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Abstract— This paper is concerned with the application of
active contour methods to unsupervised binary segmentation of
high resolution sonar images. First texture features are extracted
from a side scan image containing two distinct regions. A region
based active contour model of Chan and Vese [3] is then applied
to the vector valued images extracted from the original data.
The set of features considered is the Haralick feature set based
on the co-occurence matix. To improve computational efficiency
the extraction of the Haralick feature set is implemented by
using sum and difference histograms as proposed by Unser [16].
Our implementation includes an automatic feature selection step
used to readjust the weights attached to each feature in the
curve evolution equation that drives the segmentation. Results are
shown on simulated and real data. The influence of the algorithm
parameters and contour initialisation are analysed.

I. INTRODUCTION

Sidescan sonar image analysis is used in a number of under-
water applications, from object localisation and identification
to seabed classification and 3-D reconstruction. There are
two main approaches in sidescan image analysis: classifica-
tion using texture features and supervised learning [1], [17]
and unsupervised classification and segmentation (typically in
shadow/non-shadow or echo/shadow/sea-bottom reverberation
areas) based on Bayesian clustering methods using grey levels
or texture features [9], [13]. These have produced useful
results for seabed classification and segmentation but are
generally sensitive to training, feature selection and parameter
estimation.

This paper concentrates on a different type of segmentation
task namely that of segmenting a sidescan sonar image in
different types of seabed in an unsupervised manner. This task
is viewed as an unsupervised texture segmentation problem.
An unsupervised binary segmentation algoritm for texture-
based seabed discrimination is presented. It relies on geometric
active contour models and level set methods. In addition a
novel, automatic feature selection step is integrated within the
algorithm.

In the first stage of the segmentation algorithm a set of
texture features from the sidescan image is extracted. The
texture descriptors used here are the Haralick features based
on the estimation of co-occurence matrices within a window
surrounding each pixel in a lattice in the sonar image. This
feature set is well known to be a good descriptor of the textures

present in sonar data. To improve computational efficiency the
feature extraction algorithm implemented here uses the sum
and difference histograms approximation method introduced
by Unser [16].

The second phase of the segmentation process relies on the
active contour model for vector-valued images introduced by
Chan and Vese in [3], [4] which uses the mean intensity as
a region homogeneity measure. The model is robust to noise
and has good regularisation properties, similar to those of a
Markov random field, as a result of the velocity dependence on
the global region statistics and the curvature of the contour. To
implement the contour evolution a level set approach is used
leading to a Hamilton-Jacobi equation. This is numerically
approximated through a first order monotone scheme.

One of the problems when working with texture features
is feature selection. Identifying a set of features able to
discriminate between the textures present in all images of a
data set is not always possible. One of the novel features of our
implementation is an automatic feature selection step which
has been integrated in the evolution scheme. This ensures that
for a given image the features with maximum discriminatory
capacity drive the contour evolution.

II. BACKGROUND

Suppose that
�

is an image defined on a domain �������
consisting of two homogeneous regions �	� and � � with 

denoting their common boundary. The idea behind active
contour segmentation methods is to evolve a curve �
���������
in � using a partial differential equation of the form:� �� ��� ����

(1)

subject to an initial condition ��� � �
��� �"!#� in such a way that
the solution of (1) converges to the boundary 
 . Here

��
is the

inward normal vector of �
�����"��� and
�

is the speed with which� evolves in the direction of the vector
��

. The speed
�

may
depend on many factors (e.g. local or global properties of the
front, image data) but it is assumed that it is independent of
the curve parametrisation. It has to be chosen in such a way
that the evolving curve �
��������� is attracted by the boundary 

of the two regions and becomes stationary at 
 .



