22.5HV?2
SOFTWARE ENGINEERING ||

Pointers and dynamic memory allocation in C++

o [EE . .
k= 22.5HV2 Software Engineering 11

Stuart Clarke, Pointers - 1

Aims

O In this unit we will consider the following topics:

J Call-by-reference functions in C.

3 Pointer initialisation.

(J Dynamic memory allocation.

[Themalloc () and free () functions.
[J The new and delete operators.

J Pointers to 1-D arrays.

3 Pointers to 2-D arrays.

J Pointers to structures.

O Pointers to functions.

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 2

Revision - pointers

O Pointers are one of the most powerful features of the C
programming language.
J Pointers are also a very important part of C++.

O A pointer is a data type that can be used to store the
address of a memory location where a variable is stored.

O We have already encountered pointers in the guise of call-
by-reference functions.

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 3

Call-by-reference functions in C

i and j are pointers,and are initialised
with the addresses of a and b.

void swap (int *i,int *j) {

void main () {
int a=1, b=4;
/* call */
swap (&a, &b) ;
} /* end of main */

int temp=*i;
*j=%7;
*J=temp;
return;

} /* end of max */

'3?% 22.5HV2 Software Engineering II
)
k¢

Stuart Clarke, Pointers - 4

Call-by-reference functions in C

O The arguments of the function swap (), are pointers to int.

[J They can be used to store the addresses of memory locations where
Integers are stored.

O They are declared as being pointers to int, by the asterix
(*) notation.

O This statement allocates some memory (usually 4-8 bytes),
where an address can be stored.

void swap (int *i,int *7j) {

int temp=%*i;
*ki=*7;
*Jj=temp;
return;

} /* end of

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 5

Call-by-reference functions in C

O This function is called using the address operator (&) to
access the addresses of two integers: [int a=1, b=4;

swap (&a, &b) ;

O These addresses are passed by value to the function, and
are used to initialise the pointers i and j.

(J Hence i and j will contain the addresses of a and b respectively.

O Knowing the addresses of a and b is not enough, we want

to access the stored values.|, 614 swap (int *i,int *j) {

O This is achieved using the int temp=*i;

indirection operator (*). *i=*7;

*Jj=temp;

return;
f*i 22.5HV2 Software Engineering II

Why pointers?

O As we can see, call-by-reference functions (in C) are only
possible using pointers.

O Pointers can be used to make other programming tasks
easier or more efficient.

O Another example will illustrate one of the most important
aspects of pointers, dynamic memory allocation.

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 7

Why pointers?

O Suppose that you are writing a program to perform some
Image processing task.

(J As an image is simply a two-dimensional grid of pixels, you may
choose to use an array to store the image within your program:

unsigned char im[512] [512];

O PROBLEM: You have to decide at compile time how big to
make your array im:

(J Too big and you will waste memory when processing small images.
(J Too small and your program will crash for large images.

O SOLUTION: Wait until run time to see how big an image is,
and allocate exactly the required amount of memory.
3 This is called dynamic memory allocation, and requires pointers.

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 8

Pointers

O To recap, we defined a pointer as being a variable that
contains an address that points to the memory location
where another variable is stored.

O We also saw how to declare a pointer using the asterix

notation (*):

O The keyword int, indicates that this pointer can only be
used to point to integer variables.

O This pointer will contain a random address, as we have not
Initialised its value. Any attempt to change the contents of
this address could have disastrous consequences!.

f*i 22.5HV2 Software Engineering II

Stuart Clarke, Pointers - 9

Pointer initialisation
O For this reason, it Is good practice to intitialise the pointer:

int 1=3, *ptr=¢&i;

O In this case, ptr will contain the address of the memory
location where the value of integer i is stored.

O If we dereference this pointer with the indirection operator
(*), we can change the value of i:

int i1=3, *ptr=é&i;

*ptr=5; // i now equals 5

O We have accessed the memory location where the value of
i is stored, and placed the integer 5 there.

f*i 22.5HV2 Software Engineering II

Stuart Clarke, Pointers - 10

Pointer types

O It may seem strange at first, but a pointer is restricted to
point to variables of a certain type.

O This can be better understood by considering a pointer
ptr, initialised to point to some location in memory:

O This statement will place the value 57 in the location whose
address is stored in ptr.

