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Abstract - In this paper a new procedure for the 

computation of seabed altitude information from side-scan 
sonar data is presented. Although side-scan sensors do not 
provide direct measures of seabed elevation, their images are 
directly related to seabed topography. Using a mathematical 
model for the sonar ensonification process, approximations to 
the seabed characteristics can be inferred from the sonar 
image. The problem is however severely under-constrained, 
in the sense that not all the parameters involved in the image 
formation process can be directly determined from the 
side-scan image. To overcome this difficulty, we propose the 
utilization of a multi-resolution expectation-maximization 
framework to select the most probable parameters from the 
solution space. At every iteration the estimated solution is 
used to simulate a side-scan image of the observed scene, 
which is then be compared to the side-scan image actually 
observed; solution parameters are then refined using 
gradient-descent optimization. The process is repeated until 
convergence is achieved. 
 

I. INTRODUCTION 
 

Side-scan sonar is one of the most widely used imaging 
systems in the underwater environment. It is relatively cheap and 
easy to deploy, in comparison with more powerful sensors like 
multi-beam systems or synthetic aperture sonar. Unlike them 
however it is unable to directly gather seafloor depth information. 
The possibility of overcoming this limitation is therefore of great 
interest for the marine community. 

In this paper we describe a multi-resolution expectation- 
maximization procedure for the estimation of bathymetry from 
side-scan sonar images. Initially the sonar ensonification process 
is approximated by a Lambertian diffuse scattering model, which 
represents the observed image intensities as a function of the 
parameters describing the seafloor surface. An expectation- 
maximization routine [1] iteratively optimizes the estimated 
parameters until convergence is achieved. The utilization of a 
multi-resolution approach permits to recover features of a larger 
scale and improve global convergence. 
 

II. BACKGROUND 
 

There has been limited research in the area of 3D 
reconstruction from side-scan sonar images [2-7]. The main 
reasons being the complexity of the full mathematical image 
formation model and the level of pre-processing required. And in 
most cases where acquisition of seabed topography is important, 
attention is driven to more straightforward solutions such as 
multi-beam bathymetric systems. 

Most existing work on seabed reconstruction from side-scan 
has been mainly qualitative and oriented to obstacle-avoidance 

for underwater vehicles [2, 4-6]. Other works focus on seabed 
texture classification or object recognition [7-9]. In all these 
situations precise descriptions of the seabed topography are not 
critical. 

In general, the fundamental idea behind most reconstruction 
methods is to determine a model for the ensonification process 
that is simple enough for the image formation problem to be 
inverted, obtaining an approximation to the surface gradients, 
which can be globally described as shape-from-shading methods 
[3]. Our goal is to extend these methods using a statistical 
approach to determine the most probable configuration of the 
seabed topography compatible with the side-scan image actually 
observed. To this end we use an expectation-maximization 
framework [10] in order to iteratively refine the set of parameters 
defining our model. 
 

III. IMAGE FORMATION 
 
A. Side-scan Sonar 
 
 The side-scan image formation process is briefly sketched in 
Fig.1. The sensor’s acoustic source at o produces an 
ensonification pulse that illuminates the seafloor. Some of the 
acoustic energy reaching any seabed point p

r
 is scattered back 

and can be measured by the sensor. The intensity of the 
corresponding pixel of the side-scan image will depend on the 
amount of energy scattered back from the surface point. The 
pulse is not isotropic, but follows a particular beam-profile Φ that 
depends on the grazing angle α subtended by p

r
. The amount of 

energy scattered back also depends on the seabed reflectivity R at 
the point. 

Fig.1: Side-scan image formation. 
 
B. Scattering Model 
 

In order to model the scattering process we use the traditional 
Lambertian model [2], which permits to derive the returned 
intensity from the parameters defining the observed scene. This 
simple model for diffuse scattering assumes that the returned 
intensity depends only on the angle of incidence of the 
illuminating sound pulse, and not on the angle of observation or 
on the frequency of the pulse. Under this assumptions the 



 

 

intensity I returned from a seabed point p
r

 can be represented 
by the following expression: 
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Where Φ represents the intensity of the illuminating sound 

wave at point p
r

, R is the reflectivity of the seafloor, and θ is 
the incidence angle of the wave front. Since most logged 
side-scan images already include a Time-Varying Gain (TVG) 
correction for compensation of the intensity decay with distance 
and grazing angle, no dependence on radial decay has been 
included in the model (this would otherwise appear as a term on 

2)( −pr
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, r being the distance to the sensor). Therefore, in order to 
simplify the model, all the intensity variations caused by the 
sensor’s beam-profile, the radial decay and the corrections are 
supposed to be grouped under the beam-pattern Φ. 

