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Abstract— Sonar images are highly textured images and therefore
mislead most of the classical registration algorithms. Registration
is a critical step for the creation of high-resolution accurate
mosaic images of the seafloor required for seabed analysis and
classification. In the past concurrent mapping and localisation
have successfully been used but the detection and association of
landmarks have been proved difficult and been done manually.
However, such methods are time consuming and lack robust-
ness. Landmarks are not regularly present in the images and
their localisation is prone to errors. As a consequence, global
methods using whole images are preferable. These methods were
extensively studied in the recent years and successfully applied
to multi-modal medical image registration. Unfortunately, the
similarity metric between images they rely upon cannot cope with
highly textured images. To overcome this issue, textural features
must be extracted to highlight similar regions of the images.
Registration of these feature maps works but remains sensible
to the feature selection and their relation from one modality
to the other. An alternative approach is proposed in this paper.
Mutual information is calculated from all the features and global
registration can be achieved directly. Solely an approximation of
MI can be obtained but the performance of this algorithm are
equivalent to exact approach and robust to feature selection. This
method has been successfully applied to textured images (side-
scan sonar) but is also applicable to multi-modal images such as
bathymetric and sonar data.

I. REGISTRATION IN A MARINE CONTEXT

Offshore technologies and geo-sciences present increasing
needs for an accurate description of the seabed. The appli-
cations are as various as human impact assessment, novelty
detection and mapping and lead to the generation of huge
amount of data which must be automatically post-processed.
These underwater studies use the deployment of several sen-
sors (e.g. bathymetric, side-scan sonar) to access physical and
geometrical measurements about the seafloor. In addition, for
novelty detection, these acquisitions are performed periodi-
caly.

Given several images (different viewpoints, modalities, acqui-
sition dates) of the same seafloor, a mandatory preliminary
step consist of registering these images before any further
processing (e.g. classification, objects detection). Registration
ensures that pixels of equal coordinates on different images
correspond to the same point of the scene.

Mosaics of seafloor using navigation information generally
presents large errors due to the inaccuracies of underwater
localisation. Concurrent mapping localisation [1] have been
successfully used but detection and association of landmarks

have been achieved manually. Automated registration ap-
proaches can be split into two families. On one hand, point
matching techniques [2] model the scene, through the match-
ing of landmarks. These landmarks are often points, detected
in expected meaningful areas [3]. Automated landmarks ex-
traction in underwater images, and in side-scan sonar images
especialy, is made difficult by strong textures and noise (e.g.
interference, first return) preventing us to use landmark-based
methods.

On the other hand, global methods [4] estimate the best
registration by using al the pixels of the images. The most
successful among these methods remain the measure of a
similarity metric (pixel-based distance between overlapping
regions of the image). The latest is maximised regarding a
geometrical transformation [5], [6], which is chosen according
the expected distortion of the images.

Under the assumption of having a flat seabed, global methods
are suitable to perform the registration. They match regions
within the images leading to a better estimate of the registra-
tion. Regions are reliable features of the seabed because they
are observable from any modalities and are constant over time.
Three similarity metrics [5], [6], [7] were proposed in the
literature. They rely on different models of change of the
grey levels from one image to the other. However, highly
textured images mislead these a gorithms. These methods must
be assessed in a marine environment (textured and multi-modal
images).

This paper presents how textured images can be registered
using Mutual Information (MI) and texture features. These
preliminary results are promising to extend this method to
multi-modal images. Section Il recalls the principle of these
techniques. Textural features are then extracted from the
images as shown in section I11. In order to perform registration
using MI on multichannel images (the feature images) an
estimate of MI in this new high-dimensional space must be
derived. This is done in section V. This estimator of high-
dimensional Ml is evaluated in section V where results on real
images are presented. Finally, conclusions on the method and
future work are given in section VI.

