
����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

B39HV2
SOFTWARE ENGINEERING II

UNIT 1: Introduction to Object-Oriented Programming

Recommended Books

C++ Programming Today
C++ Programming Today, Barbara Johnston, Prentice Hall, 2001

Text Book
Easy and Friendly
Incomplete

How to Program in C++ 4th edition, Deitel & Deitel, Prentice Hall, 2003,
Reference Book
Complex
Complete

Shaum’s outlines Programming with C++, John Hubbard, 2nd Edition
Summary book
Lots of examples

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Aims

m In this unit we will consider the following topics:

r The need for object-oriented software development.
r Objects
r Classes
r Relationships between objects.
r Inheritance
r Encapsulation
r Polymorphism

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Why object-oriented?
m This unit will discuss what is meant by the term object-

oriented and why it is of such interest to programmers.

m At the dawn of programming:
r Computers and storage devices were very expensive, programmers

were cheap.
r Programming tasks were incredibly simple by today’s standards.
r There was little marketing of software - organisations wrote their

own code to solve their own problems.

m Nowadays:
r Hardware is cheap and programmers are expensive.
r Programming tasks are becoming phenomenally complex.
r There has been an explosion in the use of computers and a

subsequent explosion in the software market.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

How it was . . .
m In olden days, the emphasis was on getting the job done

with the minimal available resources:
r The emphasis on code was to make best use of the limited speed

and memory available. Little consideration was given to issues
such as portability, maintainability, understandability etc.

m There are many legacies from this age that come back to
haunt us:

r Some institutions use programs that cannot be properly maintained
or upgraded as the programmer has retired or died!.

r The millenium bug that we face today, came about because
programmers in the 60’s wanted to save 2 bytes in representing a
date, by removing the figures denoting the century:
m Hence does 1/1/00 represent 1/1/1900 or 1/1/2000?.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

How it is . . .
m Nowadays, programmers work in a highly competitive

market place. The challenge is to create code that:
m works correctly
m operates efficiently
m contains no bugs
m can be maintained and updated
m ships before its rivals.

m All this, and the problem domain is becoming more and
more complex.

m In practice, It is often the first system to reach the market
that sells, not the best system.
r Hence there is a trade-off between quality and development speed.
r This explains why so much of today’s software contains bugs.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Managing complexity

m It can take several years (~5) to bring a new model of a car
to the market.
r This is despite the fact that the design and construction principals

in the motor industry have changed relatively little over a century.
r Also, a new model will behave in roughly the same way as previous

ones in testing. The properties of the materials will remain the
same, as will the laws of physics.

m In contrast, a piece of software can take as little as 6
months from brainstorming design to shrink-wrapping.
r It may use entirely different principals to previous software. It will

contain much greater complexity and offer much less well
understood behavior than mechanical systems such as cars.

r As a result, we have come to expect less reliability from software
products than for cars, televisions, etc.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Importance of reliability

m The safety and reliability requirements of cars are obvious.

m Nowadays, software is being placed in more and more
sensitive areas:

r Control of industrial processes such as chemical engineering and
nuclear power plants.

r "Fly-by-wire" control of airplanes and air-traffic control operations.

r Medical diagnosis and intensive care control.

m Consequently it is necessary to approach such applications
with more rigor than early computer applications such as
word processing etc.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

What is required . . .
m What is required is a methodology that allows us to

manage the complexity of the software development
process and enable us to produce reliable, high quality
software that will ship on time.

r In the dark ages of programming, code was unstructured and data
was global. This led to convoluted and fragile code, that was not
easily maintained or updated.

r It didn’t take long before such programs became unmanageable.
The use of the JRWR statement led to unstructured "spaghetti code".

r Later, structured programming languages (e.g FORTRAN, C) used
procedural abstraction to create more reliable programs.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Structured programming
m Structured programming languages provided a great

improvement over the first programming languages.

r The use of conditional and repetition constructs (LI, ZKLOH etc)
ensure that code was structured and the thread of execution was
easily decipherable.

r Although these languages contained the JRWR statement, its use
was greatly frowned upon.

r Importantly, the ability to create functions greatly enhanced the
ability of programmers to use abstraction in tackling complex
applications.

r Consequently programming became a more systematic and
engineered discipline.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

However . . .

m However as is often the case, new approaches may solve
old problems but can introduce new ones:
r Structured programming languages provided a good solution to the

relatively simple problems encountered by early programmers.

r However, just as road-building increases not decrease traffic, the
new efforts to tackle complexity simply increased the complexity of
what programs became expected to do.

r Applications were becoming much larger and more critical. Hence
the problems to be solved were more complex and the consequen-
ces of program bugs and crashes were becoming more significant.

