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Abstract—This paper presents a unified framework for the
creation of classified maps of the seafloor from sonar imagery.
Significant challenges in photometric correction, classification,
navigation and registration, and image fusion are addressed.
The techniques described are directly applicable to a range of
remote sensing problems. Recent advances in side-scan data
correction are incorporated to compensate for the sonar beam
pattern and motion of the acquisition platform. The corrected
images are segmented using pixel-based textural features and
standard classifiers. In parallel, the navigation of the sonar device
is processed using Kalman filtering techniques. A simultaneous
localization and mapping framework is adopted to improve the
navigation accuracy and produce georeferenced mosaics of the
segmented side-scan data. These are fused within a Markovian
framework and two fusion models are presented. The first uses a
voting scheme regularized by an isotropic Markov random field
and is applicable when the reliability of each information source
is unknown. The Markov model is also used to inpaint regions
where no final classification decision can be reached using pixel
level fusion. The second model formally introduces the reliability
of each information source into a probabilistic model. Evaluation
of the two models using both synthetic images and real data from
a large scale survey shows significant quantitative and qualitative
improvement using the fusion approach.

Index Terms—Classification, fusion, Markov random fields, mo-
saicing, registration, side-scan sonar (SSS), simultaneous localiza-
tion and mapping (SLAM).

I. INTRODUCTION

RECENT advances in the fields of underwater technologies
and robotics have led to the development of Autonomous

Underwater Vehicles (AUVs) and stable platforms [1]–[3],
fitted with high resolution sonars, and capable of swimming
close to the seabed have opened up the oceans to rapid and
high resolution mapping, generating large volumes of data.
These data have many practical scientific uses including reef
management [4], oyster management [5], trawling impact as-
sessment [6] and mine-counter measures [7]. This paper tackles
the difficult problem of generating large scale accurate maps of
the seabed from sonar imagery obtained using these platforms.

A large body of work on image based classification of sonar
data exists, but the methods used have been based on single
sonar images. The generation of large scale maps raises the
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problem of image registration, the difficult related problem of
autonomous navigation in an environment deprived of global
positioning systems (GPS) and the generation of fused maps
from multiple overlapping classified images which may contain
contradictory information.

A. Sensors

In water, acoustics provides the main sensing modality. Elec-
tromagnetic waves attenuate rapidly and their operating range
is limited to well below 5 m in normal operating conditions.
Sound navigation and ranging (sonar) offers a good alternative
providing the user with accurate resolution and long ranges
of hundreds of meters. For imaging, side-scan sonar (SSS)
and the emerging synthetic aperture sonar (SAS) provide very
high resolution images of up to centimetric accuracy at up to
300 m. These systems use the principle of a long antenna to
generate a narrow acoustic beam [8]–[10] which illuminates
a narrow stripe of the seabed at any one time. As the system
moves through the water, towed by a survey vessel or mounted
on an AUV, it generates a wide-area image of the sea bed
(obtained as a concatenation of successive stripes) as shown
in Fig. 2. The main parameters affecting the resolution of the
generated images are the length of the antenna and frequency
of the acoustic wave used (these determine the across track
resolution) and the speed of the platform (AUV or towed body)
which determines the along track resolution.

B. Image Formation Process and Pre-Processing

The interpretation of side-scan imagery is a skilled procedure
[8], [9]. There are many parameters of the image formation
process contributing to intensity variations in recorded data
which are quite separate from the influences of variations in
seabed properties and textures. These are generally well un-
derstood and good models exist which can aid the process of
automated seabed classification [11], [12]. In this paper, the sonar
data are preprocessed to correct for the influences of the sonar
beam pattern and time-varying gain (TVG) [13], [14]. This en-
ables the useof simpler and faster classification algorithmswhich
is particularly beneficial for application to large area surveys.

C. Classification

Given the vast quantities of data produced, fast classifica-
tion algorithms are required to produce seabed class maps
representing textural variations and areas of scientific interest.
Many supervised techniques have been developed to tackle this
problem. Neural networks and parametric statistical classifiers
have dominated the scene [15]–[20] and have been coupled
with feature extraction measures including one-dimensional
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cepstral and spectral features [21]–[23], fractal analysis [24],
spatial point processes [25], gray level run-length measures
[18], [26], and co-occurrence matrices [27], [28]. Fuzzy logic
analysis [29] and autoregressive models [30] have also been
investigated for seabed classification.

These image-based techniques consider each image extracted
from the side-scan data in isolation. In this paper, a variant
of the power spectrum feature set [22] is used with a simple
parametric classifier for rapid supervised classification of the
side-scan data. However, unlike previous techniques, image seg-
mentation is improved by fusing classification results for each
image with the results derived from all of the images covering
the same area of seabed.