The strength of this approach lies in its ability to make use
of the level set methods introduced by Osher and Sethian in
[12] and further developed by several authors over the past
decade [10], [11], [15]. This is achieved by representing the
curve � implicitly as the zero level set of a surface $#�&%'�"()�+*#�-,* � . �/%0��(1�32 . The level set formulation of equation (1) is then
given by: � .� � � �5476 . 4

(2)

with initial condition
. ��� �7� �"!#��,8� �:9 � where the initial

surface
. ��� �7� �"!#� is chosen so that its zero level set is given by

the initial curve ��� in (1), that is$;�/%0��(1��, . �/%0��(<�"!#� � !12 � �-� (3)

The family of curves �
��� ����� , �-=>! satisfying (1) will then be
given by the zero level sets of the surfaces

. ��� �7� ����� , �-=>! that
satisfy equation (2). In this way any topological changes in the
evolving curve �
��� ����� , as splitting or merging, can be handled
naturally and powerful numerical schemes able to approximate
the correct viscosity (weak) solution can be employed. [10],
[15]

The velocity function
�

is usually derived through min-
imising a suitable image dependent energy although it is also
possible to synthesize

�
directly from the image data [8], [14].

There are two types of approaches when choosing a velocity�
: boundary-based and region-based. The former rely on the

boundary 
 being described as the points in the image where476?�)4
is maximised and therefore tend to depend only on local

information [2], [8], [14]. Region-based methods on the other
hand aim to segment the two regions by considering various
measures of homogeneity of each region. In this way global
image information can be incorporated in the velocity function�

. A review of region-based methods can be found in [7].

III. THE CHAN-VESE ACTIVE CONTOUR MODEL FOR
BINARY SEGMENTATION.

The approach used in this paper was first introduced in
[4] and generalised for vector-valued images in [3]. It can be
seen as a restricted form of the Mumford-Shah functional for
segmentation in which the original image

�
is approximated

by a binary image.
The Chan-Vese model is based on the minimisation of the

following energy functional:@BA1CDFE ���G� � @ AHCD $JI)� K1LBMONQP D'RTS � �&%'��(1�VUXW LBM �Y�G� S �[Z % Z (\ I � KH]_^`NQP D0R S � �/%'�"(1�VUaWcb"d N �Y�G� S � Z % Z (\ e Length ���G�f2 (4)

where W LBM �Y�G� � mean � � � inside �Wcb"d N �Y�G� � mean � � � outside �

and ehg ! , I � �+I � =i! . Following [7] the evolution equation
derived from the minimisation of (4) is given by� �� � � $JI)�O� � UjW L M ���G�"� � UcI � � � UjW b"d N �Y�G��� � \ae'k 2 ��

(5)

where k is the local curvature of the curve � .
Equation (5) can be implemented by using a level set

method as explained above. Note that in this case the speed
function

�
is given by� � I � � � UXW L M ���G�"� � UlI � � � UaWcb"d N �Y�G��� � \le'k (6)

and can therefore be extended naturally outside the curve � .
As demonstrated in [4], this model has several advantages:
ability to detect boundaries with very smooth or blurred
boundaries (boundaries without gradient), automatic change
of topology and automatic detection of interior contours, scale
adaptivity (through the parameter e ) and robustness to noise.

The main limitation of the model comes from the fact that
it can only discriminate regions which have different mean
intensities. In particular it is, in general, unable to segment
images with strong textures. One way to overcome this is to
extract features

� �O� � � �7�`�7�7� � M
from the initial image

�
( e.g.

the output of a filter bank applied on
�
) and evolve � over

all images under equation (1) where the velocity function
�

is given as a weighted average of terms over all images:� �nmo
Mp L q � $rI PBL M RL s � L UtW PBLBM RLvu � U	I P b"d N RL s � L UtW P b"d N RL u � 2 \we'k (7)

Here W PBL M RL ��W P b"d N RL
are the mean values of images

� L
inside and

outside � . This approach was first implemented in [3] where
it is shown that the speed

�
will evolve � under equation (1)

towards the minimum of the energy

E ���G� � mo
Mp LBq � I PBL M RL K;xzy|{ S � L �&%'��(1�VUXW LBML �Y�G� S �`Z % Z (\ mo
Mp LBq � I P b"d N RL K xz}Y~f� S � L �/%'�"(1�VUaW b"d NL �Y�G� S � Z % Z (\ e K D Z � (8)

The coefficients I PBLBM RL �+I P b"d N RL
can be used as weights at-

tached to each image depending on the amount of information
that it contains. In our implementation the weights I P&� RL

are
initially set equal to m and readjusted automatically as the
curve evolve depending on the magnitude of the quantitiesS W PBL M RL U�W P b"d N RL S . In this way the active contour also performs
a feature selection.