 

Fig.2: Coordinate system centered on the sensor, at o. 
 
The dependence on the seafloor’s elevation is implicit in the 

incidence angle )( p
rθ , which depends on the grazing angle from 

the acoustic source and the orientation of the surface normal 
)(pN

rr
. This dependence can be made explicit by first expanding 

the cosine in expression (1) as follows: 
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And then by representing N

r
 and r

r
 on a coordinate system 

relative to the sensor (Fig.2). Expressing p
r

 as 
( )),(,, yxZyx —with x being the across distance from the 
sensor and y pointing along its direction of movement—gives: 
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Where the gradients xZ ∂∂  and yZ ∂∂  can be approximated 
by finite differences, yielding an expression that depends directly 
on Z. 
 

IV. PARAMETER ESTIMATION 
 
A. Expectation-Maximization 
 

Combination of expressions (1), (2) and (3) gives a formula 
for the computation of the intensity I at any point p

r
, given the 

model parameters R, Z and Φ . The inverse problem is 
under-determined, since we only have one observation (of I) at 
each point to compute the values of the three model parameters. 

In order to solve this problem we propose to use an 
expectation-maximization procedure (Fig.3), which will 
iteratively converge to an optimal set of modeling parameters 

given a source side-scan image I. The objective is to minimize the 
absolute value of the difference between the observed intensity I 
and the one resulting from the application of the model Î, which 
we represent by the error quantity E: 
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Fig.3: Outline of the Expectation-Maximization procedure. 
 

In the expectation stage, the current estimates for the model 
parameters are used to compute an estimation of the intensity 

)(ˆ pI
r

. This is achieved by substituting the parameters )( pR
r

, 
)( p

rΦ  and )( p
rθ  from the previous iteration in the forward 

model presented in expression (1). Values for )( p
rθ  are directly 

derived from the elevation map Z. 
In the maximization stage a straightforward gradient descent 

approach [11] is used to minimize E, by updating the model 
parameters as follows: 
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Where λ  is a small constant value used to control the rate of 
change. The expressions are iterated until the variation in the 
error E is below a given threshold. 
 
B. Initialization and Regularization 
 
 The optimization procedure starts by initialization of the R, Z 
and Φ maps. Reflectivity and beam-pattern maps are set to 
uniform values of 0.9, while the elevation of every point (x, y) is 
set to that of the first return at (0, y)—which is equivalent to the 
traditional assumption of a flat seabed. 

Regularization is performed at the end of every iteration by 
filtering the reflectivity and beam-pattern maps. Reflectivity 
values for the points in shadowed areas are set to that of their 
nearest illuminated neighbors by hexadecagonal dilation [12] of 
non-shadowed areas. Whereas values of Φ for all the points 
subtending the same angle to the sensor are set to their median 
value, since the beam profile of the sensor is supposed to be 
constant. 

Values of R and Φ are normalized to 1. However, because Φ includes the unknown applied TVG, we allow it to achieve 
values greater than 1. In practice this amounts to just a little 
overshoot for the bigger angles, which naturally correspond to 
points of the seabed farther away from the sensor and therefore 
require higher TVG corrections. 
 



 

 

Fig.4: Front-view of the reconstruction of a rock using 
single-stage (top) and 3-level multi-resolution (bottom) 

implementations of the proposed reconstruction method. The 
single stage is not capable of recovering shape features of a 

bigger scale. 
 
C. Multi-Resolution 
 
 A multi-resolution implementation of the method described 
at paragraphs A and B above results in better convergence and 
improved results. The main reason being the limitation imposed 
by the point-wise nature of the expectation-maximization 
procedure, which operates on a per-pixel level. The regularization 
stage is able to restore some of the interdependence of the pixel 
neighborhoods, but bigger seabed features, such as slowly 
varying slopes, cannot be fully recovered. Effects of this 
limitation are shown in the top part of Fig.4, where the full shape 
of the rock hasn’t been completely recovered on the single-stage 
implementation of the proposed method. 
 