D. Registration and Mosaicing

In order to produce large scale classified maps of the seabed,
it is first necessary to register the individual SSS images. Given
the position of the sensor in the world for each side-scan beam,
it is possible to produce a geo-referenced image of the seabed.
This process is called mosaicing [31], [32]. The quality of the
mosaics produced will ultimately depend on the precision of the
position information of each sonar beam, i.e., the vehicle’s nav-
igation precision. Underwater, navigation is a difficult problem
as conventional GPS receivers do not operate. Underwater plat-
forms therefore rely on dead-reckoning sensors which drift over
time. To fix this drift, we use a simultaneous localization and
mapping (SLAM) technique based on the stochastic map devel-
oped for indoor robotics [33], [34] and adapted to sonar imagery
[32], [35]. This is a solution, based on the use of landmarks de-
tected in the sonar imagery to help the navigation, which does
not require additional sensors and does not interfere with the
data acquisition constraints (stable platform, fixed altitude).

E. Fusion

During a typical survey of the seabed, multiple views of the
same area are normally collected from different view points. The
fusion of these views enables the generation of improved large
scale classified mosaics from the individual classified sonar im-
ages. To date, very little work has been done in image fusion
in the underwater domain [36], [37] and it has been limited
to simple multisensor fusion. To the authors’ knowledge, there
have been no publications concerning the fusion of underwater
imagery to produce large scale classified mosaics of the seafloor.

Fusion of multiple sources of information is a well estab-
lished research field. When the information sources produce the
same type of measurements, standard fusion techniques such
as Bayesian theory [38], fuzzy logic [39] and Dempster–Shafer
theory [40]–[42] can be used. However, for classifiers which
consider different types of input measurements or features, it
is often not possible to consider the computed output measure-
ments to be estimates of the same posterior probability [43].
This makes fusion more difficult. When little is known about
the information sources, or when they produce information at
a high level of abstraction, voting schemes can be successfully
used [26], [44] and this is particularly appealing for underwater
imaging systems which currently favor “black box” approaches
to classification.

Fig. 1. Data flow for formation of fully classified fused side-scan mosaics.

Fusion for classification within the image domain allows con-
textual information to be considered and to date has been mainly
applied to remote sensing [38], [39], [45]. The fusion of multiple
images is generally performed at the pixel level [42], [46]–[49]
allowing information from the surrounding area to be consid-
ered when classifying each pixel. An effective method for in-
corporating this spatial information is the use of Markov random
fields (MRFs) [50]–[52].

This paper details a fusion model for registered, classified
SSS images of the seafloor. Fusion is conducted at the pixel level
where each classifier outputs a single class decision for each
pixel. This maintains the generality of the fusion scheme and
allows classified images from different classifiers to be fused
together.

Two separate models are presented. The first uses a voting
scheme to initialize the fused class map and a MRF model to
incorporate contextual information, smooth the final result and
“inpaint” regions of pixels which are unclassified following the
voting process. This ensures all pixels within the image, for
which there are data, are successfully classified within the final
fused result. The standard Markovian prior term is altered so
that pixels labeled as unclassified from the voting scheme do
not contribute to the Markovian probability. This ensures that
only pixels which have been successfully fused and classified
contribute to the fusion process for the other pixels. The second
model considers the case when the reliability of the classifier
is known [53]. This information is stored using confusion ma-
trices and allows the voting scheme from the first model to be
replaced by a probabilistic, Markovian framework.

Fig. 1 illustrates the progression from the raw sensor and
navigation data through to the fully classified fused side-scan
image mosaics resulting from the processing steps outlined in
this paper.

F. Layout

The image formation mosaicing and pre-processing of the
SSS data are discussed in Section II. Supervised classification
using features derived from the sonar swath power spectra is
described in Section III. Section IV describes the SLAM-RTS
technique for improving and smoothing the navigation solu-
tion. Section V details the two models presented for fusion of
the classified SSS images. Results are presented on simulated
and MeasTex sample data to illustrate the differences between
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Fig. 2. Diagram showing the assumed SSS geometry.

Fig. 3. (a) Sample raw image, 1000 scan lines; (b) beam pattern estimate; and
(c) residual TVG estimate.

the two models and quantitatively measure the effectiveness of
these approaches. Section VI contains the results of the Fusion
model on real, classified SSS mosaics. Section VII concludes
the paper.

II. SIDE-SCAN SONAR IMAGE FORMATION

AND DATA PREPROCESSING

A. Image Formation

The following results were obtained by processing data
gathered during the BP’02 experiments carried out by the
SACLANT Undersea Research Centre in La Spezia, Italy. The
system used a Marine Sonics SSS operating at 600 kHz on
board a REMUS AUV [3]. The sensor covered a swath of 60
m in slant range. The survey was conducted in shallow coastal
waters with an average altitude of around 3.45 m.

