routine [1] iteratively optimizes thestimated
parameters until convergence is achieved. Thezatitin of a
multi-resolution approach permits to recover feaduof a larger
scale and improve global convergence.

II. BACKGROUND

for underwater vehicles [2, 4-6]. Other works foaus seabed
texture classification or object recognition [7-9h all these
situations precise descriptions of the seabed tapby are not
critical.

In general, the fundamental idea behind most reéogrtsn
methods is to determine a model for the ensonifinaprocess
that is simple enough for the image formation peablto be
inverted, obtaining an approximation to the surfagadients,
which can be globally described as shape-from-sigadiethods
[3]. Our goal is to extend these methods using aissital
approach to determine the most probable configamatf the
seabed topography compatible with the side-scagenaatually
observed. To this end we use an expectation-maatioiz
framework [10] in order to iteratively refine thetf parameters
defining our model.

I1l. IMAGE FORMATION
A. Side-scan Sonar

The side-scan image formation process is briéégtched in
Fig.1. The sensor's acoustic source at produces an
ensonification pulse that illuminates the seafld®ome of the
acoustic energy reaching any seabed pgintis scattered back
and can be measured by the sensor. The intensityhef
corresponding pixel of the side-scan image will etep on the
amount of energy scattered back from the surfadat.p®he
pulse is not isotropic, but follows a particulaabeprofile® that
depends on the grazing anglesubtended byp . The amount of
energy scattered back also depends on the sedtedivay R at
the point.
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Fig.1: Side-scan image formation.

There has been limited research in the area of 3% Scattering Model

reconstruction from side-scan sonar images [2-#e Tnain
reasons being the complexity of the full mathensdticnage
formation model and the level of pre-processingiimegl. And in
most cases where acquisition of seabed topographmygortant,
attention is driven to more straightforward solososuch as
multi-beam bathymetric systems.

Most existing work on seabed reconstruction frodesican
has been mainly qualitative and oriented to obstagbidance

In order to model the scattering process we usé&alditional
Lambertian model [2], which permits to derive theturned
intensity from the parameters defining the obserseehe. This
simple model for diffuse scattering assumes that risturned
intensity depends only on the angle of incidence tloé
illuminating sound pulse, and not on the angle lieovation or
on the frequency of the pulse. Under this assumgtithe



intensity | returned from a seabed poirfy can be represented given a source side-scan imadgé&he objective is to minimize the

by the following expression:

1(P) = ®(P) R(p) cosé(p)) 1)

Where @ represents the intensity of the illuminating sound

wave at point p, R is the reflectivity of the seafloor, and is

the incidence angle of the wave front. Since masjgéd
side-scan images already include a Time-VaryingnGavG)

correction for compensation of the intensity dewath distance
and grazing angle, no dependence on radial decaybkan
included in the model (this would otherwise appesia term on
r(p) 2 r being the distance to the sensor). Thereforerderao

simplify the model, all the intensity variationsusad by the
sensor’'s beam-profile, the radial decay and theections are
supposed to be grouped under the beam-patiern

Fig.2: Coordinate system centered on the sensor, at

The dependence on the seafloor’s elevation is aitpti the

incidence angled(p) , which depends on the grazing angle from

the acoustic source and the orientation of theaserfnormal
N(p) - This dependence can be made explicit by firsaaging
the cosine in expression (1) as follows:

F(P) IN(P)

cos@(p)) = Wqﬂ(f’)‘

)

And then by representingl and F on a coordinate system
relative to the sensor (Fig.2). Expressingp as

absolute value of the difference between the oleskeintensityl
and the one resulting from the application of thedei1, which
we represent by the error quantiy

E=Y ExY) =Y (v y)-Texy)f @
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Fig.3: Outline of the Expectation-Maximization peaitire.

In the expectation stage, the current estimateshimodel
parameters are used to compute an estimation ofnteasity
[ (P). This is achieved by substituting the parametB(3),
®(p) and §(p) from the previous iteration in the forward
model presented in expression (1). Values g{p) are directly
derived from the elevation map

In the maximization stage a straightforward gratidscent
approach [11] is used to minimiZ&, by updating the model
parameters as follows:

R(X.Y) « R(x,y)~/ BZ*E(X’ )
B(x, ) < P(X, )~ D%(x, ) 5)

Z(x.y) « Z(xy)-A %(X' )

Where A is a small constant value used to control the chte

(x, Y, Z(x, y)) —with x being the across distance from the change. The expressions are iterated until theatiami in the

sensor ang pointing along its direction of movement—gives:

T(P) =(x0.2(xy))

N(p) :[—‘(’;(x, y),—‘;—i(x, y)l] 3)

Where the gradient9Z/dx and 9Z/dy can be approximated
by finite differences, yielding an expression ttapends directly
onZ.

IV. PARAMETER ESTIMATION
A. Expectation-Maximization

Combination of expressions (1), (2) and (3) givésranula
for the computation of the intensityat any point p, given the
model parametersR, Z and ® . The inverse problem is
under-determined, since we only have one observdtbl) at
each point to compute the values of the three mpalelmeters.

errorE is below a given threshold.
B. Initialization and Regularization

The optimization procedure starts by initializatiof theR, Z
and ® maps. Reflectivity and beam-pattern maps are set t
uniform values of 0.9, while the elevation of evegint §, y) is
set to that of the first return at (®—which is equivalent to the
traditional assumption of a flat seabed.