[I. MUTUAL-INFORMATION BASED INFORMATION
A. Smilarity maximisation based registration

Among pixel-based registration methods, FFT-based [8] and
similarity-based [5] are the most extensively used. The second



one was successfully applied to multi-modal medical images
registration [9], [5], [10], [6], [7]. This approach has the great
advantage to be able to use any deformation models, from
rigid-body transform to warping model [11]. Given asimilarity
metric 1 between images, the registration procedure aims at
increasing the similarity between a reference image I and
T'(J), the image to register transformed with T, by adapting
T ().
T = argmaz p(I,T(J)) 1)
TeT

The transform 7' that maximises this similarity is sought
within a family of geometrical transform TJ. This set is
chosen regarding the possible aterations existing between two
images (e.g. rigid-body transform, warping). Typically, these
transform are parametrised with a parameter vector @ leading
to the following optimisation problem:

o = argmaz p(I, Tz (J)) @)
B. Smilarity metric between images
The similarity metric is selected according to the image
formation models, i.e. how the grey level of the same point
of the scene is modified from one image to the other. The
sum of sguare difference SSD [11] assumes that luminance
is preserved. Correlation Ratio CR (3) [6] simply require a
functional dependence between the grey-level. This simple
model alows to perform registration on multi-modal medical
images (MRI, CT, PET [6]).

var(E[J|I])
var(J) 3
To cope with more complex image formation model, Mutual
Information [5] is a information-theoretic measure that only
expects a “predictable” relation between the two images. The
measure of the correlation between the images with M1 rely on
the joint histogram alowing more complex relations between
grey levels. Typically, a grey level of one image can be
represented by severa grey levelsin the other.
M1 is based on Shannon entropy H and is given in (4). The
maximisation of M I mainly corresponds to the minimisation
of H(I,T(J)), i.e. the increase of the correlation between I
and T'(J) in a statistical sense.

CR(L,T(J)) =

MI(L,T(J)) =H(I)+ H(T(J)) - H(I,T(J)) (4

Similar metrics were developed afterwards to improve the
registration results. Instability due to the size of the overlap-
ping area were reduced with normalised version of Ml [12],
[10]. A new information measure, called Cumulative Residual
Entropy [13], based on the cumulative distribution function
instead of the probability density function, can replace the
entropy defined by Shannon. The use of this measure in the
definition of M1 leads to the definition of the Symmetric Cross
Cumulative Residual Entropy SCCRE [7] which is more robust
to noise.

All these metric are suitable to perform registration but are
solely adapted to ideally piece-wise constant images. Textured
images are not in generaly properly registered simply based
on the grey levels. Indeed, texture leads to severa local
maxima of MI which prevents a numerical maximisation
scheme to find the global maximum. Ml remains the most
general metric and is preferred for its ability to cope with
complex relationship between images.

I11. TEXTURAL FEATURES
A. Grey Level Co-occurrence matrices

Grey levels of textured images are not relevant for registration
because they fail to describe regions. The classical method
to revea information about regions (e.g. for segmentation)
consists of extracting textural features, chosen to be constant
over similar regions. In the case of multi-modal images, other
features can be chosen depending on the type of image. For
instance, for MRI and any other piecewise constant images,
grey levelsare relevant features. In the case of textured images,
various features [14], [15] were proposed in the literature.
Grey level co-occurrence matrices {p(i, j) } o<s,j<r—1 areloca
statistical descriptions of neighbourhoods in images with L
grey levels. This second order statistics of the grey-levels is
a classical descriptor of texture, which measures the joint
probability density of the grey levels of one pixel and one
of its neighbours. The latest is chosen in one direction at a
given distance 4. In our case, this matrix is computed for each
pixel along four directions (¢ = —90°, —45°, 0°, +45°). §
depends on the texture present in the image.

Instead of working with L2 values for each matrix, Haralick
[14] proposed a set of 14 features, extracted from the matrix,
describing the texture. We use particularly two features among
the Haralick feature set given thereafter. Therefore, we have
access to 8 features to perform the registration.

1) Energy
L-1L-1

A=Y pli,45) (5)

2) Contrast

f2=3 3 (= 3)* (i) (6)

Figure 1 presents textural features. Figure 1(a) is the grey level
images and (b-c) are the images of the two previously given
features for the co-occurrence matrix for (¢ = —90°,§ = 2).

Fig. 1. Texturd features: (a) Grey-levels (b) Energy (c) Contrast



In figure 1(b-c), identical textures appears with similar feature
values. These piece-wise constant images can be registered
using the similarity metric presented in section I1. Although,
registration relying on only one feature might fail because
of the impossibility to discriminate any texture with only
one feature. For instance, energy provides similar measures
for the two lower textures. Therefore, a seducing approach
to spare ourselves the issue of feature selection would use
simultaneously al the features to perform the registration. The
robustness of the registration is then increased because the
feature extraction remains less critical.