As noted above, the SSS produces a narrow acoustic beam
along the vehicle track, and a wide beam across track. As the
sensor is moved forward, ideally in a straight line, the beam
generated covers the seabed uniformly. The geometry of the
side-scan image formation process is represented in Fig. 2. A
sonar image is generated by concatenating these beams, or scan
lines, into a 2-D image as seen in Fig. 3(a). It is important to un-
derstand that such images are not in Cartesian coordinates but
in time coordinates. The vertical axis corresponds to the time at
which the beam was emitted from the sonar while the horizontal
axis corresponds to the time of flight of the pulse in the across
track direction. Converting these time-time images to images in
real-world coordinates is called geo-referencing or mosaicing

Fig. 4. Corrected image. The correction algorithm cannot compensate for
changes in sensor attitude, such as roll on trajectory corrections; see arrow
above.

and is critical to our applications. A common feature in all raw
side-scan imagery is the largely black region in the center of
the image. This corresponds to the transit time of the acoustic
wave through the water before reflection from the seabed and
indicates the altitude of the sensor. More details on the image
formation process can be found in [9].

B. Preprocessing

In many emerging applications, low altitude surveys are re-
quired. In such cases, even quite small changes in vehicle alti-
tude can affect the sonar image dramatically. Prior to classifica-
tion the image data used here have been preprocessed using an
advanced radiosity correction algorithm [13]. This is useful be-
cause it treats purely range-dependent artefacts, such as residual
TVG effects separately to angular effects such as the influence
of the sonar beam pattern. Separate correction factors are calcu-
lated for each. Whilst this gives better performance than stan-
dard radiosity correction algorithms in the presence of sensor
altitude changes, platform stability is still assumed with respect
to pitch and roll.

A sample raw image and the estimated beam pattern and
residual TVG profile for these data are shown in Fig. 3. The
complexity of the beam pattern is apparent with four signifi-
cant lobes in the port channel and as many as six in the star-
board channel. The differences in the scales of the y-axes for
the beam profiles and TVG estimates result from their methods
of calculation and application within the radiosity correction al-
gorithm [13].

The corrected image is shown in Fig. 4. In some places, the
beam pattern correction has failed, as indicated by the white
arrow. This arises from the behavior of the vehicle, which rolls
on turns. With each course adjustment, the small degree of roll
affects the symmetry of the beam pattern on the seabed, so that
it is poorly compensated near the water column. At these points,
classification accuracy is affected. However, where there are
overlapping images, the data fusion techniques described below
compensate well for any resulting misclassification.

C. Mosaicing

The sonar mosaic algorithm used in this paper assumes the
geometry shown in Fig. 2. Under this assumption each sonar
channel (port and starboard) insonifies a rectangular area on the
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Fig. 5. Sample side-scan mosaic.

sea floor. The length of the rectangle is determined by the slant
range of the sonar (the maximum range of the sonar) and the
height of the vehicle, assuming a flat seabed. The equation for
this length, referred to as horizontal range is

(1)

where the slant range is obtained from

(2)

with the speed of sound in the water, assumed constant, and
the time of the last return on each beam. The height of the

vehicle is found using

(3)

where is the time to the first return of the sonar beam. The
width of the beam is determined by the spacing between two
successive beams, this guarantees that all the mosaic cells be-
tween beams are filled.

The seabed is represented as a flat two-dimensional grid of
mosaic cells (see Fig. 2). The resolution of the mosaic cells can
be set by the operator. Using simple geometry both channels
can be superimposed if the orientation and position of the sonar
is known. Each mosaic cell will take the value of the intensity
cell on the beam closest to it. In this paper if a mosaic cell takes
more than one value then, in the case of the pre-processed image
mosaics, the data will be averaged or, in the case of the classified
data, the cell will be left as unclassified.

An example output from the mosaicing algorithm is given in
Fig. 5 which shows a mosaic obtained from geo-referencing the
data from Fig. 4.

III. CLASSIFICATION OF SIDE-SCAN DATA

Three seafloor textures have been identified for segmentation
of the side-scan imagery, defining three classes: flat sediments,
sand ripples, and complex regions. In this context, classifica-
tion refers to the process of assigning each image pixel to one
of these texture classes. Segmentation refers to the process of
producing a new image in which each pixel is remapped to a
new gray level determined by the assigned class. Suppression of
the beam pattern effects and some of the residual TVG effects,
as described in Section II-B, improves the images to the point
where a fast supervised classification scheme can be combined
with a relatively simple, small and easily generated feature set.

Fig. 6. Training data. Three small images extracted from the full dataset.
Classes are (a) flat sediment; (b) sand ripples; and (c) complex texture.

Fig. 7. Averaged normalized power spectral densities for the three training
sets. Three features were defined with band limits at 1–4; 4–12; 16–32. The
rippled texture is characterized by two dominant peaks corresponding to large
and small scale ripples which dominate this region.