r It became apparent that the costs of correcting bugs increased
dramatically, the later in the development process that they were
detected.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Bugs

m Legend has it that software errors become known as bugs
after an error in an early program was tracked down to an
insect trapped in a relay in the magnetic (core) memory.

r Developers spend much of their time finding bugs in programs.
Consequently much of the costs of development are concerned with
finding and correcting bugs.

r The later the bugs are found in the process, the more expensive it
becomes to correct them.

r Bugs found after a release of software can by 100 times as
expensive to correct as bugs found early in the development.

r Consequently, software developers began looking for a method that
would prevent bugs from creeping in to programs.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Stuart Clarke, Unit 1 - 14

A funny story about bad software

,Q�0DUFK������D�PDQ�OLYLQJ�LQ�1HZWRZQ�QHDU�%RVWRQ�0DVVDFKXVHWWV�UHFHLYHG�D�ELOO�IRU�KLV�DV�\HW�XQXVHG�FUHGLW
FDUG�VWDWLQJ�WKDW�KH�RZHG���������+H�LJQRUHG�LW�DQG�WKUHZ�LW�DZD\�
,Q�$SULO�KH�UHFHLYHG�DQRWKHU�DQG�WKUHZ�WKDW�RQH�DZD\�WRR���7KH�IROORZLQJ�PRQWK�WKH�FUHGLW�FDUG�FRPSDQ\�VHQW
KLP�D�YHU\�QDVW\�QRWH�VWDWLQJ�WKH\�ZHUH�JRLQJ�WR�FDQFHO�KLV�FDUG�LI�KH�GLGQ
W�VHQG�WKHP�������E\�UHWXUQ�RI�SRVW�
+H�FDOOHG�WKHP��WDONHG�WR�WKHP��WKH\�VDLG�LW�ZDV�D�FRPSXWHU�HUURU�DQG�WROG�KLP�WKH\
G�WDNH�FDUH�RI�LW��7KH
IROORZLQJ�PRQWK�KH�GHFLGHG�WKDW�LW�ZDV�DERXW�WLPH�WKDW�KH�WULHG�RXW�WKH�WURXEOHVRPH�FUHGLW�FDUG�ILJXULQJ�WKDW�LI
WKHUH�ZHUH�SXUFKDVHV�RQ�KLV�DFFRXQW�LW�ZRXOG��SXW�DQ�HQG�WR�KLV�ULGLFXORXV�SUHGLFDPHQW��+RZHYHU��LQ�WKH�ILUVW�VWRUH
WKDW�KH�SURGXFHG�KLV�FUHGLW�FDUG�LQ�SD\PHQW�IRU�KLV�SXUFKDVHV�KH�IRXQG�WKDW�KLV�FDUG�KDG�EHHQ�FDQFHOOHG�
+H�FDOOHG�WKH�FUHGLW�FDUG�FRPSDQ\�ZKR�DSRORJL]HG�IRU�WKH�FRPSXWHU�HUURU�RQFH�DJDLQ�DQG�VDLG�WKDW�WKH\�ZRXOG
WDNH�FDUH�RI�LW��7KH�QH[W�GD\�KH�JRW�D�ELOO�IRU�������VWDWLQJ�WKDW�SD\PHQW�ZDV�QRZ�RYHUGXH���$VVXPLQJ�WKDW�KDYLQJ
VSRNHQ�WR�WKH�FUHGLW�FDUG�FRPSDQ\�RQO\�WKH�SUHYLRXV�GD\�WKH�ODWHVW�ELOO�ZDV�\HW�DQRWKHU�PLVWDNH�KH�LJQRUHG�LW�
WUXVWLQJ�WKDW�WKH�FRPSDQ\�ZRXOG�EH�DV�JRRG�DV�WKHLU�ZRUG�DQG�VRUW�WKH�SUREOHP�RXW�
7KH�QH[W�PRQWK�KH�JRW�D�ELOO�IRU�������VWDWLQJ�WKDW�KH�KDG����GD\V�WR�SD\��KLV�DFFRXQW�RU�WKH�FRPSDQ\�ZRXOG�KDYH
WR�WDNH�VWHSV�WR�UHFRYHU�WKH�GHEW���)LQDOO\�JLYLQJ�LQ�KH�WKRXJKW�KH�ZRXOG�SOD\�WKH�FRPSDQ\�DW�WKHLU�RZQ�JDPH�DQG
PDLOHG�WKHP�D�FKHFN�IRU���������7KH�FRPSXWHU�GXO\�SURFHVVHG�KLV�DFFRXQW�DQG�UHWXUQHG�D�VWDWHPHQW�WR�WKH�HIIHFW
WKDW�KH�QRZ�RZHG�WKH�FUHGLW�FDUG�FRPSDQ\�QRWKLQJ�DW�DOO�
$�ZHHN�ODWHU��WKH�PDQ
V�EDQN�FDOOHG�KLP�DVNLQJ�KLP�ZKDW�KH�ZDV�GRLQJ�ZULWLQJ�D�FKHFN�IRU���������$IWHU�D�OHQJWK\
H[SODQDWLRQ�WKH�EDQN�UHSOLHG�WKDW�WKH�������FKHFN�KDG�FDXVHG�WKHLU�FKHFN�SURFHVVLQJ�VRIWZDUH�WR�IDLO�
7KH�EDQN�FRXOG�QRW�QRZ�SURFHVV�$1<�FKHFNV�IURP�$1<�RI�WKHLU�FXVWRPHUV�WKDW�GD\�EHFDXVH�WKH�FKHFN�IRU������
ZDV�FDXVLQJ�WKH�FRPSXWHU�WR�FUDVK��7KH�IROORZLQJ�PRQWK�WKH�PDQ�UHFHLYHG�D�OHWWHU�IURP�WKH�FUHGLW�FDUG�FRPSDQ\
FODLPLQJ�WKDW�KLV�FKHFN�KDG�ERXQFHG�DQG�WKDW�KH�QRZ�RZHG�WKHP�������DQG�XQOHVV�KH�VHQW�D�FKHFN�E\�UHWXUQ�RI
SRVW�WKH\�ZRXOG�EH�WDNLQJ�VWHSV�WR�UHFRYHU�WKH�GHEW�
7KH�PDQ��ZKR�KDG�EHHQ�FRQVLGHULQJ�EX\LQJ�KLV�ZLIH�D�FRPSXWHU�IRU�KHU�ELUWKGD\��ERXJKW�KHU�D�W\SHZULWHU�LQVWHDG�

,Q�0DUFK������D�PDQ�OLYLQJ�LQ�1HZWRZQ�QHDU�%RVWRQ�0DVVDFKXVHWWV�UHFHLYHG�D�ELOO�IRU�KLV�DV�\HW�XQXVHG�FUHGLW
FDUG�VWDWLQJ�WKDW�KH�RZHG���������+H�LJQRUHG�LW�DQG�WKUHZ�LW�DZD\�
,Q�$SULO�KH�UHFHLYHG�DQRWKHU�DQG�WKUHZ�WKDW�RQH�DZD\�WRR���7KH�IROORZLQJ�PRQWK�WKH�FUHGLW�FDUG�FRPSDQ\�VHQW
KLP�D�YHU\�QDVW\�QRWH�VWDWLQJ�WKH\�ZHUH�JRLQJ�WR�FDQFHO�KLV�FDUG�LI�KH�GLGQ
W�VHQG�WKHP�������E\�UHWXUQ�RI�SRVW�
+H�FDOOHG�WKHP��WDONHG�WR�WKHP��WKH\�VDLG�LW�ZDV�D�FRPSXWHU�HUURU�DQG�WROG�KLP�WKH\
G�WDNH�FDUH�RI�LW��7KH
IROORZLQJ�PRQWK�KH�GHFLGHG�WKDW�LW�ZDV�DERXW�WLPH�WKDW�KH�WULHG�RXW�WKH�WURXEOHVRPH�FUHGLW�FDUG�ILJXULQJ�WKDW�LI
WKHUH�ZHUH�SXUFKDVHV�RQ�KLV�DFFRXQW�LW�ZRXOG��SXW�DQ�HQG�WR�KLV�ULGLFXORXV�SUHGLFDPHQW��+RZHYHU��LQ�WKH�ILUVW�VWRUH
WKDW�KH�SURGXFHG�KLV�FUHGLW�FDUG�LQ�SD\PHQW�IRU�KLV�SXUFKDVHV�KH�IRXQG�WKDW�KLV�FDUG�KDG�EHHQ�FDQFHOOHG�
+H�FDOOHG�WKH�FUHGLW�FDUG�FRPSDQ\�ZKR�DSRORJL]HG�IRU�WKH�FRPSXWHU�HUURU�RQFH�DJDLQ�DQG�VDLG�WKDW�WKH\�ZRXOG
WDNH�FDUH�RI�LW��7KH�QH[W�GD\�KH�JRW�D�ELOO�IRU�������VWDWLQJ�WKDW�SD\PHQW�ZDV�QRZ�RYHUGXH���$VVXPLQJ�WKDW�KDYLQJ
VSRNHQ�WR�WKH�FUHGLW�FDUG�FRPSDQ\�RQO\�WKH�SUHYLRXV�GD\�WKH�ODWHVW�ELOO�ZDV�\HW�DQRWKHU�PLVWDNH�KH�LJQRUHG�LW�
WUXVWLQJ�WKDW�WKH�FRPSDQ\�ZRXOG�EH�DV�JRRG�DV�WKHLU�ZRUG�DQG�VRUW�WKH�SUREOHP�RXW�
7KH�QH[W�PRQWK�KH�JRW�D�ELOO�IRU�������VWDWLQJ�WKDW�KH�KDG����GD\V�WR�SD\��KLV�DFFRXQW�RU�WKH�FRPSDQ\�ZRXOG�KDYH
WR�WDNH�VWHSV�WR�UHFRYHU�WKH�GHEW���)LQDOO\�JLYLQJ�LQ�KH�WKRXJKW�KH�ZRXOG�SOD\�WKH�FRPSDQ\�DW�WKHLU�RZQ�JDPH�DQG
PDLOHG�WKHP�D�FKHFN�IRU���������7KH�FRPSXWHU�GXO\�SURFHVVHG�KLV�DFFRXQW�DQG�UHWXUQHG�D�VWDWHPHQW�WR�WKH�HIIHFW
WKDW�KH�QRZ�RZHG�WKH�FUHGLW�FDUG�FRPSDQ\�QRWKLQJ�DW�DOO�
$�ZHHN�ODWHU��WKH�PDQ
V�EDQN�FDOOHG�KLP�DVNLQJ�KLP�ZKDW�KH�ZDV�GRLQJ�ZULWLQJ�D�FKHFN�IRU���������$IWHU�D�OHQJWK\
H[SODQDWLRQ�WKH�EDQN�UHSOLHG�WKDW�WKH�������FKHFN�KDG�FDXVHG�WKHLU�FKHFN�SURFHVVLQJ�VRIWZDUH�WR�IDLO�
7KH�EDQN�FRXOG�QRW�QRZ�SURFHVV�$1<�FKHFNV�IURP�$1<�RI�WKHLU�FXVWRPHUV�WKDW�GD\�EHFDXVH�WKH�FKHFN�IRU������
ZDV�FDXVLQJ�WKH�FRPSXWHU�WR�FUDVK��7KH�IROORZLQJ�PRQWK�WKH�PDQ�UHFHLYHG�D�OHWWHU�IURP�WKH�FUHGLW�FDUG�FRPSDQ\
FODLPLQJ�WKDW�KLV�FKHFN�KDG�ERXQFHG�DQG�WKDW�KH�QRZ�RZHG�WKHP�������DQG�XQOHVV�KH�VHQW�D�FKHFN�E\�UHWXUQ�RI
SRVW�WKH\�ZRXOG�EH�WDNLQJ�VWHSV�WR�UHFRYHU�WKH�GHEW�
7KH�PDQ��ZKR�KDG�EHHQ�FRQVLGHULQJ�EX\LQJ�KLV�ZLIH�D�FRPSXWHU�IRU�KHU�ELUWKGD\��ERXJKW�KHU�D�W\SHZULWHU�LQVWHDG�

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

A new methodology

m Software developers sought a new approach for developing
software. One that would . . .

r Produce highly maintainable software, where changing one part of a
program would not break the rest.

r Produce reusable software, where similar programming tasks could
share common elements, without having to reinvent the wheel.

r Make it easier to tackle complex programming problems and reduce
the chances of introducing bugs into programs.

m These ideas led to the development of object-oriented (OO)
software development.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Object-oriented software development

m The key idea behind object-oriented development is a
fundamental change in approach:

r Structured programming reflects the way that computers process
information. They implement sequential execution, conditional
branching and repetition. As such, a problem is tackled by
decomposing it into a flow of operations, data is of secondary
importance. Because we do not naturally think in this way, dealing
with complex problems is difficult and bugs may not be obvious.

r The object-oriented approach attempts to find a methodology and
language that reflect the way that people think about problems. In
fact, it appears that people tend to think in terms of things not
operations. In OO development we refer to these "things" as
objects.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Objects
m What the objects are, will be determined by the problem

domain, i.e. the context in which the software is to be used:

r In a banking application, our objects will be customers, accounts,
sums of money etc.

r In a racing simulation game, our objects could be players, cars,
barriers, race-tracks etc.

r In a library application, our objects will be books, journals, CD-
roms, members, etc.

r In an air-traffic control application, our objects will be planes, air-
corridors, radar screens, etc.

m In a "nutshell", we start by considering what "things" are involved in a
problem, then we consider what these objects can do and represent.
We go on to consider how these objects are related and interact and
eventually implement a solution.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Objects

m An important thing to realise, is that OO development starts
by thinking about the problem and what it entails, and not
about the program that will implement the solution.