O However, the format that this value is stored as will depend

on the type in the pointer declaration.
(J Possible types include int, char, float, double efc.

f*i 22.5HV2 Software Engineering II

Stuart Clarke, Pointers - 11

Pointers and arrays
O Arrays and pointers are closely related:

int a[l0], *ptr=a;

O The expression a, represents the address of the first
element in the array. Hence the pointer ptr has been

Initialised to point to the start of this array.

O The following statement will set the first element of the

array a to 1:

O We can use the array subscript operator ([]) to access the
other elements as follows:

ptr[4]=1;

%L 22.5HV2 Software Engineering II

Stuart Clarke, Pointers - 12

Pointers and arrays

O This statement will be equivalent to the statement:

O As pointers are variables, they can be used to access
different arrays:

#include <iostream.h>
void main () {
int a[]={1,3,5,7,9},b[]1={2,4,6,8,10},*ptr,1i;
char c;
cout << "Enter odd(o) or even (e): ";
cin >> cC;

if (c=='o') ptr=a; // ptr points to a
else ptr=b; // ptr points to b
for (1=0;i<5;i++)
cout << ptr[i] << endl;

VZ Software Engineering

Stuart Clarke, Pointers - 13

Passing arrays to functions
O When passing an array to a function, we use the syntax:

void display(char word|[])

O An equivalent version iIs to declare the argument as a
pointer to char:

#include <iostream.h> H

void display(char *word) { He
int i, j, len=strlen (word) ; Her
for (i=0; i<len; i++) { Heri
for (j=0; j<=i; j++) cout << word[j]; Herio
cout << endl; Heriot
} Heriot-
} Heriot-w

void main() { _ Heriot-Wa
char name[]="Heriot-Watt"; .
Heriot-Wat

display (name) ; Heriot-Watt

;.éj 22.5HV2 Software Engineering 11

Stuart Clarke, Pointers - 14

A word of caution using pointers

O Whether you use an array or pointer declaration, there is a
danger that you exceed the array bounds, i.e. access a
memory location outside the array:

int a[l10], *ptr=a;
af[l0] = 1; // ERROR

ptr[11l] = 1; // ERROR

O This Is possible because C++ does not check to make sure
that the element that you are attempting to access is within
the allocated memory.

O Attempting to change memory locations outwith an array’s
bounds, could cause your program to give errors, or even
crash the machine.

%L 22.5HV2 Software Engineering II

Stuart Clarke, Pointers - 15

An alternative notation

O There is an alternative notation for accessing elements of
an array using a pointer to the start of the array:

int a[l10], *ptr=a;
ptr[4] = 1; // OR equivalently

*(ptr+4)= 1;

O This notation reflects how the element is accessed:

(J The indirection operator (*) is used to access the memory location
represented by the contents of the brackets.

[J The expression in the brackets equates to the address of the 5th
element of the array (index 4).

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 16

Pointer arithmetic

O The expression (ptr+4) represents the address of the 5th
element of the array a.

O However, this expression does not use the standard
arithmetic - WHY?
[An address represents a memory location in bytes.
J However, an int requires several bytes (4 to 8) to store in memory.
(J Hence, the compiler evaluates the expression (ptr+4) as:

ptr + 4*sizeof (int)

[J This ensures portability between different architectures that
represent data types with different precisions.

\—/ -

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 17

The alternative notation

O The previous example using the new notation is:

#include <iostream.h>
void main () {
int a[]={1,3,5,7,9},b[]={2,4,6,8,10},*ptr,1;
char c;
cout << "Enter odd(o) or even (e): ";
cin >> c;

if (c=='o') ptr=a; // ptr points to a
else ptr=b; // ptr points to b
for (i=0;i<5;i++)
cout << * (ptr+i) << endl;

f*i 22.5HV2 Software Engineering II

Stuart Clarke, Pointers - 18

Pointer arithmetic

O The increment operator (++) can be used in conjunction
with pointers:

int a[l1l0];
int *ptr=a; // points to 1lst element

ptr++; // now points to 2nd element

O Remember that placing the increment operator after the
variable returns the current value and increments:

int a[]={1,4,9,16,25};
int *ptr=a, 1i;

for (1=0,;i<5;1i++)
cout << *ptr++ << endl;

f*i 22.5HV2 Software Engineering 11

Stuart Clarke, Pointers - 19

Pointer arithmetic

#include <iostream.h>

void main () {
int a[100], *ptr=a; // initialise pointer
cout << "Enter +ve numbers (max 100)" << endl;
cout << " (Terminate with a -ve number)" << endl;
do {

cin >> * (ptr++) ;

