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The Automatic Fusion of Classified Sidescan Sonar
Mosaics Using CML-RTS and Markov Random
Fields

S. Reed, 1. Tena Ruiz , C. Capus , and Y. Petillot

Abstract— This paper presents a framework for registering and
fusing classified sidescan sonar data. It builds on recent advances
in navigation and registration for improved mosaicing, applying
novel fusion algorithms to integrate data from overlapping
sidescan survey lines to produce Iarge scale classified mosaics.

While typical Mine-Counter-Measures (MCM) and Rapid
Environmental Assessment (REA) missions provide various over-
lapping views of the same region of seafloor, research on sidescan
image analysis has traditionally concentrated on the analysis
of individual images. The available informatior from the other
images, relating to the same region of seafloor, is generally not
considered. The image registration and mosaicing process allows
this complementary data to be fused, producing an improved
final classification result.

The sidescan imagery is first pre-processed through the ap-
plication of advanced radiosity correction algorithms. Following
radiosity correction, texture segmentation for the data presented
in this paper is achieved using features derived from the averaged
normalised power spectral density.

The individual classification maps are geo-referenced and co-
registered using a Concurrent Mapping and Localisation Rauch-
Tung-Striebel (CML-RTS) procedure. This uses local landmarks
within the individual images and the AUVs navigation data to
generate a2 more accurate and smooth navigation trajectory. This
trajectory is used to produce the registered classification mosaics.

The co-registered classification results are then fused to pro-
duce an improved class mosaic for the entire survey region. The
fusion model uses a voting scheme to initialize the seafloor map
after which a Markov Random Field (MRF) model is used to
produce the final fused classification mosaic.

The entire process (Classification, Registration and Fusion) is
demonstrated on real sidescan data taken at the Saclant Centre,
La Spezia, Italy.

1. INTRODUCTION

The development of stable Autonomous Underwater Vehi-
cle(AUV) platforms, fitted with high resolution sonars, has
opened up the oceans to rapid and high resolution mapping.
This paper tackles the difficult problem of generating accurate
large scale maps of the seabed from sonar imagery obtained
using these platforms.

Research into image based classification of sonar data has
generally concentrated on analyzing single sonar images. The
generation of large scale mosaics raises the problems of image
registration, autonomous navigation in an environment de-
prived of GPS (Giobal Positioning Systems) and the automatic
fusion of multiple, possibly contradictory, class maps. This
paper presents a first attempt at producing large scale classified
mosaics by integrating research conducted separately in the
fields of navigation, classification and data fusion.

0-7803-9103-9/05/$20.00©2005 I[EEE 883

A. Image Formation Process and Pre-processing

The interpretation of sidescan imagery is a skilled pro-
cedure. There are many parameters of the image formation
precess contributing to intensity variations in recorded data
which are quite separate from the influences of variations in
seabed properties and textures. In the current work the sonar
data are preprocessed to correct for the influences of the sonar
beamn pattern and time-varying gain (TVG) [1]. This enables
the use of simpler and faster classification algorithms which
is particularly beneficial for application to large area surveys.

B. Classification

Given the large numbers of images produced in a typical
sidescan sonar survey, a fast classification algorithm is re-
quired to produce the seabed class maps. Many supervised
techniques have been developed to tackle this problem. While
Neural Networks and parametric statistical classifiers have
dominated the scene [2], [3], other approaches such as fractal
analysis [4], spatial point processes [5], grey level run-length
measures [6], co-occurrence matrices [7] and fuzzy logic
anatysis [8] have also been investigated.

In this paper a variant of the power spectrum feature set [9]
is used with a simple parametric classifier for rapid supervised
classification of the individval images.