r In the real world, "things" have characteristics and behavior. A car
is a "thing" that has a make, model, registration number and can
accelerate, steer, brake, change gear etc.

r We think about the objects involved in the problem, about what are
their characteristics (attributes) and behavior.

r An object-oriented language will allow us to model these attributes
and behaviors.

r We construct a solution to the problem from these objects.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
Unit 1

What is an object?
m An object has state, behaviour and identity:

r The state of an object is the particular values of its attributes.
m In an air-traffic control application each plane may be an object with

several attributes (height, heading, speed, call-sign) , but an individual
plane object will have its own state (current height, heading, speed).

r The behaviour of an object is the actions that the object can perform.
m A plane can climb, descend, accelerate, decelerate, land, take-off, etc.

r State can affect behaviour (if height reaches a value, the landing
carriage is lowered).

r Behavior can affect state (as a plane climbs its height will increase).

r The identity of an object distinguishes it from all other objects - two
BA 747’s are not the same plane, they merely share some attributes.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Classes
m As we can see, we may have several objects that represent

different versions of the same "thing".
r This "thing" is known as a class, and is the "template" from which

the objects are "stamped".

m In C++, a class is implemented as a special kind of user
defined data type, similar in some regards to structures.

m An object can be declared as an instance of a class:

FODVV�SODQH�^
������DWWULEXWHV
������EHKDYLRXU
`�

FODVV�SODQH�^
������DWWULEXWHV
������EHKDYLRXU
`�

SODQH��VSLULWBRIBVWBORXLV��DLUIRUFHBRQH�SODQH��VSLULWBRIBVWBORXLV��DLUIRUFHBRQH�

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Classes

m The class will describe what attributes an object can have,
and what behaviour it can perform. In C++, . . .

r the attributes are known as member variables.

r the behaviour is known as member functions (also called methods).

m All objects (instances) of a class will have the same
attributes and behaviour, but will have their own state and
identity.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Relationships between objects

m The real power of the object-oriented approach is to do
with the relationships between objects. These include:

m Dependency
r A dependency is where one object must know about another.
r E.g. An object plane must know about an object ground.

m Association
r An association is where the state of one object depends on another.
r Association is stronger than dependency, it specifies that two

objects have a strong connection but neither is a part of the other.
r E.g. A pilot flies a plane, a carrier owns a plane.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Relationships between objects . . .

m Aggregation
r Aggregation specifies how objects can be constructed from other

objects.
r E.g. a plane has engines, wings, instruments etc. Each component

is an object in its own right.

m Composition
r Composition expresses a closer relationship than aggregation,

where one object is composed of others, and these component
objects only exist during the "lifetime" of the whole.

r E.g. a book is composed of chapters, contents etc.
r Aggregation specifies a looser relationship - a plane may have it’s

engines changed.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
Unit 1

Inheritance
m Inheritance is a very important relationship that can exist

between classes.

r The type of relationship that is represented by inheritance, is
commonly called an "is a" relationship. e.g. a dog is a mammal.

r The class dog can be said to inherit attributes and behaviour from
the class mammal, as well as adding new ones of its own.
m All mammals are warm blooded, air breathing animals that bear live

young. Hence we know that dogs share these attributes and behaviours
with other mammals.

m The class dog adds to these inherited attributes and behaviours, the
attributes "furry" and "legs" and the behaviours "chase cats", "wag
tail", amongst others.

m A whale is also a mammal, and as such will share some attributes and
behaviours with dogs, but add new ones of their own, e.g. "fins", "blow
hole", "swim", "migrate".

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Inheritance

m It is easy to see that the concept of inheritance allows us to
organise a hierarchy of classes, where only the
specialisations of new classes need be specified and
inherited attributes and behaviour can be assumed.

m This is an example of reuse and it allows us to compactly
describe classes without having to repeat ourselves:
r A cat is a carnivorous mammal with a furry coat and retractable

claws that hunts smaller animals.
r A tiger is a large stripey cat that lives in Asiatic forests and

grassland. Has been known to eat people!
r A tiger will inherit the features of mammals and the specialisations

of cats and hence we know a lot about it before we start to mention
its particular specialisations.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Inheritance in programming
m Just as inheritance is a useful concept in taxonomy and

genetics, it is an important part of the OO approach to
programming.

r You write a class DFFRXQW for a banking application. This class may
have attributes such as "customer details", "balance" etc, (some of
these attributes may be objects of other classes), and methods such
as "open", "withdraw", "deposit" etc.

r If the bank also offers an account with an overdraft facility, you can
write a new class DFFRXQWBZLWKBRYHUGUDIW that will inherit all the
attributes and behaviour from DFFRXQW and add new attributes
"overdraft limit", "interest", and behaviour "charge interest".

r By using inheritance, you now have two classes for less than twice
the work!