B. Concurrent registration of the feature maps

Each images is now represented with several channels, the
extracted feature maps. Equations (1) and (4) are till valid.
Each pixel is modelled as a independent multivariate random
variable F' (feature vector). Given P the probability density
function of F', Shannon entropy is given by:

H(T)==Y P(F)-logy(P(F)) ™
Fes

Unfortunately, the estimation of P over the feature space
J is not possible for two reasons. First, working on a N ¢
histogram, where N is the number of grey level and d the
number of features, is computationally intractable. Second, and
crucialy, the scatter plot of the image in & is too sparse to
allow an accurate estimation of P with classical methods, i.e.
with binned or kernel based [16] estimator.

This limitation is known and three approaches were proposed
in the literature to register multi-channel images. A principal
component analysis PCA can be done [17] to combine the
features into a single grey-level images which is going to
be registered. Textured images cannot be handle with such
methods though. Using the extracted features, images can be
segmented and then registered at the class map level using Ml
[18]. But, registration of side-scan sonar, and more generally
textured images, is still an open and widely investigated
problem. The third methods was recently proposed by Kyhic
[19] and consists of approximately estimating the entropy in
this high-dimensional space.

This more straightforward method use all the information
available. In addition, any features can be used (e.g. texture,
neighbouring pixels grey values), independently on both im-
ages. This redly promising approach for underwater images
registration (i.e. textured and multi-modal) is presented in the
following section.

IV. HIGH-DIMENSIONAL MUTUAL INFORMATION

A. Approximation of the entropy of continuous random vari-
ables

Equation (7) can be approximated by:

— Ellog,(P(F)] ©)
~ 3" log, (P(F) ©
F

H =

where {z}ie[l,N] are N realisations of 7.

When ? is a continuous random variable, Kozachenko and
Leonenko [20] proposed an estimator of H using the cor-
relation between P(?i) and the local density in the feature
space F. The local density can be measured by the Euclidean
distance to the nearest neighbour of z in ¥, noted \;. This
intuitive description leads to the equality (10). Given (9), the
entropy can be approximated by (11).

~log, P(F)) = dBlog,(\)] +
(N —1)7?/? v
1g2[ rd+y | s
n(;,r)
d N
H'(T) = 5 Blog,(\)]+r(N,d)  (11)

To estimate P(?Z) by measuring an Euclidean distance is
realy convenient. The distance to the nearest neighbour is
unique and severa realisations of it are not available usually.
Therefore, Kozachenko and Leonenko proposed to estimate
the entropy with:

N
Hgr = % ; log, (i) + &(N, d) (12)
where pixels with \; = 0 are discarded of the sum.

This estimator is asymptotically unbiased, i.e. E[H k1,(X)] —
H(X) ~ O(1/v/N), where N is the total number of sam-
ples. The penalty paid for this lack of bias is a reduced
precision when compared to binned estimates. Nevertheless,
acceptable values of entropy are obtained with a few samples
(= 100, [212]).

This estimator has been successfully applied to physiological
studies [21], and was recently proposed for registration pur-
pose [19]. However, its adaptation to the discrete case is not
straightforward. Discretisation of the feature space leads to the
discretisation of \;, which loses its accuracy and reliability as
an estimate of the local density. A\; = 0 is equivalent to an
infinite probability density. As a consequence, the estimator
becomes biased due to the large amount of samples not taken
into account for the estimation.

B. Discrete estimator of Kozachenko and Leonenko

Kybic [19] proposed to take advantage of the additivity of
entropy to estimate Mutual Information on the N samples.
Theses samples are randomly subsampled into [N/ subsets,
or batches, of M samples. On each, Ml is estimated with the
estimator (12), with a brute-force nearest neighbour search to
estimate );.

His method benefits of a overall decrease of the local density
in ¥ for the estimation of MI. The occurrence of A\; = 0
becomes rare and the estimator of H reliable. This stochastic
estimation depends on the parameter M though. A trade-off
must be chosen between accuracy, enough samples in the



batches, and sufficient subsampling. A drop of performance of
this approach is observed when M increases, instead of again
of accuracy, because of the biggest part of non-informative
samples (A; = 0) in the batches. M = 100 appears to be an
appropriate parametrisation in most of the case.

