Image Processing
Toolbox

For Use with MATLAB®

Computation
-

Visualization
—

Programming
—

The
MATH

WORKS
Usgr’s Guide sl_n§°

Version 2

X LB

° B

How to Contact The MathWorks:

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web

ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks .com Bug reports

doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Image Processing Toolbox User's Guide
O COPYRIGHT 1993 - 2000 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial” computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: August 1993 First printing Version 1
May 1997 Second printing Version 2
January 1998 Revised for Version 2.1 (Online only)
January 1999 Revised for Version 2.2 (Release 11) (Online only)
September 2000 Revised for Version 2.2.2 (Release 12) (Online only)

Image Credits

moon
cameraman

trees
forest
circuit

m83

alumgrns
bacteria
blood1
bonemarr
circles
circlesm
debyel
enamel
flowers

ic

lily
ngc40241
ngc4024m
ngc4024s
rice
saturn
shotl
testpatl
testpat2
text

tire

Copyright Michael Myers. Used with permission.
Copyright Massachusetts Institute of Technology. Used with permission.

Trees with a View, watercolor and ink on paper, copyright Susan Cohen.
Used with permission.

Photograph of Carmanah Ancient Forest, British Columbia, Canada,
courtesy of Susan Cohen.

Micrograph of 16-bit A/D converter circuit, courtesy of Steve Decker and
Shujaat Nadeem, MIT, 1993.

M83 spiral galaxy astronomical image courtesy of Anglo-Australian
Observatory, photography by David Malin.

Copyright J. C. Russ, The Image Processing Handbook, Second Edition,
1994, CRC Press, Boca Raton, ISBN 0-8493-2516-1. Used with permission.

Preface

What Is the Image Processing Toolbox? Xiv
What Can You Do with the Image Processing Toolbox? Xiv
New FeaturesinVersion 2.2 Xiv
Related Products i XV
Post Installation Notes xvii
About ThisManual Xviii
User Experience Levels xviii
Words You Needto Know, XiX
Typographical Conventions XX
Image Processing Toolbox Typographical Conventions XXi
Image ProcessingDemos, XXii
MATLAB NeWsgroupttt i e e XXV

1|

OVEIVIEW . . e 1-2
Exercise 1 —Some Basic TOPICScovvvninnnnn.. 1-3
1.Read and DisplayanlImage 1-3
2. Check the ImageinMemory 1-3
3. Perform Histogram Equalization 1-4
4. Writethelmage 1-7
5. Check the Contents of the Newly Written File 1-8
Exercise 2 — Advanced Topics 1-10
1. Read and Display Anlmage 1-10

Contents

Contents

2. Perform Block Processing to Approximate the Background 1-10
3. Display the Background Approximation As a Surface 1-12
4. Resize the Background Approximation 1-15
5. Subtract the Background Image from the Original Image . 1-16
6. Adjustthe Image Contrast 1-17
7. Apply Thresholdingtothe Image 1-18
8. Use Connected Components Labeling to Determine the

Number of Objectsinthelmage 1-21
9. Examinean Object i 1-24

10. Compute Feature Measurements of Objects in the Image 1-25
11. Compute Statistical Properties of Objects in the Image .. 1-28

2 |

WheretoGo FromHere 1-31
OnlineHelp 1-31
ToolboX DEMOS . . .ottt e 1-31

Introduction

OVEIVIBW . . oot e 2-2

Words You Need to Know 2-2

Images in MATLAB and the Image Processing Toolbox ... 2-4

Storage Classes in the Toolbox 2-4
Image Typesinthe Toolbox 2-5
Indexed IMagesttt e 2-5
Intensity Imagesc. i 2-7
Binary Images 2-7
RGB ImMages e 2-8
Multiframe Image Arrays i 2-11
Summary of Image Types and Numeric Classes 2-12
WorkingwithlmageData 2-14
Reading a Graphics Image 2-14
Writing a Graphics Image 2-15
Queryinga GraphicsFile 2-16

Converting The Image Typeoflmages 2-16

Working with uint8 and uintl6 Data 2-18
Converting The Storage Classof Images 2-19
Converting the Graphics File Format of an Image 2-20
Coordinate Systems ...t 2-21
Pixel Coordinates 2-21
Spatial Coordinates 2-22

Displaying and Printing Images

3

OVEIVIEW . . . 3-2
Words You Needto Know 3-2
Displaying Images with imshow 3-3
Displaying Indexed Images 3-3
Displaying Intensity Images 3-4
Displaying Binary Images 3-7
DisplayingRGB Images i 3-12
Displaying Images Directly from Disk 3-13
Special Display Techniques 3-14
AddingaColorbar 3-14
Displaying Multiframe Images 3-15
Displaying Multiple Images 3-19
Setting the Preferences forimshow 3-24
Zooming inonaRegionofanlmage 3-26
Texture Mapping 3-28
Printinglmages i i 3-30
Troubleshooting 3-31

iv

Contents

Geometric Operations

4 |

OVEIVIBW . ..o e 4-2

Words You Need to Know i, 4-2
Interpolation e 4-4

Image TYPesS o 4-5
Image Resizing 4-6
Image Rotationt 4-7
IMmage Croppingo e 4-8

Neighborhood and Block Operations

S|

OVEINVIBW . . e e e 5-2
Words You Needto Know 5-2
Types of Block Processing Operations 5-3

Sliding Neighborhood Operations 5-5
Paddingof Borderst 5-6
Linear and Nonlinear Filtering 5-6

Distinct Block Operations 5-9
OVerlap ... 5-10

Column Processing 5-12
Sliding Neighborhoods 5-12
Distinct Blocks 5-13

Linear Filtering and Filter Design

6|

OVEINVIBW . . e e e 6-2
Words You Need to Know 6-2
Linear Filtering 6-4
Convolution 6-4
Paddingof Borderst 6-6
The filter2 Function 6-8
Separability 6-9
Higher-Dimensional Convolution 6-10
Using Predefined Filter Types 6-11
Filter Design i, 6-14
FIRFIlters e 6-14
Frequency Transformation Method 6-15
Frequency SamplingMethod 6-16
Windowing Method 6-17
Creating the Desired Frequency Response Matrix 6-18
Computing the Frequency Response ofa Filter 6-19
Transforms

OVEINVIBW . . e e e 7-2
Words You Needto Know 7-2
Fourier Transform i, 7-4
Definition of Fourier Transform 7-4
The Discrete Fourier Transform 7-9
Applications 7-12
Discrete Cosine Transform 7-17
The DCT Transform Matrix 7-18

The DCT and Image Compression 7-19

Radon Transform 7-21
Using the Radon Transform to Detect Lines 7-25
The Inverse Radon Transform 7-27

8 |

OVEIVIEW . . .o e 8-2
Words You Needto Know 8-2
Pixel Values and Statistics 8-4
Pixel Selection 8-4
Intensity Profile 8-5
Image Contours 8-8
Image Histogram 8-9
Summary Statistics 8-10
Feature Measurement 8-10
Image Analysis 8-11
Edge Detection 8-11
Quadtree Decomposition 8-12
Image Enhancement 8-15
Intensity Adjustment 8-15
Noise Removal 8-21

9

OVEIVIEW . . 9-2
Words You Needto Know iiiun.. 9-2
Neighborhoods 9-3
Paddingof Borderst 9-3
Displaying Binary Images i, 9-4