C. Registration and Mosaicing

To produce large scale mosaics it is necessary to register
the individual sidescan sonar images. Given the position of
the sensor in the world for each sidescan beam, the individual
images can be mosaiced together [10]. The quality of the mo-
saics will depend on the precision of the position information
of each sonar beam, i.e. the vehicle’s navigation precision.
Underwater, navigation is a difficult problem as conventional
GPS receivers do not operate. Underwater platforms therefore
usually rely on dead-reckoning sensors which drift over time.
To fix this drift, we propose using a Concurrent Mapping
and Localization (CML)} technique based on the stochastic
map developed for indoor robotics [11] and adapted to sonar
imagery {12]. This method is based on the use of landmarks
detected in the sonar imagery to help the navigation. It does
not require the addition of additional sensors and does not
interfere with the data acquisition constraints (stable platform,
fixed altitude).



D, Fusion

During a typical sidescan survey, multiple views of the same
arca are normally collected from different view points. The
fusion of these views enables the generation of large scale
classified mosaics with improved classification accuracy.

Data fusion is a well established research field and has
used Bayesian Statistics [13], Fuzzy Logic [14] and Dempster-
Shafer theory [15]. When little is known about the information
sources, or when they produce information at a high level of
abstraction, voting schemes have been successfully used [16].
This is particlarly appealing for underwater imaging systems
which currently favor ‘black box” approaches to classification.

Fusion for classification within the image domain allows
contextual information to be considered [17]). The fusion of
multiple images is generally performed at the pixel level [18],
[19], allowing information from surrounding pixels to be
considered when classifying each pixel. An effective method
for incorporating this spatial information is the use of Markov
Random Fields{MRF) [20], [21].

The fusion model described in this paper uses a modified
Majority Voting scheme to initialize the final mosaic. After,
a MRF mode! is used to incorporate contextual information,
smoothing the final result and ‘inpainting’ regions of pixels
which are unclassified after the Voting process.

II. SIDE-SCAN DATA PRE-PROCESSING

In low altitude surveys, small changes in vehicle altitude
can affect the sonar image dramatically. Prior to classification
the image data used has been preprocessed using an advanced
radiosity correction algorithm [1]. This treats purely range-
dependent artifacts, such as residual TVG effects separately to
angular effects such as the influence of the sonar beam pattern.
Separate correction factors are calculated for each. Whilst this
gives better performance than standard radiosity correction
algorithms in the presence of sensor altitude changes, platform
stability is still assumed with respect to pitch and roll.

A sample raw image and the estimated beam pattern and
residual TVG profile for these data are shown in Fig. 1.
The complexity of the beam pattern is apparent with four
significant lobes in the port channef and as many as six in
the starboard channel.

The corrected image is shown in Fig. 2. In some places the
beam pattern correction has failed, as indicated by the white
arrow, This arises from the behavior of the vehicle, which rolls
on tumns.

A. Mosaicing

Each side of the sidescan sonar (port and starboard} in-
sonifies a-rectangular area on the sea floor. The length of the
rectangle is determined by the slant range of the sonar (the
maximum range of the sonar) and the height of the vehicle.

The seabed can be represented as a flat two dimensional
grid of mosaic cells. Using simple geometry both channels
can be superimposed if the orientation and position of the
sonar is known. Each mosaic cell will take the value of the
intensity cell on the beam closest to it. In this paper if a mosaic
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Fig. 1. (a) sample raw image (1000 scan lines); (b) beam pattern estimate;
(c) residual TVG estimate. Differences in ranges for y-axes derive from
the methods of calculation. Values in (b) are referenced to a target grey
level, hence range 0-255, valnes in (c) are referenced to a level of 1.0,

cell takes more than one value then, in the case of the pre-
processed image mosaics, the data will be averaged or, in the
case of the classified data, the cell will be left as vnclassified.

III. CLASSIFICATION OF SIDE-SCAN DATA

Three seafloor textures have been identified for segmenta-
tion of the sidescan data, defining three classes: flat sediments,
sand ripples, and complex regions. Suppression of the beam
pattern effects and some of the residual TVG effects improves
the images to the point where a fast supervised classification
scheme can be combined with a relatively simple, easily
generated feature set.