C. Registration algorithm

Our implementation of the registration assumes a rigid-body
transform between two images of the seafloor. The family
T (2) of parametrised transform can be written under the form:

0 -7+7

are rotation 6, trandation ? and

T2 (Y) =

where the parameters
scae s.
The estimation of TE>(7) is done with a bi-linear
interpolation. The maximisation of the similarity measure is
performed with a simplex algorithm. This multi-dimensional
and unconstrained algorithm uses the measure of MI for
v + 1 values of the parameter a (v is its dimension) and
locally approximates the similarity measure by the facet these
v + 1 vertices generate. The registration agorithm can be
summarised as:

(13

R wIm

Registration algorithm
1 Feature Extr
2 Estimate u(

tion
,T3(7)) for an original set of ver-

tices

3 Given the facet, update the set of vertices to max-
imise Ml

4 Estimate MI(?,T3(7)) for these v + 1 values of
_)
«

5 If the facet collapses into a point of the parameter

space. Then, end. Else, go to [3]

The assessment of image processing agorithm is generally
a difficult problem, and registration is not an exception.
Usually, the unique quantitative results associated are usually
the measure of the error made on the estimation o . However,
this error is poorly associated to the geometrical distortion of
T (J ). We propose to estimate the geometrical ateration of
the image due to the error made on the parameters to evaluate
our approach. This registration quality factor ¢ corresponds
to the worse error made on the predicted position of one
pixel. Mathematically, ¢ is the upper-bound of |0T/8 a'||. The
simple transform (13) taken into account allows us to calculate
e

T L 1)
+ 2 ) ]+dk(14)

5] < [£2] [
171-1d61] + 14 | (15)

Let | be the largest dimension of the image. Let note |dk| =
max |dk;|. Given ||R(0)|| = 1, (15) becomes:

HaT% H <|ds|+|d9|>+|dk| (16)

mlmmlN

= -<%+|d0|>+|dk| 17)

(17) isthe relative error used throughout this paper to compare
registration techniques.

V. RESULTS

A. Sde-scan sonar images

Figure 2(a) represents a template of side-scan sonar images.
The right hand side of the figure shows 4 out of the 8 feature
maps we extract.

0

Fig. 2. Side-scan sonar image template (a) Image (c) 4 feature maps (energy
-left- and contrast -right- for co-occurrence matrices measured at (P -top- and
45° -bottom-)

In a preliminary experiment, this template is artificialy trans-
formed according to the transform (13), to get ground-truth
images to register. The various transform applied have solely
one parameter modified, the others remaining at 0 (or 1 for the
scale). This leads to 19 synthetic registration problems, with
ground-truth, where the performance can be assessed through
the measure of ¢ (17).

Features are then extracted (0 = 2) and the registration is
performed following the algorithm given in section IV-C. To
register the images, exact calculation of Ml is performed
using the energy of the co-occurrence matrix measured at
—90°. Thisfeature seems to efficiently describe the image into
regions. High-dimensional Ml is estimated on the 8 feature
maps extracted.

Table | summarises the results obtain with different similarity
metrics. Exact calculation of similarities given in section |1 and
the two high-dimensional M| estimators are compared during
registration task.

First of all, classical registration based on grey level images
fail in this case even with high contrast. Periodic texture,
common in side-scan sonar image, make the similarity bumpy.
These local maxima mislead the optimisation algorithm. This
table shows that co-occurrence matrices is an efficient way to
discriminate these textures. Classical exact calculation of CR



TABLE |
REGISTRATION ERROR € FOR 5 SIMILARITY METRICS

Metric [ CR [ MI | SCCRE | HD-MI
Angle (in degree)

5 17 | 673 15 0.8
10 0.6 | 573 0.7 15
15 49 | 554 15 18
20 127 | 558 287 143
Trandation (in pixels)

5 11 | 24 1.0 1.0
10 04 | 433 0.5 0.8
15 48 | 451 73 44
Scale (no unit)

12 2.7 | 385 1.8 43
14 67 | 238 66 77

and SCCRE leads to accurate registration of this image with
manually selected feature. Mutual Information fails to register
though.

High-dimensional MI provides equivalent results than these
approaches. The approximation of mutual information on all
the feature maps provides a trustworthy alternative to exact
metric calculation. The highest computation cost is balanced
by the saving of a feature selection stage.

B. Multi-view side-scan sonar

The previous example is not representative of a rea registra-
tion case. Figure 3 presents two views of the same area (the
images are inverted for the sake of clarity). These images are
convenient because they are acquired from the same viewpoint
with different sonars.

Fig. 3. Two views of identical area (inverted images)

The contrast these images is much worse than the previous
case and the feature maps measured for § = 10 (figure 4) are
much less ideal than in the previous case.

Fig. 4. Feature map of figure 3 (left). Top line=energy. Bottom line=contrast.