Vi Contents

Morphological Operations 9-5

Dilation and Erosion i 9-5
Related Operations i, 9-8
Object-Based Operationscccuuiiinn. 9-11
4- and 8-Connected Neighborhoods 9-11
Perimeter Determination 9-13
Flood Fill 9-14
Connected-Components Labeling 9-16
Object Selection i 9-18
Feature Measurement 9-19
Image Area 9-19
Euler Number 9-20
Lookup Table Operations 9-21

10 |

OVEIVIEW . .o 10-2
Words YouNeedto Know, 10-2
Specifying a Regionof Interest 10-4
SelectingaPolygon 10-4
Other SelectionMethods 10-5
Filteringa Region 10-7
FillingaRegion 10-9

Vii

viii

Contents

Color

1

OVEIVIBW . ..o 11-2
Words You Need to Knowot 11-2
Working with Different Screen Bit Depths 11-4
Reducing the Number of Colorsinanlmage 11-6
Using rgb2ind 11-7
USING IMapProXot e e e 11-12
Dithering e 11-13
Converting to Other Color Spaces 11-15
NTSC Color Space 11-15
YCbCr Color Spacet 11-16
HSV Color Space 11-16

12 |

Functionsby Category i, 12-2
applylut 12-17
bestblk 12-19
bIKproc 12-20
brighten 12-22
bwarea 12-23
bweuler 12-25
bwifill . 12-27
bwlabel 12-30
bwmorph 12-32
bwperim 12-36
bwselect 12-37
CIMPErMUEE . . o e e 12-39
CIUNIQUE ..ttt et e e e e e e et e e 12-40
col2im 12-41
colfilt 12-42
colorbar 12-44

CONVIMEXZ . . . e e 12-48
CONVIN L e e e e e 12-49
O e 12-50
At . 12-51
ACtmMtX . . e 12-54
dilate 12-55
dither 12-57
double 12-58
B . . e 12-59
BrOde . . 12-64
2 . 12-66
1110 T 12-68
fitshift 12-69
filter2 . 12-70
fregspace 12-72
fregz2 ... 12-73
fsampP2 .. 12-75
fspecial 12-78
ftrans2 12-82
Windl 12-85
Wind2 ... 12-89
getimaget 12-93
gray2ind 12-95
grayslice 12-96
histeq 12-97
hsvargb 12-100
dCE2 .. 12-101
2 12-102
N . e 12-103
IM2bW .. 12-104
iIm2col 12-105
im2double 12-106
IM2Uint8 12-107
IM2Uintle 12-108
imadjust e 12-109
IMAPPIOX . o 12-111
IMCONTOUr 12-112
IMCIOD . . o 12-114
imfeature 12-117

X

Contents

iIMhist 12-126
IMMOVIE e 12-128
IMNOISE 12-129
iImpixel 12-131
improfile 12-134
imread 12-137
IMresize 12-143
imrotate 12-145
imshow 12-147
IMWIITE . . 12-149
INA2gray e 12-156
iNd2rgb 12-157
iptgetpref 12-158
iptsetpref 12-159
Iradon 12-161
ISDW 12-164
SO Y .ottt 12-165
ISINd ... 12-166
ISrgb . 12-167
makelut 12-168
Mat2gray . ..ot 12-170
MEANZ . . oot 12-171
medfilt2 12-172
MONTAgE 12-174
nifilter 12-176
NESC2rgb ... 12-177
ordfilt2 12-178
phantom 12-180
pPIXVal . 12-183
QUAECOMP . . . e 12-184
qtgetblk 12-187
gtsetblk 12-189
FadON ... 12-190
rgh2gray 12-192
rgb2hsvy e 12-193
rgb2ind 12-194
rgb2ntsC 12-196
rgb2ycher ... 12-197
rgbplot e 12-198

rOICOlOr . . 12-199

roifill ... 12-200
roifilt2 .. e 12-202
roipoly 12-204
StA2 .. 12-206
subimage 12-207
TrUBSIZE . .. 12-209
UINt8 .. e 12-210
UINTLG ... e 12-212
WAID oottt e e 12-214
WM o o e 12-216
ycher2rgbh ... 12-218
Z00M L e e e 12-219

Working with Function Functions

Al

Passing an M-File Function to a Function Function A-3
Passing an Inline Object to a Function Function A-4
Passing a String to a Function Function A-4

Xi

Xii Contents

Preface

What Is the Image Processing Toolbox?

What Can You Do with the Image Processing Toolbox7
New Features in Version 2.2 .

Related Products .

Post Installation Notes

About This Manual

User Experience Levels
Words You Need to Know
Typographical Conventions

Image Processing Toolbox Typographlcal Conventlons

Image Processing Demos

MATLAB Newsgroup

Xii
Xii
Xii
xiii
XV

Xvi
Xvi

. XVii
. XVili

XiX

. XX

. XXili

Preface

Xiv

What Is the Image Processing Toolbox?

The Image Processing Toolbox is a collection of functions that extend the
capability of the MATLAB® numeric computing environment.

What Can You Do with the Image Processing
Toolbox?
The toolbox supports a wide range of image processing operations, including:

< Geometric operations

= Neighborhood and block operations
< Linear filtering and filter design

= Transforms

= Image analysis and enhancement
< Binary image operations

= Region of interest operations

Many of the toolbox functions are MATLAB M-files, which contain MATLAB
code that implements specialized image processing algorithms. You can view
the MATLAB code for these functions using the statement:

type function_name

You can extend the capabilities of the Image Processing Toolbox by writing
your own M-files, or by using the toolbox in combination with other toolboxes,
such as the Signal Processing Toolbox and the Wavelet Toolbox.

New Features in Version 2.2

Version 2.2 offers the following new features: 16-bit image processing (most
functions); speed optimization of many functions, including bwfill, bwselect,
bwlabel, dilate, erode, histeq, imresize, imrotate, ordfilt2, medfilt2, and
im2uint8; new border-padding options for medfilt2 and ordfilt2; and a new
function, im2uint16.

In addition, some of the new features and changes in MATLAB 5.3 (Release 11)
are relevant to the operation of the Image Processing Toolbox 2.2. Relevant
changes in MATLAB 5.3 include: improved support for integer types (uints,

int8, uintl6, intl6, uint32, and int32); support for two new file formats, PNG
and HDF-EQOS; 16-bit image display; and 16-bit TIFF file 1/0O.

Updates to Earlier Versions

Version 2.1 offered the following new features: inverse Radon transform,;
interactive pixel value display including distance between two pixels; advanced
feature measurement; Canny edge detection; YCbCr color space support; easier
data precision conversion; and a new feature for the bwfill function—the
ability to automatically detect and fill holes in objects.

Version 2.0 offered the following new features: support for 8-bit image data;
support for manipulating RGB and multiframe images as multidimensional
arrays; optimization of some 1.0 functions; and many new functions.

For a detailed description of the changes in Versions 2.0, 2.1, and 2.2, see the
Release 11 New Features document.

For a list of all of the functions in the Image Processing Toolbox, see “Functions
by Category.”

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Image Processing Toolbox.

For more information about any of these products, see either:
= The online documentation for that product, if it is loaded or if you are reading
the documentation from the CD

= The MathWorks Web site, at http://www_mathworks.com; see the “products”
section

Note The products listed below all include functions that extend the Image
Processing Toolbox’s capabilities.