Regularization is performed at the end of everyatien by
filtering the reflectivity and beam-pattern mapseflBctivity
values for the points in shadowed areas are sé#tatoof their
nearest illuminated neighbors by hexadecagonalialild12] of
non-shadowed areas. Whereas values®offor all the points
subtending the same angle to the sensor are gkeitomedian
value, since the beam profile of the sensor is ssgp to be
constant.

Values ofR and ® are normalized to 1. However, because
® includes the unknown applied TVG, we allow it tchieve
values greater than 1. In practice this amount§uso a little
overshoot for the bigger angles, which naturallyrespond to

In order to solve this problem we propose to use afPoints of the seabed farther away from the sensdrtherefore

expectation-maximization procedure (Fig.3), whichill w
iteratively converge to an optimal set of modelipgrameters

require higher TVG corrections.



Fig.4: Front-view of the reconstruction of a rocing
single-stage (top) and 3-level multi-resolutiont{bo)
implementations of the proposed reconstruction otetfihe
single stage is not capable of recovering shapeariesof a
bigger scale.

C. Multi-Resolution

A multi-resolution implementation of the methodsdebed
at paragraphs A and B above results in better cgenee and
improved results. The main reason being the limoitatimposed
by the point-wise nature of the expectation-maxation
procedure, which operates on a per-pixel level. fBgelarization
stage is able to restore some of the interdeperdeithe pixel
neighborhoods, but bigger seabed features, suclsl@sly
varying slopes, cannot be fully recovered. Effedfs this
limitation are shown in the top part of Fig.4, wiéne full shape
of the rock hasn’t been completely recovered onsthgle-stage
implementation of the proposed method.

Fig.5: Ground-range images (left column) and syithreodels
(right column) after convergence, for three différgource
side-scan images of the same survey mission.

Results improve notably when using a multi-resotut
version of the same algorithm, which is able toower the
seafloor scenes in a more natural way, as welledscing the
overall error at convergence. The bottom part gi4shows the
results of this approach, where the shape of tlok ® better
estimated, once that more of the spatial frequernicieolved are
taken into account.

Implementation of the multi-resolution version staloy the
construction of a multi-resolution pyramid by iterd
sub-sampling of the source side-scan image. Priocestarts at
the smallest level, using the initialization progesl described in
the previous section. The resultiRyZ and ® maps from one
level are used as initial maps for the next resmiutevel. The
process finishes when the final stage—corresponttinitpe full
resolution image—is processed.

V. RESULTS

For testing the consistence of the proposed mettiode
different images from the same survey, using threesaensor,
have been processed. Ground-range corrected sideismges
are shown in the left column of Fig.5. The correxfing
synthetic models after convergence of the 3-lewdtimesolution
implementation are shown in the right column. Theugd-range
images and the synthetic models are extremely aimshowing
the feasibility of the reconstruction approach msgd in this
paper.

The full set of outputs of the reconstruction @ for the
image in the bottom row of Fig.5 is shown in Figlée effect of
the beam-profile permeates the reflectivity andaien maps in
the region right under the sensor path, where thmbertian
model cannot properly approximate the non-diffusiections.
Results are nonetheless consistent with the obddeatures on
the source image. The sand ripples and the steuctuthe rock
are clearly visible in the perspective view of 82 surface.

The beam-profiles recovered from the three soinweges
are compared in Fig.7. Apart from the inaccurac@sesponding
to the region right below the sensor, the shaph@fmain lobes
is consistent across the three profiles, suggegtiag in effect,
the same sensor and TVG settings have been usedhdor
acquisition of the three source images.

Fig.6: Top to bottom, left to right: beam-pattereflectivity and
elevation maps; and a perspective view of a 3Daserf
constructed from the highlighted region in the atéan map.



Fig.7:Beam-profiles recovered from the three soin@ges.

Fig.8 shows the evolution of the overall er®rwith the
number of iterations for the source image corredpanto the
bottom row of Fig.5. The 3 and 5-level multi-reg@ua versions
perform better than the single-stage, due to btitgalization.

Finally, a textured version of the 3D render shaw#ig.6 is

presented in Fig.9, where the ground-range imagebkan used

as texture.

100000

0000

E0000

0000

Fig.8: Evolution of the overall error with the nuertof iterations
for: single-stage (short dash), 3-level multi-resioin (long dash)
and 5-level multi-resolution (continuous line).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new method Her t

estimation of seabed elevation. The method useambkrtian

model for the sonar scattering process, which és tiised by an

expectation-maximization procedure to optimallyedetine the

seabed features ultimately responsible for the robsgeside-scan
image. An example has been presented, which higklitne type

of results that can be expected from the propossitiod.

For proper rectification of the full seabed elegatiand
reflectivity maps, however, further work is requireCalibration
against ground-truthed scenes needs to be donerder do
determine the real accuracy of the method.
transformation from the sensor coordinate frameo ird
geographical reference system—using the vehicl@gigation
data—is required to obtain geo-referenced maps atibip with
standard GIS packages.

Applications of the proposed method are numerousi a

include accurate mosaic construction, detail imprognt on
existing bathymetry maps, generation of three-dsi@ral
models of underwater structures, etc.
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Fig.9: Render of the 3D surface shown in Fig.engishe
corresponding region of the ground-range imagbesexture.
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