The features used are derived from Pace and Gao’s frequency
based sediment classification scheme [22]. In the current case
features are calculated directly from the image intensity data
after the suppression of any DC component. The classes corre-
spond to relatively large scale image textures, which confines
much of the discriminatory content to relatively low frequency
bands. Overlapping 64-sample Gaussian windowed FFTs are
used to generate the one-dimensional power spectra and this
allows for identification of changes in texture across the sonar
swath.

If represents a single line of sonar data and rep-
resents the Gaussian window centered at position , the normal-
ized power spectrum can be defined by

(4)

Spatial frequency bands within the normalized power spectra
are identified which give a good separation between the classes.
For these large sonar data sets, emphasis has been on processing
speed for the classification phase and the training set used for
these data comprises three small exemplar images of 200 200
pixels, one for each texture. Running on a standard 3.2-GHz
Pentium IV computer under Windows XP, the processing time
for the entire dataset, is around 90 min. The acquisition time
for these data, covering some 720 000 m , was nearly 3 h. The
training images extracted from the full dataset are shown in
Fig. 6.

The averaged normalized spectra for the three training sam-
ples are presented in Fig. 7. The bimodal nature of the spectrum
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Fig. 8. Classmap generated from the image introduced in Fig. 3. Water
column—black; flat sediment—dark grey; complex—light grey; rippled—
white. Errors are noted where the correction algorithm has failed due to vehicle
attitude changes during course corrections and in the transition regions between
textures.

for the sand ripples class occurs because there are two dominant
scales for the sand ripples. The training image used has been
chosen to be representative of both the large and small scale
ripple textures. It is also possible with this data set and classifi-
cation scheme to separate these two ripple textures and define a
four-class training set.

Note that supervised classification of the side-scan data
is based on “spatial” frequencies within the sonar image. In
common with many textural features, these frequencies will
be affected by many factors including sensor attitude and
altitude, sensor type, operating frequencies, and range settings.
Retraining would be required if any of these were changed
significantly.

Returning to the three-class problem, three features are de-
fined using the averaged normalized spectra derived from the
training data. These give the proportion of the spectrum lying in
sample bands 1–4, 4–12, and 16–32 and each identifies a spec-
tral region in which one of the three classes is dominant; see
Fig. 7

(5)

In classifying a complete sonar image, the three features are
generated from the averaged normalized spectral density formed
from four successive lines of data. The same 64-sample sliding
Gaussian windowed FFT is used and boundary problems be-
tween sonar channels are minimized by closing up the water
column. This is done simply by shifting the scan lines on the
assumption that there will generally be continuity in seabed tex-
tures between sonar channels.

Fig. 8 shows a segmentation result for the image introduced
in Fig. 3. Misclassifications are greatest near the water column

where the correction algorithm has failed. There are some
boundary errors, with pixels classified as complex texture in the
transition region between flat sediment and sand ripples. Mis-
classification further from the water column is due primarily to
incomplete elimination of the influence of the surface return
and crosstalk from other sensors. These effects are particularly
prominent in this data set and add to the difficulty of the
classification task. These misclassifications can frequently be
rectified by the proposed fusion scheme.

IV. SIMULTANEOUS LOCALISATION AND MAPPING (SLAM)

In order to create an accurate mosaic of the classified maps,
good navigation is crucial. Conventional GPS and differential
GPS (DGPS) receivers do not work underwater. Therefore,
when submerged, the side-scan sensor must be localized using
dead-reckoning with depth sensors, Doppler velocity logs
(DVL), inertial navigation systems (INS), and/or compasses
[54]–[56]. To correct drift on the dead-reckoning, the sonar
must either be equipped with a GPS/DGPS system and surface
intermittently to get a new fix, thus perturbing the data acqui-
sition process, or it must be equipped with acoustic receivers
capable of triangulating the position with respect to either
acoustic beacons on the seabed, known as long base line (LBL)
navigation, or to acoustic beacons on a support vessel, known as
short base line (SBL), or ultrashort base line (USBL) [57]. The
costs associated with high performance INS systems and with
setting up acoustic nets or mobilizing a vessel are considerable
and new techniques have been sought to localize positions
underwater. Terrain matching methods will use known maps
of the environment and data from payload sensors to find the
dead-reckoning drift [58], [59]. The purpose of SLAM is to
build a map of the environment and use that same map to
localize [33], [34]. Recently, SLAM techniques have been
developed to work with a SSS [32], [35]. This paper uses this
method in order to geo-reference classified side-scan images.
Previous work has demonstrated the potential of this method
when fusing nonclassified data using Gabor wavelets [60].

The data from the navigation sensors are fused in order to
localize the SSS. The technique used to fuse the navigation
data in this paper is the stochastic map smoothed using a
Rauch–Tung–Striebel (RTS) fixed-interval smoother. It will
be referred to as SLAM-RTS. The stochastic map keeps the
estimates of the position and creates a map of landmarks to
represent the environment. These landmarks are then used to
aid localization of the vehicle. It is a SLAM method that works
iteratively to provide an estimate of the position at the latest
iteration. In order to improve the accuracy of the solution and
to smooth it, post-processing is required. The next two sections
provide a detailed look at the algorithms.