XV

Preface

XVi

Product Description

Fuzzy Logic Toolbox Tool to help master fuzzy logic techniques and
their application to practical control problems

Mapping Toolbox Tool for analyzing and displaying
geographically based information from within
MATLAB

MATLAB Integrated technical computing environment

that combines numeric computation, advanced
graphics and visualization, and a high-level
programming language

Neural Network Toolbox Comprehensive environment for neural
network research, design, and simulation
within MATLAB

Optimization Toolbox Tool for general and large-scale optimization of
nonlinear problems, as well as for linear
programming, quadratic programming,
nonlinear least squares, and solving nonlinear

equations
Signal Processing Tool for algorithm development, signal and
Toolbox linear system analysis, and time-series data
modeling
Statistics Toolbox Tool for analyzing historical data, modeling

systems, developing statistical algorithms, and
learning and teaching statistics

Wavelet Toolbox Tool for signal and image analysis,
compression, and de-noising

The Signal Processing Toolbox and the Wavelet Toolbox are closely related

products. The Signal Processing Toolbox is strongly recommended for 2-D FIR
filter design to generate the inputs (1-D windows and 1-D filter prototypes) to
the 2-D FIR design functions. (The Signal Processing Toolbox supports a wide

range of signal processing operations, from waveform generation to filter
design and implementation, parametric modeling, and spectral analysis.)

The Image Processing Toolbox 2.2 requires MATLAB 5.3. The Image
Processing Toolbox uses MATLAB as the computational engine for most of its
algorithms. Additionally, MATLAB offers powerful capabilities, such as
advanced data manipulation and analysis, that you can use to complement and
enhance the features in the Image Processing Toolbox.

See the MATLAB documentation for descriptions of the MATLAB language,
including how to enter and manipulate data and how to use MATLAB'’s
extensive collection of functions. It also explains how to create your own
functions and scripts. The MATLAB Function Reference provides reference
descriptions of the supplied MATLAB functions and commands.

Post Installation Notes

To determine if the Image Processing Toolbox is installed on your system, type
this command at the MATLAB prompt:

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation
Guide for your platform.

Note For the most up-to-date information about system requirements, see
the system requirements page, available in the products area at the
MathWorks Web site (http://www.mathworks.com).

XVil

Preface

About This Manual

XViii

This manual has four main parts:

< Chapter 1, “Getting Started”, contains two step-by-step examples that will
help you get started using the Image Processing Toolbox. This chapter is
written as both an introduction to the most frequently used operations, as
well as a demonstration of some of the image analysis that can be performed.

= Chapter 2, “Introduction”, and Chapter 3, “Displaying and Printing Images”,
discuss working with image data and displaying images in MATLAB and the
Image Processing Toolbox.

= Chapters 4 to 11 provide in-depth discussion of the concepts behind the
software. Each chapter covers a different topic in image processing. For
example, Chapter 7 discusses linear filtering, and Chapter 11 discusses
binary image operations. Each chapter provides numerous examples that
apply the toolbox to representative image processing tasks.

= Chapter 12, “Function Reference”, gives a detailed reference description of
each toolbox function. Reference descriptions include a synopsis of the
function’s syntax, as well as a complete explanation of options. Many
reference descriptions also include examples, a description of the function’s
algorithm, and references to additional reading material.

User Experience Levels

This section gives brief suggestions for how to use the documentation,
depending on your level of experience in using the toolbox and MATLAB, and
your knowledge of image processing concepts.

All new toolbox users should read Chapter 1, “Getting Started” and Chapter 2,
“Introduction.”

Note If you are not familiar with MATLAB, it is strongly suggested that you
start by reading and running the examples in Getting Started with MATLAB.

Users who are less knowledgeable about image processing concepts will find
that the following chapters, in particular, contain valuable introductory
discussions: Chapter 5, “Neighborhood and Block Operations”, Chapter 6,

About This Manual

“Linear Filtering and Filter Design”, Chapter 9, “Binary Image Operations”,
and Chapter 11, “Color.”

Experienced toolbox users should read the Release Notes. This guide is
available as an online document that can be opened by clicking on its title at
the top of the Contents tab of the MATLAB Help browser. To open the Help
browser, select Help from the MATLAB desktop’s View menu.

While experienced users may primarily prefer to use the reference chapters of
this user guide, they should note that some functions are demonstrated in
longer examples in the tutorial chapters. To see if a function has an example in
a tutorial chapter, check the index entry of the function name.

Words You Need to Know

At the beginning of each chapter we provide glossaries of key words you need
to know in order to understand the information in the chapter. The chosen
words are defined generally, and then sometimes include a MATLAB specific
definition.

Many of the words are standard image processing terms that we define for your
convenience. In some cases, the words are included because they can
sometimes be confusing, even for domain experts. Here are some examples:

= In image processing, one word is sometimes used to describe more than one
concept. For example, image resolution can be defined as the height and
width of an image as a quantity of pixels in each direction, or it can be
defined as the number of pixels per linear measure, such as 100 pixels per
inch.

= In image processing, one concept is sometimes described by different
terminology. For example, a grayscale image can also be called an intensity
image. We use the word intensity in our documentation and include a
definition for it, because it may be unfamiliar to those who use the word
“grayscale.” (It is also defined in order to explain how MATLAB stores an
intensity image.)

If you want to know whether a word is defined in one of the chapter glossaries,
look up the word in the index. If we have defined it, the index entry for the word
will have a subentry of “definition.”

Xix

Preface

XX

For terminology that is new to you and not covered in our “Words You Need to

Know” tables, we suggest you consult a more complete image processing

glossary.

Typographical Conventions

This manual uses some or all of these general MathWorks documentation

conventions, as well as some special ones described after the following table..

Item

Convention to Use

Example

Example code

Function names/syntax

Keys

Literal strings (in syntax
descriptions in Reference
chapters)

Mathematical
expressions

MATLAB output

Menu names, menu items, and

controls

Monospace font

Monospace font

Boldface with an initial
capital letter

Monospace bold for
literals

Italics for variables

Standard text font for
functions, operators, and
constants

Monospace font

Boldface with an initial
capital letter

To assign the value 5 to A,
enter

A=5

The cos function finds the
cosine of each array element.
Syntax line example is

MLGetVar ML_var_name

Press the Return key.

f = freqgspace(n, "whole®)

This vector represents the
polynomial

p=x2+2x+3

MATLAB responds with

A =
5

Choose the File menu.

About This Manual

Item Convention to Use Example

New terms Italics An array is an ordered
collection of information.

String variables (from a finite Monospace italics sysc = d2c(sysd, "method")

list)

Image Processing Toolbox Typographical
Conventions

We often use the variable names 1, RGB, X, and BW in the code examples in this
User Guide. 1 is used for intensity images, RGB for RGB images, X for indexed
images, and BW for binary images (where it stands for “black and white”). In
addition, map is often used as a variable name for the colormap associated with
an indexed image.

See Chapter 2, “Introduction” for more information about these different
representations.

We use conventions to differentiate data ranges from MATLAB vectors. While
both are enclosed by square brackets, there are the following differences:
commas signify a range, the lack of commas and the use of the monospace font
signify a MATLAB vector.

[0, 1] is a range of pixel values from O to 1.
[0, 255] is a range of pixel values from O to 255.

[0 17 is a vector of two values, 0 and 1.

XXIi

Preface

Image Processing Demos

XXIii

The Image Processing Toolbox is supported by a full complement of demo
applications. These are very useful as templates for your own end-user
applications, or for seeing how to use and combine your toolbox functions for
powerful image analysis and enhancement. The toolbox demos are located
under the subdirectory,

- - -\TOOLBOX\ IMAGES\ IMDEMOS

under the top-level directory in which MATLAB is installed.