The features used are based on Pace and Gao’s frequency
based sediment classification scheme [9]. Owverlapping 64-
sample Gaussian windowed FFTs are used to generate the one-
dimensional power spectra and this allows for identification of
changes in texture across the sonar swath,



Fig. 2. Corrected image. The correction algorithin cannot compensate
for changes in sensor attitude, such as roll on trajectory corrections, see
arrow above,

Spatial frequency bands within the normalized power spec-
tra are identified which give a good separation between the
classes. The training set used for these data comprised three
small sections, one for each texture, of 200 x 200 pixels.

Three features are defined by the crossing points of the
averaged normalized spectra derived from the training data.
These give the proportion of the spectrum lying in sample
bands 1-4, 4-12 and 16-32, corresponding to crossing points
lying at fmax/8, 3fmax/8 and fiax/2.

f’“ax/g fr“ﬂ-x
Dy . = fl PiN(f)/f Pn(f)
1
3f“|ax/8 fmax
Dy = / PiN(f)// Pin(f)
Fmax/8
fmax fmax
Dpy = uv(f)/f Fin(f) ()
f:n&x/g

In classifying a complete sonar image, the three features
are generated from the averaged normalized spectral density
formed from four successive lines of data. The same 64-
sample sliding Gaussian windowed FFT is used and boundary
problems between sonar channels are minimized by closing up
the water column. This is done simply by shifting the scanlines
on the assumption that there will generally be contipuity in
seabed textures between sonar channels.

Fig. 3 shows the initial classification result for the image
introduced in Fig. 1 above. Misclassifications are greatest near
the water column where the correction algorithm has failed.
There are some boundary errors, with pixels classified as com-
plex texture in the transition region between flat sediment and
sand ripples. Misclassification further from the water column
is due primarily to incomplete elimination of the influence
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Fig. 3. Classmap generated from the image introduced in Fig. 1. Water
column ~ black; flat sediment — dark grey; complex — light grey; rippled
- white. Errors are noted where the correction algorithm has failed due
to vehicle attitude changes during course corrections and in the transition
regions between textures.

of the surface return and crosstalk from other sensors. These
effects are particularly prominent in this data set and add to
the difficulty of the classification task. These misclassifications
can frequently be rectified by the proposed fusion scheme.

IV. CONCURRENT MAPPING AND LOCALISATION (CML)

In order to create an accurate mosaic of the classified maps,
good navigation is crucial. The purpose of CML is to build a
map of the environment and use that same map to localize the
sonar [11]. Recently CML techniques have been developed to
work with a side-scan sonar [10], [12]. This paper uses this
method in order to geo-reference classified side-scan images.

The technique to fuse the navigation data uses a stochastic
map smoothed using a Rauch-Tung-Striebel (RTS) fixed-
interval smoother, It will be referred to as CML-RTS. The
stochastic map keeps the estimates of the pesition and creates
a map of landmarks to represent the environment. These
landmarks are then used to aid localization of the vehicle. It
is 2 CML method that works iteratively to provide an estimate
of the position at the latest iteration. In order to improve the
accuracy of the solution and to smooth it, post-processing is
required. The next two sections provide a more detailed look
at the algorithms.

A. The Stochastic Map

The stochastic map is an augmented state Extended Kalman
Filter (EKF} [22]. It adds new states to the state vector to
accommodate new landmarks as they are observed. A typical
stochastic map state vector is of the form:

X = [XuX1.. - Xn] (93]



where x, holds the state of the side-scan sonar and xi, ...
hotds the state of the n landmarks in the map.

The stochastic map also stores and maintains all the covari-
ances and correlations between the states. With fully correlated
{andmarks, an observation of any of the landmarks will help
correct the whole map. It can also take advantage of the wealth
of literature published on Kalman filters. The update equations
of the stochastic map are the familiar EKF update equations.
For more details on this implementation of the stochastic map,
the interested reader should refer to [12].