A. Stochastic Map

The stochastic map is an augmented state extended Kalman
filter (EKF) [61], [62]. It adds new states to the state vector
to accommodate new landmarks as they are observed [63]. A
typical stochastic map state vector is of the form

(6)
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where is the transpose of a vector or matrix, holds the state
of the SSS and hold the state of the landmarks in
the map.

The stochastic map also stores and maintains all the covari-
ances and correlations between the states. Furthermore, it has
been proved in [64] that, in the limit as the number of observa-
tions increases, the covariance associated with any single target
location estimate is determined only by the initial covariance in
the vehicle location estimate and, in the limit, all the target es-
timates become fully correlated. These properties make the sto-
chastic map highly desirable. With fully correlated landmarks,
an observation of any of the landmarks will help correct the
whole map. It can also take advantage of the wealth of litera-
ture published on Kalman filters. The update equations of the
stochastic map are the familiar EKF update equations. To prop-
agate the state

(7)

where is the SSS’s estimated state and
is its dynamic model, and its asso-

ciated covariance will be propagated, thus

(8)

where is the Jacobian of the dynamic model with respect to
the SSS state, used to linearise the state of the SSS error

, and is the Jacobian of the dynamic model with respect
to the process noise. The corrected state estimate becomes

(9)

where is the gain of the filter and is the innovation. Its
associated covariance is updated according to

(10)

where is the innovation covariance.
For more details on this implementation of the stochastic

map, the interested reader should refer to [35].

B. SLAM-RTS

The Kalman filter and EKF use all measurements up to the
last iteration to estimate the state at that last iteration. The RTS
smoother uses all measurements before and after each iteration
to estimate the state at each iteration [65]. It is a post-processing
filter that works on the stored outputs of a Kalman filter by
re-processing it. The smoother works by combining a forward
pass Kalman filter with a backward pass filter. It was originally
designed to work with fixed size state vectors. However, the sto-
chastic map adds new states to the state vector as it observes new
landmarks. The SLAM-RTS algorithm adapts the RTS fixed-in-
terval smoother to work with the stochastic map by fixing the
size of the state vector to the size of the stochastic map on the
last iteration. The SLAM-RTS algorithm ensures numerical sta-
bility in matrix operations by adjusting the estimates of the land-
marks’ states and covariances at all iterations before they have
been observed to the values when they are first observed. The

output of the SLAM-RTS has been shown to improve the ac-
curacy of the stochastic map solution [35], as well as providing
trajectories more suitable for creating and superimposing mo-
saics [32], [60].

V. FUSION OF MOSAICED CLASSIFICATION DATA

This section presents two pixel level models for the fusion
of multiple classified SSS mosaics. The first model fuses classi-
fied maps using a simple voting scheme while the second model
integrates class reliability indexes in the fusion scheme. Both
models are formulated within a multisource Markovian frame-
work to take advantage of contextual information and improve
classification accuracy. The Markovian model is presented first
as it is common to both approaches. The details specific to each
of the two fusion models are presented later.

A. Markov Model for Image Fusion

Let us assume first that each of the input class maps is defined
on a lattice where label specifies a specific pixel location.
Two random fields and are defined.
describes the classification field provided by each input map and

describes the final fused classification map.
For input class maps, takes its values
from the finite set of classes . The set

contains recognized seafloor classes, the unclassified label
and the unmeasured label . Label is allocated to ,

when data is received regarding pixel in image
but a classification based on the data provided is not possible.
Label , unmeasured, is used when no data is received regarding
pixel , ensuring it is not possible to provide a classification .

The distinction between classes and is important during
the fusion process. If all the input class maps provide input

, , then there has been no data retrieved by the sensor
regarding pixel . Therefore, pixel should not be classified
by the fusion process. If all the input class maps provide input

, then while none of the input images have provided a
classification for pixel , the sensor has received data regarding
this region of seafloor. In this instance, the Fusion model will re-
turn an output classification for pixel by considering the pixel
classifications within the neighboring region.

The fusion problem consists of estimating the true classified
map from the individual classified maps where

, are classified maps of the same scene. The
field is said to be Markovian with respect to
neighborhood if its distribution can be written
as

(11)

This formalizes that is a local probability and that the
fused class label for pixel is dependant only on the class
labels of the pixels within its neighborhood . For simplicity,
the fusion model described in this paper assumes a second order
isotropic neighborhood. This neighborhood for pixel can
be seen in Fig. 9. Further reading regarding MRF models can
be found in [51], [52], [66], [67].