The table below lists the demos available. Demos whose names begin with
"ipss" operate as slide shows.

The easiest way to run an individual demo is to enter its name at the MATLAB
command prompt. You can also launch MATLAB demos from the MATLAB
demo window. To invoke this window, type demo at the command prompt. To
see the list of available image processing demos, double-click on Toolboxes
from the list on the left, and then select Image Processing. Select the desired
demo and click the Run button.

To view the code in a demo, type

edit demoname

at the MATLAB command prompt.

For information on what is happening in the demo and how to use it, press the
Info button, which is located in the lower right corner of each demo window.
All demos that are not slide shows offer a selection of images on which to
operate and a number of settings for you to experiment with. Most of these
demos also have an Apply button, which must be pressed to see the results of
your new settings.

Image Processing Demos

Demos for the Image Processing Toolbox

Demo Name

Brief Description

dctdemo

edgedemo

firdemo

imadjdemo

ipss001

ipss002

ipss003

landsatdemo

Discrete cosine transform (DCT) image compression:
you choose the number of coefficients and it shows you
a reconstructed image and an error image.

Edge detection: all supported types with optional
manual control over threshold, direction, and sigma, as
appropriate to the method used.

2-D Finite impulse response (FIR) filters: design your
own filter by changing the cut-off frequency and filter
order.

Contrast adjustment and histogram equalization:
adjust intensity values using brightness, contrast, and
gamma correction, or by using histogram equalization.

Connected components labeling slide show: includes
double thresholding, feature-based logic, and binary
morphology. All operations are performed on one image.

Feature-based logic slide show containing two
examples: the first example shows object selection
using AND operations on the on pixels in two binary
images; the second example shows filtering and
thresholding on a single image.

Correction of nonuniform illumination slide show:
creates a coarse approximation of the background,
subtracts it from the image, and then adjusts the pixel
intensity values to fill the entire range.

Landsat color composites: choose a scene and assign
spectral bands to RGB intensities to create images that
reveal topography, vegetation, and moisture; toggle
saturation stretching to see its effect on image contrast.

XXIli

Preface

Demos for the Image Processing Toolbox (Continued)

Demo Name Brief Description

nrfiltdemo Noise reduction using linear and nonlinear filters:
enables you to add different types of noise with variable
densities, and choose a filter neighborhood size.

gtdemo Quadtree decomposition: enables you to select a
threshold and see a representation of the sparse
matrix, and a reconstruction of the original image.

roidemo Region of Interest (ROI) selection: enables you to select
an ROI and apply operations such as unsharp and fill.
It displays the binary mask of the ROI.

XXIV

MATLAB Newsgroup

MATLAB Newsgroup

If you read newsgroups on the Internet, you might be interested in the
MATLAB newsgroup (comp.soft-sys.matlab). This newsgroup gives you
access to an active MATLAB user community. It is an excellent way to seek
advice and to share algorithms, sample code, and M-files with other MATLAB

users.

XXV

Preface

XXVi

Getting Started

Overview

Exercise 1 — Some Basic Topics .

1. Read and Display an Image

2. Check the Image in Memory

3. Perform Histogram Equalization

4. Write the Image . .
5. Check the Contents of the Newly ertten F|Ie .

Exercise 2 — Advanced Topics .
. Read and Display An Image
. Perform Block Processing to ApprOX|mate the Background
. Display the Background Approximation As a Surface .
. Resize the Background Approximation .
. Subtract the Background Image from the Orlglnal Image
. Adjust the Image Contrast .
. Apply Thresholding to the Image
. Use Connected Components Labeling
to Determine the Number of Objects in the Image .
9. Examine an Object .
10. Compute Feature Measurements of Objects in the Image
11. Compute Statistical Properties of Objects in the Image .

O~NO O WNPE

Where to Go From Here .
Online Help .
Toolbox Demos

1-2

1-3
1-3
1-3
1-4
1-7
1-8

. 1-10
. 1-10

1-10

. 1-12
. 1-15
. 1-16
. 1-17
. 1-18

.1-21
. 1-24
. 1-25
. 1-28

.1-31
.1-31
.1-31

1 Getting Started

1-2

Overview

This chapter contains two exercises to get you started doing image processing
using MATLAB and the Image Processing Toolbox. The exercises include
sections called “Here’s What Just Happened” so that you can read further
about the operations you just used. In addition, the exercises contain
cross-references to other sections in this manual that have in-depth discussions
on the concepts presented in the examples.

Note If you are new to MATLAB, you should first read Getting Started with
MATLAB.

All of the images displayed by the exercises in this chapter are supplied with
the Image Processing Toolbox. Note that the images shown in this
documentation differ slightly from what you see on your screen because the
surrounding MATLAB figure window has been removed to save space.

“Exercise 1 — Some Basic Topics” covers the basic tasks of reading and
displaying an image, adjusting its contrast, and writing it back to disk. This
exercise introduces you to one of the supported image types (the intensity
image) and to one of the numeric storage classes used for images (uints).
“Exercise 2 — Advanced Topics” includes more sophisticated topics, such as
components labeling and feature measurement, which are two of the many
specialized types of image processing that you can perform using the Image
Processing Toolbox.

Exercise 1 — Some Basic Topics

Exercise 1 — Some Basic Topics

Before beginning with this exercise, start MATLAB. You should already have
installed the Image Processing Toolbox, which runs seamlessly from MATLAB.
For information about installing the toolbox, see the MATLAB Installation
Guide for your platform.

1. Read and Display an Image
Clear the MATLAB workspace of any variables and close open figure windows.

clear, close all

To read an image use the imread command. Let’s read in a TIFF image named
pout.tif (which is one of the sample images that is supplied with the Image
Processing Toolbox), and store it in an array named 1.

I=imread("pout.tif");

Now call imshow to display 1.

imshow(1)

2. Check the Image in Memory

Enter the whos command to see how 1 is stored in memory.

whos

1-3

1 Getting Started

1-4

MATLAB responds with

Name Size Bytes Class
| 291x240 69840 uiInt8 array

Grand total is 69840 elements using 69840 bytes

Here’s What Just Happened

Step 1. The imread function recognized pout.tif as a valid TIFF file and
stored it in the variable 1. (For the list of graphics formats supported, see
imread in the “Function Reference” chapter.)

The functions imread and imshow read and display graphics images in
MATLAB. In general, it is preferable to use imshow for displaying images
because it handles the image-related MATLAB properties for you. (The
MATLAB function image is for low-level programming tasks.)

Note that if pout.tif were an indexed image, the appropriate syntax for
imread would be,

[X, map] = imread("pout.tif");

(For more information on the supported image types, see “Image Types in
the Toolbox” on page 2-5.)

Step 2. You called the whos command to see how pout. tif had been stored
into the MATLAB workspace. As you saw, pout.tifis stored as a
291-by-240 array. Since pout.tif was an 8-bit image, it gets stored in
memory as an uint8 array. MATLAB can store images in memory as uints,
uintl6, or double arrays. (See “Reading a Graphics Image” on page 2-14 for
an explanation of when the different storage classes are used.)

3. Perform Histogram Equalization

As you can see, pout.tif is a somewhat low contrast image. To see the
distribution of intensities in pout.tif in its current state, you can create a
histogram by calling the imhist function. (Precede the call to imhist with the

Exercise 1 — Some Basic Topics

figure command so that the histogram does not overwrite the display of the
image 1 in the current figure window.)

figure, imhist(l) % Display a histogram of 1 in a new figure.