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Some terminology
m The class DFFRXQW is known as the base class, as it forms

the top of the hierarchy.

m The class DFFRXQWBZLWKBRYHUGUDIW is known as a
derived class, where it has been derived from the base
class DFFRXQW.

m The class DFFRXQWBZLWKBRYHUGUDIW is said to have
inherited the member variables and methods from the class
DFFRXQW.

m Just as a duck-billed platypus lays eggs, it is possible for
some derived classes to override inherited behaviour.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

The "three pillars" of OO programming

m Inheritance is such an important concept that it is regarded
as being one of the "three pillars" of OO programming.
r The other two are encapsulation and polymorphism.

m Encapsulation
r As its name implies, encapsulation ensures that each object is self

contained.
r We want to hide the internal workings of the object and only present

the user of the object with those features that they require to use it.
r Early cars were poor examples of encapsulation, with motorists

having to prime the fuel pump, set an idle angle and engage a starter
crank, before starting the car, and when changing down a gear they
had to double de-clutch. Nowadays we don’t need to understand the
internal workings of a car to drive it.

r Hence, if presented with a diesel engined car, we are able to drive it.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Encapsulation

m The principal behind encapsulation is:

"The more you expose the workings of an object, the more
likely someone is to use it in the wrong way".

r If you allow someone to use a software component in the wrong
way, then you are in danger of introducing a bug into the program.

r Hence a well encapsulated object will only allow the user to employ
it in the way in which it was intended.

r This principal removes the "ripple effect" experienced in software
projects, where a minor change in one part of the program creates a
chain reaction that affects the correct operation of the program.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

An example to explain encapsulation
m For example, suppose that you have created a class GDWH

that has member variables GD\, PRQWK and \HDU, and
methods to compute differences between dates etc.

r Initially you decide to use LQWs to represent the GD\, PRQWK and \HDU
data members, and release a library containing the implementation of
this class for use by other programmers on the project.

r Later, for some reason, you decide to represent the PRQWK data
member as a string instead, i.e. "January", "February" etc. You make
this change and update the library.

r Very shortly, the prototype system starts to perform strangely giving
unexpected operation and inaccurate results!

WHY?

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

An example to explain encapsulation . . .
r Unknown to you, another programmer has decided to substitute his

own routine for computing the difference between dates, including
the line:

r This operation will now be comparing the addresses of where the
strings for the member variables are stored, and not the months
themselves.

r The problem came about, because you allowed other programmers
to access the internal workings of your class.

r Encapsulation ensures that the only methods that they have for
using the objects are the ones that you give them. Hence when you
make a change to the class, you simply update the methods to
ensure correct operation.

LI��VWDUW�PRQWK�!�HQG�PRQWK��LI��VWDUW�PRQWK�!�HQG�PRQWK��

����+9��6RIWZDUH�(QJLQHHULQJ�,,
Unit 1

Encapsulation
m This example illustrates a key advantage of encapsulation.

r By decomposing the task into a set of objects and testing and
debugging these objects individually, we can construct a larger
application that is much less susceptible to bugs.

r The properties and actions of materials and components in car
manufacture are well understood, and consequently the properties
and actions of the assembled vehicle are predictable.

r Likewise the behaviour and operation of a large software
application can be better predicted when it is assembled from well
encapsulated objects.

r Most bugs are ironed out in the development and testing of the
objects. New ones are limited due to restrictions on the use of these
objects.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Interfaces and implementations

m We implement this concept of encapsulation by ensuring a
well defined distinction between the object’s interface and
it’s implementation.

r The interface of an object is the set of accessible member function
declarations.

r The implementation of an object is all the data and function
members that are required to actually perform the object’s tasks.

r An object that interacts or uses your object, is known as a client of
your object. Likewise your object will be known as the server.

r A client object needs only know the interface of the server object in
order to use it’s services.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Encapsulation in C++

m Encapsulation is achieved in C++ by allowing different
levels of membership, including public and private.

r The interface of the class is placed in the public section.

r The implementation of the class is placed in the private section.

m The implementation is entirely hidden from view. Hence
you are free to change the way in which a method is
implemented without affecting the way the object is used.

m This is known as information hiding - only the parts of a
class that a programmer needs to know to use it, are
exposed.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Polymorphism
m The third of the "three pillars" of object-oriented

programming is polymorphism.

r The word "polymorphism" means literally "many forms".