REED et al.: FUSION OF LARGE SCALE CLASSIFIED SIDE-SCAN SONAR IMAGE MOSAICS 2055

Fig. 9. Markovian prior assumed a second order isotropic neighborhood. The
class of pixel s is therefore only dependant on its 8 nearest neighboring pixels.

The Markovian property field allows Prior Probability
to be written in the form

(12)

Where is a normalizing constant and is an energy
term.

For the Fusion model, the problem of maximizing probability
can be re-cast to the local problem of maximizing en-

ergy

(13)

for pixel . In (13), is the Kronecker Delta symbol and
controls the importance of the Markovian prior. For all cases
in this paper, . As can be seen from (13), neighboring
pixels labeled as unclassified or unmeasured (and therefore do
not contain any useful information to aid the fusion process)
do not contribute to the Markovian prior. The minimization
of is performed using the Iterated Conditional Modes
method [52]. In this method, a raster scan is used to iteratively
visit all the pixels in field . If unmeasured, the pixel
is not considered further and the pixel remains unmeasured.
Otherwise, is allocated to the class which locally maximizes

. This method of segmentation produces a local max-
imum of . The ICM procedure is iterated until there are
no pixel changes within a full image scan. The details of how
the energy term described in (13) is applied within each of the
two Fusion models is provided in the following sections.

B. Voting/MRF Fusion Model

The voting/MRF fusion model assumes that each image
provides a classification result for each pixel label . The fu-
sion field is initialized by using an adaptation of the gen-
eralized majority voting [44]. In this model, a summed binary
function for pixel , and each recognized seafloor classes

, is specified as

(14)

where the sum is over all the inputted class images and as be-
fore, is the Kronecker Delta function. This function is not
specified for the unclassified or unmeasured classes.

The initial fusion Field is then specified as

otherwise

where is the number of images which do not provide an
unclassified or unmeasured classification for pixel .

In this model, the adapted voting function first checks to see
whether all the images provide an unmeasured classification. If
they do, the pixel is classified as unmeasured within the Fusion
Map. For to be allocated a class which is not unmeasured
or unclassified, class must have the largest
summed binary function with a value greater than or equal to

. If this rule is not met, the pixel is labeled as unclas-
sified.

Once the voting rule specified in (15) has been used to ini-
tialize fusion field , the Markov energy term in (13)
is considered. The ICM technique described in Section V-A
is used to locally maximize and complete the Fusion
process.

Using the above fusion approach ensures several points.

• Pixels allocated as unmeasured in all the images are left
so in the fused image as no measurements have been ob-
tained regarding these pixels. They are not allocated a
valid seafloor class.

• Pixels initialized as unclassified in fusion field as a re-
sult of the voting scheme are always allocated a seafloor
class during the ICM process. In effect, the unclassi-
fied regions are eroded away by the Markovian prior (in-
painting). The Markov model allows these regions to be
classified by considering the surrounding classified re-
gions.

• The ICM process produces a smoothed version of the
initialization produced by the Voting process.

C. Probabilistic Fusion Model

The voting scheme used to initialize the fusion class map in
the voting/MRF model described in Section V-B assumes that
each input source is equally reliable. A more balanced fusion
decision should also consider the reliability of each source. One
possible representation of source reliability is to use confusion
matrices.

Assume each source produces an input class
map as well as a Class Confusion matrix . This matrix
is obtainable through training (using a supervised system) and
provides a measure of the likelihood term where it is
assumed that random variable is independently conditional
on [66]. This assumption is used extensively in image-based
Markov solutions. Using training data, these matrices can be
estimated, specifying the probability of source providing a

classification decision given that it is known that the
actual classification of the decision is . For pixel and
input source

(15)
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We assume that the Confusion Matrix considers only
recognized seafloor classes . Assuming the input
sources are independent (we assume the random variables

are independent conditionally on [48]), we
can write

(16)

Using the likelihood term expressed in (16), it is possible to
initialize the Fusion Field . Instead of initializing the field
using a voting scheme where each source is considered equally
reliable, the model now considers each inputs reliability. As be-
fore, if all the sources provide a or decision, is ini-
tialized as unmeasured or unclassified respectively. Otherwise,
the label field is initialized by considering (16). Ten sam-
ples are drawn from the class probability distribution
which maximizes the likelihood value described in (16). Pixel
is initialized with class if the sampled probability compares
favorably to a random number in the range [0,1] for a majority
of the samples. If this criterion is not met, the pixel is labeled
as unclassified. This initialization technique is analogous to the
generalized majority technique used in the voting/MRF fusion
model.

After initialization, an iterative process is again carried out to
complete the fusion. Pixels are visited randomly and allocated
a classification which minimizes posterior energy

whereas, in the voting/MRF model, pixels initialized as
are not considered or changed. As before, is the Kronecker
Delta function and

(17)

As can be seen from (17), the likelihood term is considered
only if the pixel is not currently labeled as unclassified. The
Markovian term is the same as the one discussed in (13) for
the Voting/MRF model. Pixels are visited randomly rather than
using the more deterministic raster scan to allow more mixing
between the classes. The number of pixel visitations will affect
the quality of the final result. The results provided here used
pixel visitations where N is total number of pixels in field .