 
Fig.5: Ground-range images (left column) and synthetic models 

(right column) after convergence, for three different source 
side-scan images of the same survey mission. 

 Results improve notably when using a multi-resolution 
version of the same algorithm, which is able to recover the 
seafloor scenes in a more natural way, as well as reducing the 
overall error at convergence. The bottom part of Fig.4 shows the 
results of this approach, where the shape of the rock is better 
estimated, once that more of the spatial frequencies involved are 
taken into account. 

Implementation of the multi-resolution version starts by the 
construction of a multi-resolution pyramid by iterated 
sub-sampling of the source side-scan image. Processing starts at 
the smallest level, using the initialization procedure described in 
the previous section. The resulting R, Z and Φ maps from one 
level are used as initial maps for the next resolution level. The 
process finishes when the final stage—corresponding to the full 
resolution image—is processed. 
 

V. RESULTS 
 
 For testing the consistence of the proposed method, three 
different images from the same survey, using the same sensor, 
have been processed. Ground-range corrected side-scan images 
are shown in the left column of Fig.5. The corresponding 
synthetic models after convergence of the 3-level multi-resolution 
implementation are shown in the right column. The ground-range 
images and the synthetic models are extremely similar, showing 
the feasibility of the reconstruction approach proposed in this 
paper. 
 The full set of outputs of the reconstruction process for the 
image in the bottom row of Fig.5 is shown in Fig.6. The effect of 
the beam-profile permeates the reflectivity and elevation maps in 
the region right under the sensor path, where the Lambertian 
model cannot properly approximate the non-diffuse reflections. 
Results are nonetheless consistent with the observed features on 
the source image. The sand ripples and the structure of the rock 
are clearly visible in the perspective view of the 3D surface. 
 The beam-profiles recovered from the three source images 
are compared in Fig.7. Apart from the inaccuracies corresponding 
to the region right below the sensor, the shape of the main lobes 
is consistent across the three profiles, suggesting that, in effect, 
the same sensor and TVG settings have been used for the 
acquisition of the three source images. 
 

Fig.6: Top to bottom, left to right: beam-pattern, reflectivity and 
elevation maps; and a perspective view of a 3D surface 

constructed from the highlighted region in the elevation map. 
 



 

 

Fig.7:Beam-profiles recovered from the three source images. 
 
 Fig.8 shows the evolution of the overall error E with the 
number of iterations for the source image corresponding to the 
bottom row of Fig.5. The 3 and 5-level multi-resolution versions 
perform better than the single-stage, due to better initialization. 
 Finally, a textured version of the 3D render shown in Fig.6 is 
presented in Fig.9, where the ground-range image has been used 
as texture. 
 

Fig.8: Evolution of the overall error with the number of iterations 
for: single-stage (short dash), 3-level multi-resolution (long dash) 

and 5-level multi-resolution (continuous line). 
 

VI. CONCLUSIONS AND FUTURE WORK 
 
 In this paper we have presented a new method for the 
estimation of seabed elevation. The method uses a Lambertian 
model for the sonar scattering process, which is then used by an 
expectation-maximization procedure to optimally determine the 
seabed features ultimately responsible for the observed side-scan 
image. An example has been presented, which highlights the type 
of results that can be expected from the proposed method. 

For proper rectification of the full seabed elevation and 
reflectivity maps, however, further work is required. Calibration 
against ground-truthed scenes needs to be done in order to 
determine the real accuracy of the method. Finally, 
transformation from the sensor coordinate frame into a 
geographical reference system—using the vehicle’s navigation 
data—is required to obtain geo-referenced maps compatible with 
standard GIS packages. 

Applications of the proposed method are numerous, and 
include accurate mosaic construction, detail improvement on 
existing bathymetry maps, generation of three-dimensional 
models of underwater structures, etc. 
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Fig.9: Render of the 3D surface shown in Fig.6, using the 
corresponding region of the ground-range image as the texture. 
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