IV. CO-OCCURENCE MATRICES AND SUM AND
DIFFERENCE HISTOGRAMS

The feature set of Haralick et al [6] is probably one of
the most famous methods for texture analysis. It is based on
the calculation of the co-occurence matrix, a second order
statistics of the gray levels in an image window.



Let � be a �F��� grey level image containing � quantised
grey levels. In most applications � will be either an image
consisting of a single texture/pattern or a window contained
in an image

�
of which the local texture we are interested

in analysing. The co-occurence matrix ���� �&�3�Y�;� of � with
parameters � Z � � Z � � is defined [6] to be the number of pixel
pairs � o ��Wc�f�`� o�� ��W � � in � that have intesity values � and �
respectively. The normalised quantity�� �/�3�Q�#� � � �� �/�3�Y�;�"�1�&���c�F� (9)

is thus an estimate of the joint pdf � �/�3�Y�;� .
In [6] a set of m`� textural features is proposed known as

the Haralick Feature Set. All of these features are extracted
directly from the normalised co-occurence matrices

�� �/�3�Y�;� .
The � most commonly used of these features are:

1) Energy: � � ���<� �p L q � �<� �p� q � �� �&�+�Q�;� �
2) Contrast or Inertia:� � � �<� �p LBq � �<� �p� q � �&�'Uc�#� � �� �/�3�Y�;�
3) Correlation:�J� � �T� �p LBq � �<� �p� q � �&�'U e ��� ��U e � �� �/�3�Y�;�

where e denotes the estimated mean of the process, that
is e � �<� �p L q � � ��T� �/���
where

��T� is the histogram of � .
4) Entropy: �r� � U �<� �p L q � �<� �p� q � �� �&�+�Q�;�;�B �¡z� �� �/�3�Q�#�"�
5) Homogeneity:�J¢ � �<� �p LBq � �T� �p� q � mm \ �/�£U��;� � �� �&�3�Y�;�
6) Cluster shade:�J¤ ���<� �p L q � �<� �p� q � �/� \ ��U¦¥ e � � �� �/�3�Q�#�
7) Cluster prominence:�J§ � �<� �p L q � �<� �p� q � �/� \ ��U¦¥ e � � �� �/�3�Q�#�
Experiments have shown (see [16] and references therein)

that these features are significant in terms of their capacity
to measure visually perceivable qualities of textures. On an
intuitive level, for example, energy can be thought of as a

measure of homogeneity of a texture image, contrast measures
the amount of variation in gray tones present in an image,
correlation is a measure of gray tone linear dependencies and
entropy is a measure of complexity of an image.

In [16] Unser proposes an alternative, significantly more
efficient way of computing the Haralick Feature Set. His
approach relies on approximating the co-occurence matrix

�� of� by the product of the histograms of the sum and difference
images �X¨ , �a© defined as�a¨0��ªT�"«�� � �¬��ªT�"«�� \ �¬��ª \ Z � �"« \ Z � ��a©���ªT�"«�� � �¬��ªT�"«��£Ul�¬��ª \ Z � �"« \ Z � �f�

This leads to the following expressions of the features
� � �`�7� �O§

in terms of the sum and difference histograms
�� ¨ ,�� © :� �®­ p L �� ¨ �&��� � p � �� © � �;� � (10)� � � p � � � �� © �B�;�� � � m¥�¯ p L �&�'Ul¥ e � � �� ¨0�/���£U p � � � �� ©G� �#�J°�r� ­ U p L �� ¨0�/���;�  ±¡ �� ¨0�/���VU p � �� ©G�B�;�;�  ±¡ �� ©G�B�;��J¢ � p � mm \ � � �� ©G�B�;�� ¤ � p L �/�'Ul¥ e � � �� ¨'�&�_��J§ � p L �/�'Ul¥ e � � �� ¨'�&�_�

The symbol ­ indicates that the left hand side can be approx-
imated by the expression on the right with a quantifiable error.
Using the expressions above to calculate the Haralick featurs
results in a more efficient computation as double summations
are replaced by a single ones and memory requirement reduces
by a factor �²� � . The feature extraction algorithm used here is
described below:

1) Set up a lattice of pixels ³ � $#� o ��Wc�32 . Fix the density
of ³ via the horizontal and vertical steps � ^ �+�[´ . Fix
the window size for feature extraction to µ ^ �?µ ´ . This
should reflect the geometry of the image and the scale
of the information to be extracted.

2) Fix a set of displacement parameters $ �Z L 2 . This can be
represented by a distance Z and a set of directions ¶ L

.
Typically ¶ takes the values U¸·0�O¥1�7U¸·0� � �"!¹��·0� � .

3) Locally equalise image
�

using the pixels in ³ and
window size µ ^ �5µ ´ . The aim here is to minimise the
discriminative role of the first order statistics.

4) Set up sequences of windows � ¨ � o �"W�� , � © � o ��Wc�
centred at � o ��Wc� in

� ¨ and
� © respectively.

5) For each one of the pixels � o ��Wc� use the histograms
of � ¨ �3� © to compute features � � �J�7�7�`��� � § � . Realise
features as a vector � � � �`�7�7�7� � § � of images extracted
from the original image

�
.



The benefit drawn from this approach is that the sum and
difference of an image is computed only once over the entire
image

�
.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS.

A. Implementation of the segmentation algorithm.

Let
�

be a two-region greyscale image and let
�� �� � �O�7�`�7�7� � M � denote a set of feature images extracted from

�
and defined on a common domain � . The following partial
differential equation is implemented numerically by making
use of a level set method as explained in Section 2:� �� � � $ mo

Mp LBq � $rI PBLBM RL s � L U¸W PBLBM RL u � U�I P b�d N RL s � L U¸W P b"d N RL u � 2 \	e'k 2 ��
(11)

with initial condition � � �-� and where W PBLBM RL ��W P b"d N RL
are the

mean values of images
� L

inside and outside � . More precisely
the PDE� .� � � � � � \ � � � S 6 . S (12)� � � mo

Mp L q � $rI PBL M RL s � L UXW PBL M RL u � UlI P b"d N RL s � L UXW P b�d N RL u � 2� � � e'k � e 6»º0¼ 6 .S 6 . S�½
with initial condition

. �&%'�"()�+!�� � �7¾ o Z �/%0��(<�+���[� , the signed
distance function from the initial curve �²� .

A first order monotone scheme was used to approximate the
term

� � S 6 . S and a first order central difference approximation
was used for the curvature term

� � S 6 . S . For computational
efficiency the values of

.
are updated only in a narrow band

around the zero level set of
.

. To ensure that the evolving curve
remains well within the narrow band domain it is necessary
to reinitialise

.
when the zero level set of

.
gets close to the

boundary of the band. This is done by resetting
.

to be equal
to the signed distance from its zero level set.

Another source of difficulties is the non-convexity of the
energy associated with the speed

� � . Such an energy has
more than one local minimum and this makes the algorithm
susceptible to becoming stuck near local minima with the
solution depending on the initialisation. It was found that in
most cases initialising with a sequence of uniformly distributed
circles over the entire image gives better segmentation results
and convergence is faster than when initialising with a single
curve. For certain types of images however, for example
images where the object or region in the central part of the
image is small relative to the background region, segmentation
is better when initialising with a single curve that intersects
with the central region.