The probabilistic fusion process is completed by applying en-
ergy term in (13) to field in an iterative manner, again
using a raster scan. This was done to again ensure the final Fu-
sion Classification contained no unclassified pixels. Unlike the
raster scan approach, randomly visiting the pixels does not en-
sure that all initially unclassified pixels are classified in the final
result. The final raster scan considering only ensures
that any remaining unclassified pixels are given a recognized
seafloor classification in the final, fused map.

D. Results

1) Comparison of the Models on MeasTex Images: This sec-
tion evaluates the Voting/MRF and Probabilistic fusion model

Fig. 10. (a) Texture image composed of 4 MeasTex textures. (b) Ground truth
of the textured image displayed in (a).

TABLE I
CLASSIFICATION ACCURACY OF THE 5 CLASSIFIERS USED TO CLASSIFY

THE MEASTEX TEXTURE IMAGE SHOWN IN FIG. 10

Fig. 11. (a) Classification result from (a) classifier C1, (b) classifier C2,
(c) classifier C3, and (d) fusing C1, C2, and C4 using the probabilistic model.

on an image comprising of MeasTex [68] texture samples. Clas-
sification results have been obtained using five different classi-
fier combinations. The first is a parametric linear discriminant
classifier using co-occurrence matrix features (C1). The second
and third consider fractal features using a nonparametric kNN
classifier (C2) and a parametric linear discriminant classifier
(C3), respectively. The fourth and fifth classifiers consider fre-
quency based features, again with the kNN classifier (C4) and
the linear discriminant classifier (C5), respectively. All are su-
pervised systems and the confusion matrices required for the
Probabilistic model can be obtained from the training data. A
sample test image and the corresponding ground truth image
can be seen in Fig. 10.

The performance accuracies for each of the five classifiers
operating in isolation are given in Table I.

The classification results for three of the classifiers (C1, C2
and C4) are shown in Fig. 11 (C3 and C5 are visually quite
similar to C2 and C4 respectively). The figure also contains the
classification result obtained from fusing the C1, C2, and C4
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TABLE II
CLASSIFICATION ACCURACY OBTAINED FROM FUSING VARIOUS CLASSIFIERS

USING BOTH THE VOTING/MRF AND PROBABILISTIC MODELS

Fig. 12. (a) Ground truth of the simulated image used to test the fusion models.
(b)–(d) Simulated classification results from a 90%, 70%, and 50% accurate
classifier, respectively.

classifier results using the Probabilistic model. This has been
included for comparison purposes.

The classification accuracy obtained from fusing the different
classifiers using both the voting/MRF and the Probabilistic
model can be seen in Table II.

Table II shows the Probabilistic model outperforming the
MRF/Voting model in all cases as expected. The fusion oper-
ations containing C2 and C3 together can be seen producing
lower classification results than is perhaps expected from con-
sidering two good classifiers. This is because C2 and C3 use
the same features and so generally classify and misclassify the
same image regions. Any misclassifications present in either of
these results are simply reinforced by the second. This lends
strength to the argument that fusion is most effective when
considering results obtained from different sources. This can
be seen in the high classification accuracy obtained from fusing
C1, C2 and C4.

2) Comparison of the Models on Synthetic Images: This
section evaluates the Voting/MRF and Probabilistic fusion
models on simulated examples. A simulator model was used to
produce classification results of a given classification accuracy,
using the same ground truth image. Fig. 12 contains a ground
truth image used in this as well as a simulated result from
hypothetical 90%, 70% and 50% efficient classifiers.

TABLE III
CLASSIFICATION ACCURACY OBTAINED FROM FUSING FOUR SIMULATED

CLASSIFICATION RESULTS OF A GIVEN CLASSIFICATION ACCURACY USING

BOTH THE VOTING/MRF AND PROBABILISTIC MODELS

Fig. 13. (a) Ground truth of a simulated class map. (b) The classification result
produced from a simulated source.

Simulated classifier output for the ground truth image shown
in Fig. 12 was produced for a range of classifier accuracies. Four
different classified images for each tested input classification
accuracy were produced. These four images were fused using
the Voting/MRF and Probabilistic models. The simulator was
set up to ensure that any misclassified pixels were spread evenly
over the other classes. The results obtained for the two models,
fusing four images for each level of classification accuracy, can
be seen in Table III.

The table shows that both fusion models generally produce a
classification result which is better than any of the input images
considered in isolation (the exception is the perfect input classi-
fiers where the MRF component of the models has smoothed the
final result). The Probabilistic model can be seen to outperform
the Voting/MRF model in all cases, although both provide good
results in all of the examples, even when the input classification
accuracy drops to 50%.