} while (* (ptr-1)>0);
cout << "The numbers entered were:" << endl;
ptr=a; // reset pointer to start of array
while (*ptr>0)

cout << *ptr++ << endl;

&> 22.5HV2 Software Engineering 11

__/
%? Stuart Clarke, Pointers - 20

Dynamic memory allocation

O So far we have used pointers to point to memory locations
that were allocated by variable definitions:

int i; // definition allocates 1 int
int a[l1l0]; // definition allocates 10 ints

int *ptr=i; // point to i's memory location
ptr=&a[3]; // point to address of 4th element

O One of the most powerful applications of pointers, is when

the memory that they are used to access is allocated
dynamically.

J Memory allocated dynamically, is not associated with a variable
name - it must be accessed via a pointer.

f*i 22.5HV2 Software Engineering 11

Stuart Clarke, Pointers - 21

he malloc () function

O In C, the function for memory allocation is malloc().

#include <stdio.h>

#include <malloc.h> /* must be included */
void main () {

int *ptr, num;
printf ("Enter number of elements: ");

scanf ("%$d" , &num) ;

ptr = (int*)malloc (num*sizeof (int)) ;
/* rest of program */

free (ptr); /* deallocates memory */

O malloc () Is used to allocate a space for an int, and the address is
returned to ptr. Memory is deallocated using free ().

[|
=[] o
'3?% 22.5HV2 Software Engineering 11
)
:?

Stuart Clarke, Pointers - 22

he malloc () function

O The function malloc () takes a single argument
representing the number of bytes required.

O In this example, we wish to allocate sufficient space to
store num integers.

J NOTE: Different architectures will use a different number of bytes to
represent an int. To ensure portability, we use the sizeof ()

function that returns the number of bytes for the architecture that
the code is being compiled on.

ptr = (int*)malloc (num*sizeof (int)) ;

O If successful, malloc () will allocate the specified number of bytes,
and returns the start address, which is assigned to ptr.

[J We need to cast this address as a pointer to int by using (int*).

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 23

he new and delete operators

O In C++, we have an alternative to malloc () and free (),
namely the new and delete operators. These have the

following advantages:

J You don’t have to include a header file as is necessary formalloc ()
and free ().

J You don’t have to use a type cast before assigning to a pointer. The
new operator automatically returns the right kind of pointer.

J Most importantly, as we shall see later, the new and delete
operators have special significance when we are declaring objects
(variables defined from classes) - namely they call special member
functions called constructors and destructors.

[We shall use new and delete for all our work involving classes.

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 24

he new and delete operators

O The equivalent C++ version of the previous example is:

#include <iostream.h>

void main () {
int *ptr, num;
cout << "Enter number of elements: ";
cin >> num;

ptr = new[num]; // allocates memory

// rest of program
delete [] ptr; // deallocates memory

'3?% 22.5HV2 Software Engineering 11
)
UK/

Stuart Clarke, Pointers - 25

he new and delete operators

O The general usage of the new operator is :

pointer = new type;

for a single element of type, or ...

pointer = new type[number];

... for number elements of type.

O The corresponding uses of the delete operator are:

delete pointer;
delete [] pointer;

ke 22.5HV2 Software Engineering 11

g
=7

Stuart Clarke, Pointers - 26

Testing for success

O There Is no guarantee that the memory allocation will be
successful:

J new could possibly fail to allocate memory, if there is not sufficient
memory available.

O If new is unsuccessful it will return the NULL pointer:

[J We can use this in a test which will exit the program will an error
message if unsuccessful:

if ((ptr = new int[num]) == NULL) {
cerr << "ERROR: Cannot allocate memory!" << endl;

return 1;

3 This procedure is more useful when allocating larger amounts of
memory.

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 27

Deallocating memory

O The memory that is allocated by a variable definition, is
deallocated when the variable goes out of scope:

void main () {
int 1; // allocates memory for 1 int
double a[l1l0]; // allocates memory for 10 doubles

// rest of program
} // memory reserved for i and a is deallocated

O As the integer i and the array of doubles a, are both
defined within main (), they go out of scope at the end of
main () .