r We have already met a type of polymorphism in C++, namely
function and operator overloading.

r Remember that overloading mimics the ability to use the same word
to represent similar but distinct operations in different contexts:

You can push a button, mouse, car, your luck etc.

r In C++ we wrote GLVSOD\�� functions for money, dates and times.

r In C++ this type of polymorphism is known as function
polymorphism.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Function overloading
m Consider a program that requires functions to display a

sum of money, a time, and a date:

YRLG�GLVSOD\�IORDW�DPRXQW�
^
���FRXW����VHWLRVIODJV�LRV��IL[HG_LRV��VKRZSRLQW��
���FRXW����VHWSUHFLVLRQ��������������DPRXQW�
`

YRLG�GLVSOD\�IORDW�DPRXQW�
^
���FRXW����VHWLRVIODJV�LRV��IL[HG_LRV��VKRZSRLQW��
���FRXW����VHWSUHFLVLRQ��������������DPRXQW�
`

YRLG�GLVSOD\�LQW�KRXU��LQW�PLQXWH�
^
���FRXW����VHWZ�������VHWILOO�
�
�����KRXU��������
���FRXW����VHWZ�������VHWILOO�
�
�����PLQXWH�
`

YRLG�GLVSOD\�LQW�KRXU��LQW�PLQXWH�
^
���FRXW����VHWZ�������VHWILOO�
�
�����KRXU��������
���FRXW����VHWZ�������VHWILOO�
�
�����PLQXWH�
`

YRLG�GLVSOD\�LQW�GD\��LQW�PRQWK��LQW�\HDU�
^
���FRXW����GD\�����������PRQWK�����������\HDU�
`

YRLG�GLVSOD\�LQW�GD\��LQW�PRQWK��LQW�\HDU�
^
���FRXW����GD\�����������PRQWK�����������\HDU�
`

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Function overloading
m Without function overloading, we would be required to

provide individual names for each function.
r (�J��GLVSOD\BPRQH\��, GLVSOD\BWLPH��, GLVSOD\BGDWH��.

m The question remains: "how does the compiler tell which
GLVSOD\�� function we mean?".

The answer is in the type and number of the arguments.

FRXW�����7KH�VXP�RI���
GLVSOD\�ZLWKGUDZDO��
FRXW������ZDV�UHPRYHG�IURP�\RXU�DFFRXQW�DW���
GLVSOD\�KRXU�PLQ��
FRXW������RQ���
GLVSOD\�G�P�\��

FRXW�����7KH�VXP�RI���
GLVSOD\�ZLWKGUDZDO��
FRXW������ZDV�UHPRYHG�IURP�\RXU�DFFRXQW�DW���
GLVSOD\�KRXU�PLQ��
FRXW������RQ���
GLVSOD\�G�P�\��

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Function overloading
m In this example, we have 3 functions called GLVSOD\��.

r The compiler can determine which function to use by comparing the
number of arguments in each call to the function declarations.

FRXW�����7KH�VXP�RI���
GLVSOD\�ZLWKGUDZDO����������������DUJXPHQW
FRXW������ZDV�UHPRYHG�IURP�\RXU�DFFRXQW�DW���
GLVSOD\�KRXU�PLQ������������������DUJXPHQWV
FRXW������RQ���
GLVSOD\�G�P�\���������������������DUJXPHQWV

FRXW�����7KH�VXP�RI���
GLVSOD\�ZLWKGUDZDO����������������DUJXPHQW
FRXW������ZDV�UHPRYHG�IURP�\RXU�DFFRXQW�DW���
GLVSOD\�KRXU�PLQ������������������DUJXPHQWV
FRXW������RQ���
GLVSOD\�G�P�\���������������������DUJXPHQWV

7KH�VXP�RI�������ZDV�UHPRYHG�IURP�\RXU�DFFRXQW�DW�������RQ�������7KH�VXP�RI�������ZDV�UHPRYHG�IURP�\RXU�DFFRXQW�DW�������RQ�������

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

YRLG�GLVSOD\�GDWH�G�
^
���FRXW����G�GD\�����������G�PRQWK�����������G�\HDU�
`

YRLG�GLVSOD\�GDWH�G�
^
���FRXW����G�GD\�����������G�PRQWK�����������G�\HDU�
`

Function overloading
m Using structures called WLPH and GDWH, would still be OK

as the types of the single arguments will differ:

FRXW�����7KH�VXP�RI���
GLVSOD\�ZLWKGUDZDO��������IORDW�DUJXPHQW
FRXW������ZDV�UHPRYHG�IURP�\RXU�DFFRXQW�DW���
GLVSOD\�W�����������������WLPH�DUJXPHQW
FRXW������RQ���
GLVSOD\�GD\���������������GDWH�DUJXPHQW