1600 . . . =
1400 } 1
1200 }

1000

800 |

600 |

400 |

0 50 100 150 200 250

Notice how the intensity range is rather narrow. It does not cover the potential
range of [0, 255], and is missing the high and low values that would result in
good contrast.

Now call histeq to spread the intensity values over the full range, thereby
improving the contrast of 1. Return the modified image in the variable 12.

12 = histeq(l); % Equalize I and output in new array 12.

Display the new equalized image, 12, in a new figure window.

figure, imshow(12) % Display the new equalized image 12.

1-5

1 Getting Started

1-6

ha
Call imhist again, this time for 12.

figure, imhist(12) % Show the histogram for the new image 12.

1600 i

1400 i

1200 E

1000

800

600

400

200

0 50 100 150 200 250

See how the pixel values now extend across the full range of possible values.

Exercise 1 — Some Basic Topics

Here’s What Just Happened

Step 3. You adjusted the contrast automatically by using the function
histeq to evenly distribute the image’s pixel values over the full potential
range for the storage class of the image. For an image X, with a storage
class of uints, the full range is 0 < X <255, for uint16 itis 0 < X < 65535,
and for double itis 0 <X < 1. Note that the convention elsewhere in this
user guide (and for all MATLAB documentation) is to denote the above
ranges as [0,255], [0,65535], and [0,1], respectively.

If you compare the two histograms, you can see that the histogram of 12 is
more spread out and flat than the histogram of 11. The process that
flattened and spread out this histogram is called histogram equalization.

For more control over adjusting the contrast of an image (for example, if
you want to chose the range over which the new pixel values should span),
you can use the imadjust function, which is demonstrated under “6. Adjust
the Image Contrast” on page 1-17 in Exercise 2.

4. Write the Image

Write the newly adjusted image 12 back to disk. Let’s say you'd like to save it
as a PNG file. Use imwrite and specify a filename that includes the extension

"png”.
imvrite (12, "pout2.png”);

1-7

1 Getting Started

1-8

Here’s What Just Happened

Step 4. MATLAB recognized the file extension of "png* as valid and wrote
the image to disk. It wrote it as an 8-bit image by default because it was
stored as a uint8 intensity image in memory. If 12 had been an image array
of type RGB and class uint8, it would have been written to disk as a 24-bit
image. If you want to set the bit depth of your output image, use the
BitDepth parameter with imwrite. This example writes a 4-bit PNG file.

imvrite(12, "pout2.png”, "BitDepth®, "4%);

Note that all output formats do not support the same set of output bit
depths. For example, the toolbox does not support writing 1-bit BMP
images. See imwrite in the “Reference” chapter for the list of valid bit
depths for each format. See also “Writing a Graphics Image” on page 2-15
for a tutorial discussion on writing images using the Image Processing
Toolbox.

5. Check the Contents of the Newly Written File

Now, use the imfinfo function to see what was written to disk. Be sure not to
end the line with a semicolon so that MATLAB displays the results. Also, be
sure to use the same path (if any) as you did for the call to imwrite, above.

imfFinfo("pout2.png™)
MATLAB responds with

ans =
Filename: "pout2.png*”
FileModDate: "03-Jun-1999 15:50:25"
FileSize:36938
Format:"png*
FormatVersion:[]
Width:240
Height:291
BitDepth:8
ColorType: "grayscale”

Exercise 1 — Some Basic Topics

Note The value in the FileModDate field for your file will be different from
what is shown above. It will show the date and time that you used imwrite to
create your image. Note also that we truncated the number of field names and
values returned by this call.

Here’s What Just Happened

Step 5. When you called imfinfo, MATLAB displayed all of the header
fields for the PNG file format that are supported by the toolbox. You can
modify many of these fields by using additional parameters in your call to
imwrite. The additional parameters that are available for each file format
are listed in tables in the reference entry for imwrite. (See “Querying a
Graphics File” on page 2-16 for more information about using imfinfo.)

1-9

1 Getting Started

Exercise 2 — Advanced Topics

1-10

In this exercise you will work with another intensity image, rice.tif and
explore some more advanced operations. The goals of this exercise are to
remove the nonuniform background from rice.tif, convert the resulting
image to a binary image by using thresholding, use components labeling to
return the number of objects (grains or partial grains) in the image, and
compute feature statistics.

1. Read and Display An Image

Clear the MATLAB workspace of any variables and close open figure windows.
Read and display the intensity image rice.tif.

clear, close all
I = imread("rice.tif");
imshow(l)

2. Perform Block Processing to Approximate the
Background

Notice that the background illumination is brighter in the center of the image
than at the bottom. Use the blkproc function to find a coarse estimate of the

background illumination by finding the minimum pixel value of each 32-by-32
block in the image.

backApprox = blkproc(l,[32 32], "min(x(:))");

To see what was returned to backApprox, type

Exercise 2 — Advanced Topics

backApprox

MATLAB responds with
backApprox =

80 81 81 79 78 75 73 71
90 91 91 90 89 87 84 83
94 96 96 97 96 95 94 90
90 93 93 95 96 95 94 93
80 83 85 87 87 88 87 87
68 69 72 74 76 76 77 76
48 51 54 56 59 60 61 61
40 40 40 40 40 40 40 41

Here’s What Just Happened

Step 1. You used the toolbox functions imread and imshow to read and
display an 8-bit intensity image. imread and imshow are discussed in
Exercise 1, in “2. Check the Image in Memory” on page 1-3, under the
“Here’s What Just Happened” discussion.

Step 2. blkproc found the minimum value of each 32-by-32 block of I and
returned an 8-by-8 matrix, backApprox. You called blkproc with an input
image of 1, and a vector of [32 327, which means that I will be divided into
32-by-32 blocks. blkproc is an example of a “function function,” meaning
that it enables you to supply your own function as an input argument. You
can pass in the name of an M-file, the variable name of an inline function,
or a string containing an expression (this is the method that you used
above). The function defined in the string argument (*min(x(z))") tells
blkproc what operation to perform on each block. For detailed instructions
on using function functions, see Appendix A.

MATLAB'’s min function returns the minimum value of each column of the
array within parentheses. To get the minimum value of the entire block,
use the notation (x(:)), which reshapes the entire block into a single
column. For more information, see min in the MATLAB Function
Reference.

1-11

1 Getting Started

1-12

3. Display the Background Approximation As a
Surface

Use the surf command to create a surface display of the background
approximation, backApprox. surf requires data of class double, however, so
you first need to convert backApprox using the double command. You also need
to divide the converted data by 255 to bring the pixel values into the proper
range for an image of class double, [0 1].

backApprox = double(backApprox)/255; % Convert image to double.
figure, surf(backApprox);

To see the other side of the surface, reverse the y-axis with this command,

set(gca, "ydir", "reverse”); % Reverse the y-axis.

Exercise 2 — Advanced Topics

«~ | To rotate the surface in any direction, click on the rotate button in the
toolbar (shown at left), then click and drag the surface to the desired
view.

1-13

1 Getting Started

1-14

Here’s What Just Happened

Step 3. You used the surf command to examine the background image.
The surf command creates colored parametric surfaces that enable you to
view mathematical functions over a rectangular region. In the first surface
display, [0, O] represents the origin, or upper-left corner of the image. The
highest part of the curve indicates that the highest pixel values of
backApprox (and consequently rice.tif) occur near the middle rows of the
image. The lowest pixel values occur at the bottom of the image and are
represented in the surface plot by the lowest part of the curve. Because the
minimum intensity values in each block of this image make a smooth
transition across the image, the surface is comprised of fairly smooth
curves.