The parameters I PBL M RL �+I P b"d N RL
determine the degree of contri-

bution of image
� L

in the final result. In [3] the I parameters
are used to filter high frequency noise from different channels.
In the case where the

� L
s are the output of a filter bank (e.g.

Haralick features) the level of noise is the same in all channels
and the primary role of the parameters is one of feature

selection. In our implementation the coefficients I P LBM RL �+I P b�d N RL
are initially set to be equal to m for the first ¿±!�! iterations.
They are subsequently reset at certain predetermined times to:I PBL M RL � I P b"d N RL � S W PBL M RL UaW P b"d N RL S� (13)

where � � W�À#% �fÁ L Á M S W P LBM RL UXW P b�d N RL S �
This choice ensures that the features with maximum dis-

criminatory capacity drive the curve evolution. As the ex-
amples below demonstrate this type of feature selection can
greatly improve the segmentation result.

B. Experimental results.

In the results presented below the algorithm parameters
were chosen as follows: In the feature extraction algorithm
the window sizes µ ^ ��µ¸´ were set to µ ^ � µ¸´ � ¥ m ,
the step sizes � ^ �3�`´ were set to � ^ � �[´ � ¥ , the grey
levels were quantised to ¿�¥ and the set of displacement
vectors $ �Z L 2 for the calculation of the co-occurence matrices
is determined by: S �Z L S � ¥ , ¶ L
Â $#U¸·0�O¥H�`U¸·0� � �"!1�"·0� � 2 . In
the curve evolution scheme parameters I L ML �+I b"d NL

were chosen
as in (13) at iterations m !±!¹�+¥O!�!1�`�7�7�3�3ÃO!±! but where we have
also set I P LBM RL � I P b�d N RL � ! for those indices � whereÄ ÅtÆ yB{`Çy

� Å¸Æ }Y~f� Çy ÄÈ É !1�ÊÃ . Parameter e controls the smoothness
in the contour and thus the sharpness in the boundaries of the
segmented regions. The value e � Ã º m ! �

� º ��¥±Ã�Ã±� � was found
to be a good compromise between the level of accuracy in
boundary detection and the level of noise or scale of detail
within each separate region that needs be left undetected.

Segmentation results on simulated and real sonar images are
presented in figures 1, 2, 3, 4 and 5.

Fig. 1. Initial curve and segmentation result on simulated image containing
two types of seabed.



Fig. 2. Initial curve and segmentation result on simulated image containing
three types of seabed. The two most similar textures are represented by the
top region.

VI. CONCLUSIONS

In this paper an unsupervised binary segmentation algorithm
is proposed and applied in particular to side scan sonar images.
It combines the Haralick features for texture and an active
contour model for vector valued images proposed in [3]. The
implementation makes use of the sum and difference his-
tograms for computing the co-occurence matrix and level set
methods for the curve evolution. A suitable set of parameters
is identified and used throughout the experiments described
here. The resulting algorithm is validated on several simulated
and real sonar data and is robust to the noise naturally present
in sonar data. As most of the examples in the last section
demonstrate the proposed algorithm is also robust to other
artefacts resulting from the data acquisition process. Most of
the images in our data set were succesfully segmented even
in cases where the two regions have similar textures and/or
poorly defined boundaries. The main difficulty comes from
the initialisation in the curve evolution a problem which can
be adressed by a multiresolution approach.

The proposed method can be readily extended to other
contexts. Different type of features may be used. By taking
a slightly different viewpoint the method may also be used
for sensor fusion (i.e. bathymetry, video). Finally it is possible
to extend the method to segment sonar images in up to four
classes by considering a coupled evolution of two contours [5].
Overall the results obtained in this paper suggest that curve
evolution is a valid tool in sonar analysis.
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Fig. 3. Segmentation results on real sidescan sonar images.

Fig. 4. Segmentation results with and without feature selection.

Fig. 5. Segmentation results with and without feature selection.