FRXW�����7KH�VXP�RI���
GLVSOD\�ZLWKGUDZDO��������IORDW�DUJXPHQW
FRXW������ZDV�UHPRYHG�IURP�\RXU�DFFRXQW�DW���
GLVSOD\�W�����������������WLPH�DUJXPHQW
FRXW������RQ���
GLVSOD\�GD\���������������GDWH�DUJXPHQW

YRLG�GLVSOD\�IORDW�DPRXQW�
^
���FRXW����VHWLRVIODJV�LRV��IL[HG_LRV��VKRZSRLQW��
���FRXW����VHWSUHFLVLRQ��������������DPRXQW�
`

YRLG�GLVSOD\�IORDW�DPRXQW�
^
���FRXW����VHWLRVIODJV�LRV��IL[HG_LRV��VKRZSRLQW��
���FRXW����VHWSUHFLVLRQ��������������DPRXQW�
`

YRLG�GLVSOD\�WLPH�W�
^
���FRXW����VHWZ�������VHWILOO�
�
�����W�KRXU��������
���FRXW����VHWZ�������VHWILOO�
�
�����W�PLQXWH�
`

YRLG�GLVSOD\�WLPH�W�
^
���FRXW����VHWZ�������VHWILOO�
�
�����W�KRXU��������
���FRXW����VHWZ�������VHWILOO�
�
�����W�PLQXWH�
`

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Polymorphism
m Another type of polymorphism exists in C++, namely object

polymorphism.

r This type of polymorphism is used with derived classes.
m It is possible for objects from classes in an inheritance hierarchy to

implement a particular method in the way that suits it best.

r Let us first consider a non-programming example:
m A base class vehicle has the behaviours accelerate, decelerate and steer.
m We derive the classes car, bicycle and boat, i.e. they are all

specialisations of vehicles.
m Each class inherits the behaviours accelerate, decelerate and steer and

implements them in the appropriate way.
m Hence if we want a car object to steer we turn the steering wheel, a

bicycle object we turn the handlebars and a boat object we turn a rudder.
m In each case the meaning is the same but the actual action differs.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

Polymorphism in C++
m To explain polymorphism in C++ consider the following

example:
r In the banking example, we have a base class DFFRXQW and a

derived class�DFFRXQWBZLWKBRYHUGUDIW.
m Both classes have the member function RSHQ��.

r When we open an object of class DFFRXQW we need to specify the
customer details and initial balance.

r When we open an object of class DFFRXQWBZLWKBRYHUGUDIW, we
need to also specify the size of the allowable overdraft.

r Hence the implementation of the member function RSHQ�� will differ
for the two classes.

r In C++, we implement this type of polymorphism by using virtual
functions.

A function that is declared virtual in the base class can be
overridden in a derived class.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
Unit 1

Polymorphism in C++

m Let us consider another example:
r Suppose that you are working on a graphics application. You write

a class called VKDSH.
r You then derive the classes VTXDUH, FLUFOH and WULDQJOH.
r Each class requires the member functions VHWBVL]H�� and

FRPSXWHBDUHD���

r We cannot provide an implementation for these functions in the
base class VKDSH, as we do not know the form of the shape.

r Instead we declare them as pure virtual functions (no definitions are
provided). This makes VKDSH an abstract base class.

r In each of the derived classes we can provide an appropriate
implementation for the member functions.

r We cannot declare any objects of class VKDSH. The class VKDSH only
exists to represent the relationship between the classes VTXDUH,
FLUFOH and WULDQJOH.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
 Unit 1

SUMMARY

m Objects can have state, behaviour and identity.

m A class represents a "template" for creating objects, and
details the attributes and behaviour that the objects can
possess.

m An object can be related to another object by the
relationships of dependency, association, aggregation and
composition.

m Another, stronger type of relationship is inheritance, where
a derived class can inherit characteristics from a base
class and add its own specialisations.

����+9��6RIWZDUH�(QJLQHHULQJ�,,
Unit 1

SUMMARY

m Inheritance is the first of the "three pillars of object-
orientation". The other two are encapsulation and
polymorphism.

m Encapsulation is the combination of state and behaviour
into an object.

m Information hiding is implemented by placing the
implementation of an object in a private section whilst
presenting the interface of an object in the public section.

m Polymorphism allows your software elements to work in
the appropriate way.

	Unit1.pdf
	Recommended Books

	Unit1.pdf
	Recommended Books

	Unit1.pdf
	Recommended Books

	Unit1.pdf
	Recommended Books

	Unit1.pdf
	Recommended Books