The surface plot is a Handle Graphics® object, and you can therefore
fine-tune its appearance by setting properties. (“Handle Graphics” is the
name for the collection of low-level graphics commands that create the
objects you generate using MATLAB.) The call to reverse the y-axis is one
of many property settings that you can make. It was made using the set
command, which is used to set all properties. In the line,

set(gca, "ydir","reverse”);

gca refers to the handle of the current axes object and stands for “get
current axes.” You can also set many properties through the Property
Editor. To invoke the Property Editor, open the figure window's Edit
menu, and select Figure Properties, Axes Properties, or Current Object
Properties. To select an object to modify with the Property Editor, click
the property the following button on the figure window, M then click on
the object. You can also use the other buttons in the toolbar to add new text
or line objects to your figure.

For information on working with MATLAB graphics, see the MATLAB
graphics documentation.

Exercise 2 — Advanced Topics

4. Resize the Background Approximation
Our estimate of the background illumination is only 8-by-8. Expand the

background to the same size as the original background image (256-by-256) by

using the imresize function, then display it.

backApprox256 = imresize(backApprox, [256 256], “"bilinear®);
figure, imshow(backApprox256) % Show resized background image.

Here’s What Just Happened

Step 4. You used imresize with “bilinear” interpolation to resize your
8-by-8 background approximation, backApprox, to an image of size
256-by-256, so that it is now the same size as rice.tif. If you compare it to
rice.tif you can see that it is a very good approximation. The good
approximation is possible because of the low spatial frequency of the
background. A high-frequency background, such as a field of grass, could not
have been as accurately approximated using so few blocks.

The interpolation method that you choose for imresize determines the
values for the new pixels you add to backApprox when increasing its size.
(Note that interpolation is also used to find the best values for pixels when
an image is decreased in size.) The other types of interpolation supported by
imresize are “nearest neighbor” (the default), and “bicubic.” For more
information on interpolation and resizing operations, see “Interpolation” on
page 4-4 and “Image Resizing” on page 4-6.

1-15

1 Getting Started

1-16

5. Subtract the Background Image from the Original
Image

Now subtract the background image from the original image to create a more
uniform background. First, change the storage class of 1 to double, because
subtraction can only be performed on double arrays.

I = im2double(l); % Convert 1 to storage class of double.
Now subtract backApprox256 from I and store it in a new array, 12.
12 = 1 - backApprox256; % Subtract the background from I.

Subtracting backApprox256 from 1 may yield some out-of-range values in the
image. To correct the dynamic range of pixel values, use the max and min
functions to clip pixel values outside the range [0,1].

12 = max(min(12,1),0); % Clip the pixel values to the valid range.

Now display the image with its more uniform background.

figure, imshow(12)

Exercise 2 — Advanced Topics

Here’s What Just Happened

Step 5. You subtracted a background approximation image from rice.tif.
Before subtracting the background approximation it was necessary to
convert the image to class double. This is because subtraction, like many of
MATLAB’s mathematical operations, is only supported for data of class
double.

The ease with which you can subtract one image from another is an
excellent example of how MATLAB’s matrix-based design makes it a very
powerful tool for image processing.

After subtraction was completed, another step was required before
displaying the new image, because subtraction often leads to out-of- range
values. You therefore used the min and max functions to clip any values
outside the range of [0 1].

The following call
12 = max(0,min(1,12));

can more easily be explained by dividing the expression into two steps, as
follows.

12=min(12,1);

replaces each value in 12 that is greater than 1 with 1, and
12=max(12,0);

replaces each value in 12 that is less than 0 with 0.

The Image Processing Toobox has a demo, ipss003, that approximates and
removes the background from an image. For information on how to run this
(and other demos), see “Image Processing Demos” in the Preface.

6. Adjust the Image Contrast

The image is now a bit too dark. Use imadjust to adjust the contrast.

13 = imadjust(12, [0 max(12(:))], [0 1]); % Adjust the contrast.

Display the newly adjusted image.

1-17

1 Getting Started

figure, imshow(13);

Here’s What Just Happened

Step 6. You used the imadjust command to increase the contrast in the
image. imadjust takes an input image and can also take two vectors: [low
high] and [bottom top]. The output image is created by mapping the value
low in the input image to the value bottom in the output image, mapping
the value high in the input image to the value top in the output image, and
linearly scaling the values in between. See the reference pages for imadjust
for more information.

The expression max(12(:)) that you entered as the high value for the input
image uses the MATLAB max command to reshape 12 into a single column
and return its maximum pixel value.

7. Apply Thresholding to the Image

Create a new binary thresholded image, bw, by comparing each pixel in 13 to a
threshold value of 0.2.

bw=13>0.2; % Make 13 binary using a threshold value of 0.2.
figure, imshow(bw)

1-18

Exercise 2 — Advanced Topics

Now call the whos command to see what type of array the thresholded image bw

IS.

whos

MATLAB responds with

Name Size
1 256x256
12 256x256
13 256x256
backApprox 8x8
backApprox256 256x256
bw 256x256

Bytes Class

524288
524288
524288

512
524288
524288

double
double
double
double
double
double

array
array
array
array
array
array (logical)

Grand total is 327744 elements using 2621952 bytes

1-19

1 Getting Started

1-20

Here’s What Just Happened

Step 7. You compared each pixel in 13 with a threshold value of 0.2.
MATLAB interprets this command as a logical comparison and therefore
outputs values of 1 or 0, where 1 means “true” and 0 means “false.” The
output value is 1 when the pixel in 13 is greater than 0.2, and 0 otherwise.

Notice that when you call the whos command, you see the expression
logical listed after the class for bw. This indicates the presence of a logical
flag. The flag indicates that bw is a logical matrix, and the Image Processing
Toolbox treats logical matrices as binary images. Thresholding using
MATLAB's logical operators always results in a logical image. For more
information about binary images and the logical flag, see “Binary Images”
on page 2-7.

Thresholding is the process of calculating each output pixel value based on
a comparison of the corresponding input pixel with a threshold value. When
used to separate objects from a background, you provide a threshold value
over which a pixel is considered part of an object, and under which a pixel is
considered part of the background. Due to the uniformity of the background
in 13 and its high contrast with the objects in it, a fairly wide range of
threshold values can produce a good separation of the objects from the
background. Experiment with other threshold values. Note that if your goal
were to calculate the area of the image that is made up of the objects, you
would need to choose a more precise threshold value — one that would not
allow the background to encroach upon (or “erode”) the objects.

Note that the Image Processing Toolbox also supplies the function im2bw,
which converts an RGB, indexed, or intensity image to a binary image based
on the threshold value that you supply. You could have used this function in
place of the MATLAB command, bw = 13 > 0.2. For example,

bw = im2bw(13, 0.2). See the reference page for im2bw for more
information.

Exercise 2 — Advanced Topics

8. Use Connected Components Labeling to
Determine the Number of Objects in the Image

Use the bwlabel function to label all of the connected components in the binary
image bw.

[labeled,numObjects] = bwlabel(bw,4);% Label components.

Show the number of objects found by bwlabel.

numObjects
MATLAB responds with
numObjects =
80

You have just calculated how many objects (grains or partial grains of rice) are
inrice.tif.

Note The accuracy of your results depends on a number of factors, including:

= The size of the objects

= The accuracy of your approximated background

= Whether you set the connected components parameter to 4 or 8

= The value you choose for thresholding

= Whether or not any objects are touching (in which case they may be
labeled as one object)

In this case, some grains of rice are touching, so bwlabel treats them as one
object.