J Hence, the compiler deallocates or frees the memory that was
reserved for them.

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 28

Deallocating memory using delete

O The memory that is reserved by the new operator is not

associated with a variable, and the compiler will not
deallocate it automatically.

O Failure to deallocate memory, will lead to a memory leak:

(J Each time your program is run, it will reduce the amount of available
system memory, until eventually the computer crashes!.

O Hence dynamically allocated memory must be deallocated
by the delete operator.

[J Care must be taken to ensure that memory allocated as a number of
elements is deallocated using delete [].

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 29

Deallocating memory using delete

O In the previous example, we allocated num elements:

#include <iostream.h>
int main() {
int *ptr, num;
cout << "Enter number of elements: ";
cin >> num;
if ((ptr = new[num]) == NULL) { // allocates memory

cerr << "ERROR Cannot allocate memory!" << endl;
return 1;

}

// rest of program
delete [] ptr; // deallocates memory
return O;

J If we used delete ptrinstead of delete [] ptr, we would only

deallocate the memory required for the first integer pointed to by
ptr.

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 30

Using dynamically allocated arrays
O Once allocated, we can use the memory as follows:

#include <iostream.h>
int main() {
int *ptr, num, 1;
cout << "Enter number of elements: ";
cin >> num;
if ((ptr = new[num]) == NULL) {
cerr << "ERROR Cannot allocate memory!" << endl;
return 1;

}

for (i=0;i<num;i++) {
cout << "Enter value " < i+l <« ": ";
cin >> ptr[i];

}

// rest of program
delete [] ptr;
return O;

Stuart Clarke, Pointers - 31

Comparison with arrays

O Arrays use static memory allocation, I.e. the required
number of elements must be specified by compile time.

[This is OK when the size of the array is known and is fixed for all
time.

(J When the array size is variable, the problem is what size to make the
array: too big leads to a waste of memory, too small retricts your
program’s application.

O The major advantage of pointers and dynamic memory
allocation, is that we can wait until run-time to see how
much memory is required, and allocate exactly the required
amount of memory.

O Programs that use dynamic memory allocation are more
flexible and efficient that programs that use arrays.

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 32

Image processing example

O Consider the situation where you have to write a program
to invert a black and white image.

O Most monochrome images represent each pixel by a grey-
level value in the range of 0 (black) to 255 (white).
(J We can store an image in a 2D array of unsigned char’s.

J To invert the image, we simply subtract each pixel grey-level from
the value 255.

@] 22.5HV2 Software Engineering 11

A/

Stuart Clarke, Pointers - 33

Image processing example: Arrays

O The code using an array for the image, would be: -

#include <iostream.h>
int main() {
const int MAX IM SIZE=512; // maximum image size
unsigned char im[MAX IM SIZE] [MAX IM SIZE];
int row,cols,rows,cols;
// read in image size (rows,cols)
if (rows>MAX IM SIZE || cols>MAX IM SIZE) {

cerr << "ERROR: Image too large!" << endl; return 1; }
// read in image
for (row=0;row<rows;row++)
for (col=0;col<cols;col++)
im[row] [col] = 255 - im[row] [col];
// write out image

}
O This code would work for images of size up to 512 by 512.

'3?% 22.5HV2 Software Engineering 11
)
UK/

Stuart Clarke, Pointers - 34

Image processing example: Pointers

#include <iostream.h>
int main() {
unsigned char *im;
int row,cols,rows,cols;
// read in image size (rows,cols)
if ((im=new unsigned char|[rows*cols]) == NULL) {
cerr << "ERROR: Image too large!" << endl; return 1; }

// read in image
for (row=0;row<rows;row++)
for (col=0;col<cols;col++)
im[row*cols+col] = 255 - im[row*cols+col];
// write out image
delete [] im; // deallocate memory
return O;

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 35

Image processing example: Pointers

O This code would work for images of any aspect ratio, up to
a size that can be accomodated by the available memory.

O This example illustrates the flexibility of using dynamic
memory allocation.
J The code will operate with whatever memory is available.

J Hence, if the code is running on a machined equipped with a large
amount of memory, then larger images can be processed.