From left to right: ¢ = —90°, —45°, 0°, 4+45°

The same experiments are performed than in the previous case.
Table Il summarises the registration performances of these
methods. The registration is performed 5 times, twice with
CR and SCCRE and once with high-dimensional MI. The first
registration, case #1, using CR and SCCRE is performed using
the energy of co-occurrence matrix at ¢ = —90°, as selected
previously. Then, case # 2, the energy maps measured on two
different co-occurrence matrices (¢ = —90°, and ¢ = 0°) is
used to perform the registration of the images of figure 3.

TABLE Il
REGISTRATION ERROR € TO REGISTER FIGURE 3

Case #1 Case #2 HD-MI
Metric | CR | SCCRE | CR | SCCRE | Kyhic
Angle (in degree)
5 10.8 35 43 18 12.7
10 10.7 10.9 102 100 14.1
15 12.7 12.4 148 116 42
20 139 204 190 183 341
Trandlation (in pixels)
5 10.0 115 53 54 10.6
10 115 12.3 68 70 10.3
15 111 11.2 80 79 116
20 10.2 9.4 109 89 111
25 10.6 60 54 82 12.4
30 69 112 88 90 50
Scale (no unit)
12 11.1 10.9 83 92 22
14 76 95 144 148 99

Registration error has increased (¢ ~ 10), in comparison of
the previous case. The features are |less discriminant due to the
lowest contrast of the image. Figure 5 presents qualitatively
the results of the registration of the images, rotated of 10°.
The reference image on the left and the corrected image, with
high-dimensional MI, appears similar. The 6 white markers
represent 6 pixels with the same coordinates. They are not used
for registration but shown to help the reader assess the quality
of the registration. Despite the increase of the quantitative
error, the results are qualitatively good.

(b)

Fig. 5. (a) Reference Image (b) Image to register (c) Corrected Image

Table Il shows that CR and SCCRE still perform well in the
first case. This approach is dightly better than the estimation
of high-dimensional MI. The parameter 6 was adapted to the
type of texture but the feature selection is robust to change
of illumination (same viewpoint, same modality). However,
as soon as the features change (case #2), both metrics fail to
uncover similarities of the images.

In a known environment, side-scan to side-scan registration
can be performed using a feature extraction and classical MI-



like methods [5], [6], [7]. However, robustness to feature
selection is sought to tackle other registration issues (e.g.
multimodal, multiresolution). We proposed to use an estimator
of the mutual information of all the feature maps [19]. This
approach provides a simple mechanism to take into account
all the extracted features. Even if this technique relies on an
approximation, similar results than in the exact metric measure
were obtained.

V1. CONCLUSIONS AND FUTURE WORK

Registration of underwater images are a very important topic
with the growth of high resolution marine science mapping
requirements. Off-shore industries and geo-sciences need a
better description of the seafloor and perform extensive surveys
of entire areas. The huge amount of produced data requires
automated processing to generate exhaustive maps of the
seabed. This paper focused on the registration of underwater
images using global registration methods and presented initial
results.

Globa methods, based on similarity measures, are promising
methods in the underwater context. These region-based re-
gistration scheme rely upon areas which are observable from
different view-points and modalities and constant over time.
These methods are applicable in seabed survey as soon as the
assumption of flat seabed is correct.

The classical similarity metrics applied to these grey-level
images fail to recover geometrical transformation because
of texture information. Relevant information for registration
must be extracted to highlight the region of identical types of
seabed. In side-scan sonar, textural features appears naturally
as characteristics of the type of seabed. In this paper, co-
occurrence matrices and Haralick feature set [14] have been
successfully used to discriminate sea-bottom textures, but
require the prior knowledge of the typical period of periodic
textures.

Side-scan sonar images registration were preliminarily studied.
Two convenient methods were applied for registration of
feature maps. Exact similarity calculation based on a single
feature has been successful but requires a feature selection
stage. Another method is based on the estimation of high-
dimension estimate of M1 and showed equivalent performances
than exact calculation. Beyond the higher computational cost,
this method does not require a feature selection. More complex
registration issue (e.g. multimodal) can be tackled by simply
using al the feature maps available.

Future work is two fold. First, better textural features would
be sought to prevent the need of prior related to the texture.
Among textural features, wavelet frames [15] seems promising
by incorporating a scale parameter related to the texture.
Second, multi-modal registration would be studied within this
framework, especially in the case of bathymetry and side-scan
sonar.
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