To add some color to the figure, display labeled using a vibrant colormap
created by the hot function.

map = hot(numObjects+1); % Create a colormap.
imshow(labeled+1,map); % Offset indices to colormap by 1.

1-21

1 Getting Started

1-22

Exercise 2 — Advanced Topics

Here’s What Just Happened

Step 8. You called bwlabel to search for connected components and label
them with unique numbers. bwlabel takes a binary input image and a value
of 4 or 8 to specify the “connectivity” of objects. The value 4, as used in this
example, means that pixels that touch only at a corner are not considered to
be “connected.” For more information about the connectivity of objects, see
“Connected-Components Labeling” on page 9-16.

A labeled image was returned in the form of an indexed image, where zeros
represent the background, and the objects have pixel values other than zero
(meaning that they are labeled). Each object is given a unique number (you
can see this when you go to the next step,“9. Examine an Object”). The pixel
values are indices into the colormap created by hot.

Your last call to imshow uses the syntax that is appropriate for indexed
images, which is,

imshow(labeled+1, map);

Because labeled is an indexed image, and 0 is meaningless as an index into
a colormap, a value of 1 was added to all pixels before display. The hot
function creates a colormap of the size you specify. We created a colormap
with one more color than there are objects in the image because the first
color is used for the background. MATLAB has several colormap-creating
functions, including gray, pink, copper, and hsv. For information on these
functions, see colormap in the MATLAB Function Reference.

You can also return the number of objects by asking for the maximum pixel
value in the image. For example,

max(labeled(:))
ans =

80

1-23

1 Getting Started

1-24

9. Examine an Object

You may find it helpful to take a closer look at 1abeled to see what bwlabel has
done to it. Use the imcrop command to select and display pixels in a region of
labeled that includes an object and some background.

To ensure that the output is displayed in the MATLAB window, do not end the
line with a semicolon. In addition, choose a small rectangle for this exercise, so
that the displayed pixel values don't wrap in the MATLAB command window.

The syntax shown below makes imcrop work interactively. Your mouse cursor
becomes a cross-hair when placed over the image. Click at a position in labeled
where you would like to select the upper left corner of a region. Drag the mouse
to create the selection rectangle, and release the button when you are done.

grain=imcrop(labeled) % Crop a portion of labeled.

We chose the left edge of a grain and got the following results.

grain =
0 0] 0] 0
0 0] 0] 0
0 0] 0] 60
0 0 0] 60
0 0] 0 60
0 0 0] 60
0 0] 0] 60
0 0] 0] 0
0 0] 0 0
0 0 0 0

60
60
60
60
60

ol eoNe

60
60
60
60
60
60
60

(@)

60
60
60
60
60
60
60

o

60
60
60
60
60
60
60
60

o

60
60
60
60
60
60
60
60

o

Exercise 2 — Advanced Topics

Here’s What Just Happened

Step 9. You called imcrop and selected a portion of the image that
contained both some background and part of an object. The pixel
values were returned in the MATLAB window. If you examine the
results above, you can see the corner of an object labeled with 60’s,
which means that it was the 60th object labeled by bwlabel. Notice
how the 60's create an edge amidst a background of 0's.

imcrop can also take a vector specifying the coordinates for the crop
rectangle. In this case, it does not operate interactively. For
example, this call specifies a crop rectangle whose upper-left corner
begins at (15, 25) and has a height and width of 10.

rect = [15 25 10 10];
roi = imcrop(labeled, rect)

You are not restricted to rectangular regions of interest. The toolbox
also has a roipoly command that enables you to select polygonal
regions of interest. Many image processing operations can be
performed on regions of interest, including filtering and filling. See
Chapter 10, “Region-Based Processing” for more information.

10. Compute Feature Measurements of Objects in
the Image

The imfeature command computes feature measurements for objects in an
image and returns them in a structure array. When applied to an image with
labeled components, it creates one structure element for each component. Use

1-25

1 Getting Started

1-26

imfeature to create a structure array containing some basic types of feature
information for labeled.

grain=imfeature(labeled, "basic")

MATLAB responds with
grain =
80x1 struct array with fields:
Area

Centroid
BoundingBox

Find the area of the grain labeled with 51’s, or “grain 51.” To do this, use dot
notation to access the data in the Area field. Note that structure field names
are case sensitive, so you need to capitalize the name as shown.

grain(51).Area
returns the following results

ans =

323

Find the smallest possible bounding box and the centroid (center of mass) for
grain 51.

grain(51) .BoundingBox, grain(51).Centroid
returns

ans =

1415000 89.5000 26.0000 27.0000
ans =

155.3437 102.0898

Create a new vector, al lgrains, which holds just the area measurement for
each grain. Then call the whos command to see how al Igrains is allocated in
the MATLAB workspace.

allgrains=[grain.Area];

Exercise 2 — Advanced Topics

whos allgrains
MATLAB responds with
Name Size Bytes Class

allgrains 1x80 640 double array

Grand total is 80 elements using 640 bytes

allgrains contains a one-row array of 80 elements, where each element
contains the area measurement of a grain. Check the area of the 51st element
of allgrains.

allgrains(51)

returns

ans =

323

which is the same result that you received when using dot notation to access
the Area field of grains(51).

1-27

1 Getting Started

1-28

Here’s What Just Happened

Step 10. You called imfeature to return a structure of basic feature
measurements for each thresholded grain of rice. imfeature supports many
types of feature measurement, but setting the measurements parameter to
basic is a convenient way to return three of the most commonly used
measurements: the area, the centroid (or center of mass), and the bounding
box. The bounding box represents the smallest rectangle that can contain a
region, or in this case, a grain. The four-element vector returned by the
BoundingBox field,

[141.5000 89.5000 26.0000 27.0000]

shows that the upper left corner of the bounding box is positioned at [141.5
89.5], and the box has a width of 26.0 and a height of 27.0. (The position
is defined in spatial coordinates, hence the decimal values. For more
information on the spatial coordinate system, see “Spatial Coordinates” on
page 2-22.) For more information about working with MATLAB structure
arrays, see “Structures” in the MATLAB graphics documentation.

You used dot notation to access the Area field of all of the elements of grain
and stored this data to a new vector al Igrains. This step simplifies analysis
made on area measurements because you do not have to use field names to
access the area.

11. Compute Statistical Properties of Objects in the
Image

Now use MATLAB functions to calculate some statistical properties of the
thresholded objects. First use max to find the size of the largest grain. (If you
have followed all of the steps in this exercise, the “largest grain” is actually two
grains that are touching and have been labeled as one object).

max(allgrains)
returns

ans =

749

Exercise 2 — Advanced Topics

Use the find command to return the component label of this large-sized grain.
biggrain=find(allgrains==749)
returns
biggrain =
68

Find the mean grain size.

mean(allgrains)

returns

ans =

275.8250

Make a histogram containing 20 bins that show the distribution of rice grain
sizes.

hist(allgrains,20)

30

25

20

500 600 700 800

1-29

1 Getting Started

1-30

Here’s What Just Happened

Step 11. You used some of MATLAB's statistical functions, max, mean, and
hist to return the statistical properties for the thresholded objects in
rice._tif.

The Image Processing Toolbox also has some statistical functions, such as
mean2 and std2, which are well suited to image data because they return a
single value for two-dimensional data. The functions mean and std were
suitable here because the data in al Igrains was one dimensional.