O A slight disadvantage of this approach, is the less intuitive
way of accessing 2D arrays.

f*i 22.5HV2 Software Engineering II

Stuart Clarke, Pointers - 36

Pointers to 2D arrays

O For 1D arrays, we can dereference the pointer using the
same indexing notation ([]) as a 1D array:

int a[l10], *ptr=a;

ptr[4] =

O Arrays of dimensions greater than one, are actually stored
In memory as one dimensional arrays.
(J Using 2D arrays we are allowed to use the double indexing notation:

im[row] [col]

J When using pointers, we have to use the 1D notation:

im[row*cols+col]

22.5HV?2 Software Engineering II

-?
N

Stuart Clarke, Pointers - 37

Pointers to 2D arrays

O This notation can be better understood by considering an
Image of 3 rows, by 3 columns:

4= COIS =P
T [o][0][0][1]][0][2]

FOWSHaroliura iz

‘[0][01‘[01[1]‘[01[2]‘[1][01‘[1][1]‘[1][2]‘[2][0]‘[2][1]‘[2][2]‘
<= C0l 0 =P ¢= cOl 1 =P = C0l 2 —Pp

| Array representation | | Actual format in memory |

l [2][01)(2][1]}(2][2]

O Hence, to access a particular element, we use the notation:

im[row*cols+col]

f*i 22.5HV2 Software Engineering 11

Stuart Clarke, Pointers - 38

Images as function arguments
O A function to Invert an image would be:

void inv(unsigned char im[] [MAX IM SIZE],int rows,int cols) ({
int row,col;
for (row=0;row<cols;row++)

for (col=0;col<cols;col++)
im[row] [col] = 255 - im[row] [col];

(J Using 2-D arrays to store the image, OR:

void inv (unsigned char *im, int rows,int cols) {
int row,col;
for (row=0;row<cols;row++)
for (col=0;col<cols;col++)
im[row*cols+col] = 255 - im[row*cols+col];

(J Using dynamic memory allocation.

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 39

Pointers to structures

O Pointers can be declared for any type, including structures.

3 This presents a slight notational problem:

J Let us declare a variable a of type rational, initialise its members,
and declare a pointer to rational, initialised to point to a:

rational a={22,7}, *ptr=¢&a;

[J We can access the members of a using its pointer ptr as follows:
(*ptr) .num
[J An easier notation is to use the -> operator:

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 40

Pointers to structures

#include <iostream.h>
#include <string.h>
struct employee {
char name[30];
int wage;
};
void main ()

{

employee *labourer = new employee;
strcpy (labourer->name,"Bill Gates") ;
labourer->wage = 100;

cout << labourer->name << endl;

cout << labourer->wage << endl;
delete labourer;

Stuart Clarke, Pointers - 41

Pointers to functions

O It is possible to declare a pointer to a function:
[Allows run-time selection of functions:

#include <iostream.h>
void functionl (void) {
cout << "function 1" << endl;
}
void function2 (void) {
cout << "function 2" << endl;

}

void main () {

int 1i;

void (*funptr) (void); // declaration

cout << "Function 1 or Function 2: ";

cin >> 1i;

if (i==1) funptr=&functionl;

else funptr=&function2;
mmm— (*funptr) () ; // function call m—
8 22.5HV])}

AR
__/

o)

&2
\ X
U =olarke, Pointers - 42

Pointer to functions
O EXAMPLE: The C++ standard library gsort () function.

O C++ provides a function to perform a quick sort on an array
of any type of variable.

J PROBLEM: this function needs to know how to compare these
elements in order to sort them.

[SOLUTION: the user writes their own function and passes a pointer
to this function as one of the arguments of gsort ().

O e.g. The football league example:

J A league of teams could be held in an array, and sorted into correct
position, by writing a function that sorts by points and splits ties by
goal difference.

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 43

Summary

O A “pointer to int” Is a variable that can represent the
address of the memory location where an integer is stored.

O Pointers may be used to access arrays of data.

O An important application of pointers is in dynamic memory
allocation.

J Dynamic memory allocation is a more flexible and efficient way of
representing arrays of data.

O In C++ the new and delete operators are used in
preference to malloc () and free ().

O Care must be taken to ensure that dynamically allocated
memory Is deallocated before program termination.

-?
N

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 44

Summary

O The => operator may be used to access the members of
structures via a pointer.

O It is possible to declare pointers to functions, which would
allow the run time selection of functions.

22.5HV?2 Software Engineering II

Stuart Clarke, Pointers - 45