1 Xn

B. CML-RTS

The Kalman filter and EKF use all measurements up to the
last iteration to estimate the state at the last iteration, The
RTS smoother uses all measurements before and after each
iteration to estimate the state at each iteration. It is a post-
processing filter that works on the stored outputs of a Kalman
filter by re-processing it. The smoother works by combining
a forward pass Kalman filter with a backward pass filter. It
was originally designed to work with fixed size state vectors.
However, the stochastic map adds new states to the state vector
as it observes new landmarks. The CML-RTS algorithm adapts
the RTS fixed-interval smoother to work with the stochastic
map by fixing the size of the state vector to the size of the
stochastic map on the last iteration. The CML-RTS algorithm
ensures numerical stability in matrix operations by adjusting
the estimates of the landmarks’ states and covariances at all
iterations before they have been observed to the values when
they are first observed. The output of the CML-RTS has
been shown to improve the accuracy of the stochastic map
solution [12], as well as providing trajectories more suitable
for creating and superimposing mosaics [10].

V. FUSION OF MOSAICED CLASSIFICATION DATA

This section presents the pixel level model for fusing the
multiple classified sidescan sonar mosaics, The final fused
mosaic is initialized using a voting scheme. The model is
formulated within a Markovian framework to take advantage
of contextual information and improve classification accuracy,

A. Initialising the Fusion Mosaic

The Fusion Mosaic is initialized vsing a voting scheme. The
model assumes that each image 7 provides a classification re-
sult for each pixel 1abet 3. The fusion field W is initialized by
using an adaptation of the Generalized Majority Voting [16]. In
this model, a summed binary function T (w;) for pixel s, and
each recognized seafloor classes w;,1 < i < M is specified
as

K
Te(ws) = > 6(zd,w) for 1I<i< M 3

i=1
where the sum is over all the inputted class images and &(.)
is the Kronecker Delta Function. This function is not specified
for the unclassified or unmeasured classes.
The initial fusion Field W is then specified as:

886

wy = vif ié(:cil,"r) =K
i=1
= 7if Te(r) = max Ty{w;) 2 ng
= ¢« otherwise
where K is the number of images which do not provide

an unclassified or unmeasured classification for pixel s.

Once the voting rule has been used to initialize Fusion Field
W, a Markov model can be used to smooth the final fusion
result and inpaint any unclassified pixels.

B. Markov Model for Image Fusion

Let us assume first that each of the input class maps is
defined on a lattice .5 where label s specifies a specific
pixel location. Two random fields X and W are defined.
X = {X,,s € S} describes the classification field provided
by each input map and W = {W,, s £ S} describes the
final fused classification map. For K input class maps, X, =
(X1,...,XX) takes its values from the finite set of classes
Q= {w1,...,war,a,7}. The set  contains M recognized
seafloor classes, the unclassified label o and the unmeasured
label . Label e is allocated to X7,7 € {1,...,K} when
data is received regarding pixel s in image 7 but a classifi-
cation based on the data provided is not possible. Label -,
unmeasured, is used when no data is received regarding pixel
s, ensuring it is not possible to provide a classification X},

The fusion problem consists of estimating the true classified
map W = w from the individual classified maps X = x where
T =z, 8 € 5 are K classified maps of the same scene. The
field W = {W,, s € §} is said to be Markovian with respect
to neighborhood 1 = {7,,s € S} if its distribution can be
written as

Pu, (W = we|Wr = wp,r # 8) =

P(Hfs = wsIWr = Wr, T € 7?5) (4

For simplicity, the fusion model described in this paper as-
surnes a second order isotropic neighborhood. Further reading
regarding MRF models can be found in [20], [21].