The fusion example shown in Table III used input images
where the misclassified pixels were spread evenly over the
other classes. For classifiers where there is strong confusion
between some classes, the difference in performance between
the MRF/Voting and Probabilistic models can be significant.
One such example is highlighted in Fig. 13. This contains a
ground truth image and the resultant classification result from
a simulated source described by classification confusion matrix

where

(18)

When fusing three different sources described by , the
MRF/Voting model produces a final result with a classification
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Fig. 14. (a)–(d) Show four mosaics displaying 15 side-scan tracks of the
REMUS mission.

accuracy of 59.95% while the Probabilistic model achieves an
accuracy of 85.23%.

Further analysis of performance using varying numbers of
input images and different classification accuracies lies outside
the scope of this paper, but the results presented in this section do
demonstrate that both of the fusion models will produce a final
classification result that is generally higher in accuracy than for
any of the input images considered in isolation.

VI. CREATING LARGE SCALE MOSAICS

We return to the side-scan data first introduced in Section II to
show how the fusion approach can improve mapping for a large
area survey. The navigation output from REMUS and the side-
scan data have already been used to create large scale mosaics of
the observed region [69]. The same navigation solution has been
used to geo-reference the segmented image data. The complete
AUV mission lasted for 2 h, 57 min, and 8 s and followed a set of
parallel, regularly spaced and overlapping linear tracks, typical
for rapid environmental assessment surveys.

A. Fusion

Since no ground truth information was available on the
data set with which to obtain classifier reliability information,
the fusion of the classified mosaics was carried out using the
Voting/MRF model.

Fig. 14 shows four overlapping mosaics of sector 1 (a pre-
defined region) created by geo-referencing 17 linear tracks. All
of the resulting mosaics created using overlapping tracks are
geo-referenced to the same reference frame (sector 1) and will
constitute an input to the fusion algorithm.

The mosaics in Fig. 14 contain a maximum of five classes.
Each pixel is considered to belong to the sand, ripple, com-
plex, unmeasured or unclassified class. The large light gray
regions are unmeasured regions over which the AUV has not
passed. The white regions are areas which remain unclassi-
fied following the geo-referencing process. The geo-referencing
process sometimes stretches or contracts pixels from the indi-
vidual input images to allow mosaics of the correct resolution
to be created. The initialization from the voting scheme and

Fig. 15. Initialization of the voting/MRF fusion model after the voting scheme
for the sector 2 mosaics. The white pixels describe unclassified regions.

Fig. 16. Final fused result obtained from the voting/MRF fusion model for the
sector 2 mosaics. The MRF section of the model has ensured no unclassified
pixels remain.

the final fused result for these mosaics can be seen in Figs. 15
and 16, respectively.

Both the initialization and the final fused results in Figs. 15
and 16 contain much more information than any of the mosaics
considered in isolation. The initialization result contains large
regions of unclassified data where the voting scheme has failed
to confidently allocate a seafloor class. These regions have been
classified within the final fused result. The regions of seafloor
which are classified as unmeasured in all the input mosaics have
also been left as unmeasured. The final output result has fused
all the input mosaics to produce a smoothed map where all the
pixels where data of some description has been received by the
AUV have been classified. The fused map allows a more com-
plete picture of the seafloor to be built up than is possible by
considering a single mosaic in isolation.

Overall, the fusion model has produced a more complete and
useful picture of the seafloor. All unclassified regions from the
initialization result in Fig. 15 have been assigned classes by
the Markovian aspect of the model. The benefits of the Fusion
model can be clearly seen in the example shown in Figs. 16.
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VII. CONCLUSIONS

An integrated method for creating and fusing classified SSS
mosaics has been presented. This utilizes recent advances in side-
scan data correction and is applicable to a wide range of classifi-
cation schemes. The ability to produce good segmentation results
from a limited training set is one of the benefits of applying the
fusion approach and this can provide additional flexibility in the
choice of feature sets and classifiers. Attempts to represent every
variation in texture in the training data can lead to “overfitted” so-
lutions. Using the approach described here, robust segmentation
is achieved through a fusion scheme which incorporates Mar-
kovian spatial priors and information regarding classifier per-
formance with respect to each texture class.

The mosaicing algorithm presented uses SLAM techniques to
produce high quality mosaics of the individually segmented im-
ages. The generation of these mosaics, where the images are geo-
referenced in space, provides the basis for multimosaic fusion.

Two models have been introduced for the fusion of the clas-
sified mosaics. The first uses voting schemes to initialize the
fusion map and a Markov model to both classify regions pre-
viously labeled as unclassified and smooth the final result. The
second model adopts a probabilistic framework and allows the
reliability of each source to be considered during the fusion
process. The Voting/MRF model has been demonstrated on real
classified side-scan mosaics allowing a more accurate picture of
the survey region to be built than would have been possible from
considering the individual mosaics in isolation.
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