The problem of maximizing probability Py, (w) can be re-
cast to the local problem of maximizing energy

Ulwe) = Y B8(we, wp)[1 ~ 8(we, o)1 — 8wy, )] (5)

LENs

for pixel s. In equation 5, §(.) is the Kronecker Delta
symbol and S controls the importance of the Markovian prior,
For all cases in this paper, # = 1.0. The minimization of
P(W) is performed using the Tterated Conditional Modes

.method [21]. In this method, a raster scan is used to iteratively

visit all the pixels in field W. If wy, = ~ unmeasured,
the pixel is not considered further and the pixel remaing
unmeasured. Otherwise, w, is allocated to the class which



locally maximizes U(w, ). The ICM procedure is iterated until
there are no pixel changes within a full image scan.

VI. LARGE SCALE MOSAIC RESULTS

The following results were obtained by processing data
gathered during the BP'02 experiments carried out by the
SACLANT Undersea Research Centre in La Spezia, Italy. The
side-scan data was gathered by a REMUS AUV [23]. The
AUV mission lasted for 2 hours, 57 minutes and 8 seconds.
It followed a set of parallel, regularly spaced and overlapping
linear tracks (typical for rapid environmental assessment mis-
sions),

The data have been classified using the techniques outlined
in section HI.

Figs. 4 contains 4 mosaics of sector 1 (a pre-defined
region) created by geo-referencing 17 linear tracks. All of
the resulting mosaics created using the overlapping tracks are
geo-referenced to the same reference frame (sector 1) and will
constitute an input to the fusion algorithm.

S——

N

N\

Fig. 4. The 4 input mosaics of Sector 1 which are fused together to
produce the final fused mesaic for sector 1.

The mosaics in Fig. 4 contain a maximum of 5 classes. Each
pixel is considered to belong to the sand, ripple, complex,
unmeasured or unclassified class. The large light grey regions
are unmeasured regions over which the AUV has not passed.
The final fused result produced from the 4 input mosaics can
be seen in Fig. 3.

The final fused result in Fig. 5 contain much more infor-
mation than any of the mosaics considered in isolation. The
regions of seafloor which are classified as unmeasured in all
the input mosaics have also been left as unmeasured. The final
fused map also contains no wnclassified regions, These have
been inpainted using the MRF model.
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Fig. 5. The Final Fused result obtained from the Voting/MRF fusion
model for the sector 1 mosaics.

Fig. 6 contains the 4 input mosaics for a second sector.
Sector 2 has been created by geo-referencing 15 linear tracks.

uy

Fig. 6.  The 4 input mosaics of Sector 2 which are fused together to
produce the final fused mosaic for sector 2.

Again, there are 5 classes present within the input mosaics
in Fig. 6. The unmeasured class is the dominant class and is
represented by light grey. The unclassified class is represented
by white. The sand, ripple and complex classes are also
present. The final result from the fusion model can be seen in
Fig. 7.

As Fig, 7 shows, the Fusion model has produced a more



Fig. 7. The Final Fused result obtained from the Voting/MRF fusion
model for the Sector 2 mosaics.

complete and useful picture of the seafloor. The information
from the individual mosaics has been fused to produce a
smoothed map of the seafloor region. The benefits of the
Fusion model can be clearly seen in both the examples shown
in Figs. 5 and 7.

VII. CONCLUSIONS

* This paper has presented a method for creating and fusing
classified sidescan sonar mosaics of the seafloor. A normaliza-
tion and classification model was then detailed which allowed
inherent sidescan sonar problems such as the beampattern to
be considered. This segmented the images into regions of flat
seafloor, sand ripples and complex regions.

A mosaicing algorithm was then presented. This used CML
techniques to produce high quality mosaics of the individual
classification maps. The generation of these mosaics, where
the images are geo-referenced in space, allows the possibility
of multi-mosaic fusion.

A fusion model using simple voting techniques within
a Markovian framework was then presented. Results were
demonstrated on real classified sidescan mosaics. The mosaics
were produced using the classification and mosaicing models
presented in the first sections of this paper. Information from
the individual mosaics was fused to produce a Fusion map of
the entire region of seafloor surveyed by the AUV,
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