The histogram shows that the most common sizes for rice grains in this
image are in the range of 300 to 400 pixels.

Where to Go From Here

Where to Go From Here

For more information about how the toolbox handles image types and storage
classes, or to learn more about reading and writing images, see Chapter 2,
“Introduction.” For instructions on displaying images of all types, please see
Chapter 3, “Displaying and Printing Images.”

Tutorial discussions for image processing operations are contained in the
chapters starting with Chapter 5, “Neighborhood and Block Operations.” Those
chapters assume that you understand the information presented in the
chapters starting with this chapter through Chapter 4, “Geometric
Operations.”

The reference pages for all of the Image Processing Toolbox functions are
contained in Chapter 12, “Function Reference.” These complement the M-file
help that is displayed in the MATLAB command window when you type

help functionname

For example,

help imshow

Online Help

The Image Processing Toolbox User’'s Guide is available online in both HTML
and PDF formats. To access the HTML help, select Help from View menu of
the MATLAB desktop. Then, from the left pane of the Help browser, expand the
topic list next to Image Processing Toolbox. To access the PDF help, click on
Image Processing Toolbox in the Contents tab of the Help browser, and go to
the hyperlink under “Printable Documentation (PDF).” (Note that to view the
PDF help, you must have Adobe's Acrobat Reader installed.)

Toolbox Demos

Some features of the Image Processing Toolbox are implemented in demo
applications. The demos are useful for seeing the toolbox features put into
action and for borrowing code for your own applications. See “Image Processing
Demos” in the Preface for a complete list and summary of the demos, as well as
instructions on how to run them.

1-31

1 Getting Started

1-32

Introduction

Overview . . . 4
WordsYouNeedtoKnow...............2—2

Images in MATLAB and the Image Processing Toolbox 2-4

Storage Classes in the Toolbox 24
Image Types inthe Toolbox 25
Indexedlmages 25
Intensitylmages 27
Binarylmages 27
RGB Images. e e e e e oo ... 28
Multiframe Image Arrays L - N
Summary of Image Types and Numerlc Classes Coe ... L 2-12
Working with ImageData214
Reading a GraphicsImage214
Writing a Graphicslmage215
Querying a Graphics File . . . c e e2-16
Converting The Image Type of Images . 1
Working with uint8 and uintl6 Data2-18
Converting The Storage Classof Images2-19
Converting the Graphics File FormatofanIlmage2-20
Coordinate Systems22
Pixel Coordinates221

Spatial Coordinates.222

2 Introduction

Overview

This chapter introduces you to the fundamentals of image processing using
MATLAB and the Image Processing Toolbox. It describes the types of images
supported, and how MATLAB represents them. It also explains the basics of
working with image data and coordinate systems.

Words You Need to Know

An understanding of the following terms will help you to use this chapter. For
more explanation of this table and others like it, see “Words You Need to Know”
in the Preface.

Words

Definitions

Binary image

Image type

Indexed image

An image containing only black and white pixels. In MATLAB,
a binary image is represented by a uint8 or double logical
matrix containing 0's and 1's (which usually represent black
and white, respectively). A matrix is logical when its “logical
flag” is turned “on.” We often use the variable name BW to
represent a binary image in memory.

The defined relationship between array values and pixel
colors. The toolbox supports binary, indexed, intensity, and
RGB image types.

An image whose pixel values are direct indices into an RGB
colormap. In MATLAB, an indexed image is represented by an
array of class uint8, uint16, or double. The colormap is
always an m-by-3 array of class double. We often use the
variable name X to represent an indexed image in memory,
and map to represent the colormap.

2-2

Overview

Words

Definitions

Intensity image

Multiframe image

RGB image

Storage class

An image consisting of intensity (grayscale) values. In
MATLAB, intensity images are represented by an array of
class uint8, uintl6, or double. While intensity images are not
stored with colormaps, MATLAB uses a system colormap to
display them. We often use the variable name I to represent
an intensity image in memory. This term is synonymous with
the term “grayscale.”

An image file that contains more than one image, or frame.
When in MATLAB memory, a multiframe image is a 4-D array
where the fourth dimension specifies the frame number. This
term is synonymous with the term “multipage image.”

An image in which each pixel is specified by three values —
one each for the red, blue, and green components of the pixel’s
color. In MATLAB, an RGB image is represented by an
m-by-n-by-3 array of class uint8, uinti6, or double. We often
use the variable name RGB to represent an RGB image in
memory.

The numeric storage class used to store an image in MATLAB.
The storage classes used in MATLAB are uint8, uintl6, and
double. Some function descriptions in the reference chapter of
this User’s Guide have a section entitled “Class Support” that
specifies which image classes the function can operate on.
When this section is absent, the function can operate on all
supported storage classes.

2-3

2 Introduction

Images in MATLAB and the Image Processing Toolbox

The basic data structure in MATLAB is the array, an ordered set of real or
complex elements. This object is naturally suited to the representation of
images, real-valued, ordered sets of color or intensity data.

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in
which each element of the matrix corresponds to a single pixel in the displayed
image. (Pixel is derived from picture element and usually denotes a single dot
on a computer display.) For example, an image composed of 200 rows and 300
columns of different colored dots would be stored in MATLAB as a 200-by-300
matrix. Some images, such as RGB, require a three-dimensional array, where
the first plane in the third dimension represents the red pixel intensities, the
second plane represents the green pixel intensities, and the third plane
represents the blue pixel intensities.

This convention makes working with images in MATLAB similar to working
with any other type of matrix data, and makes the full power of MATLAB
available for image processing applications. For example, you can select a
single pixel from an image matrix using normal matrix subscripting.

1(2,15)

This command returns the value of the pixel at row 2, column 15 of the image 1.

Storage Classes in the Toolbox

By default, MATLAB stores most data in arrays of class double. The data in
these arrays is stored as double precision (64-bit) floating-point numbers. All
of MATLAB's functions and capabilities work with these arrays.

For image processing, however, this data representation is not always ideal.
The number of pixels in an image may be very large; for example, a
1000-by-1000 image has a million pixels. Since each pixel is represented by at
least one array element, this image would require about 8 megabytes of
memory.

In order to reduce memory requirements, MATLAB supports storing image
data in arrays of class uint8 and uintl16. The data in these arrays is stored as
8-bit or 16-bit unsigned integers. These arrays require one eighth or one fourth
as much memory as double arrays.

2-4

Image Types in the Toolbox

Image Types in the Toolbox

The Image Processing Toolbox supports four basic types of images.

=« Index images

= Intensity images
=< Binary images
< RGB images

This section discusses how MATLAB and the Image Processing Toolbox
represent each of these image types.

Indexed Images

An indexed image consists of a data matrix, X, and a colormap matrix, map. X
can be of class uint8, uintl6, or double. map is an m-by-3 array of class double
containing floating-point values in the range [0,1]. Each row of map specifies the
red, green, and blue components of a single color. An indexed image uses
“direct mapping” of pixel values to colormap values. The color of each image
pixel is determined by using the corresponding value of X as an index into map.
The value 1 points to the first row in map, the value 2 points to the second row,
and so on.

A colormap is often stored with an indexed image and is automatically loaded
with the image when you use the imread function. However, you are not limited
to using the default colormap—you can use any colormap that you choose. The
figure below illustrates the structure of an indexed image. The pixels in the

2-5

2 Introduction

2-6

image are represented by integers, which are pointers (indices) to color values
stored in the colormap.

0.0627 0.0314
0.2902 0.0314 0
0] 0 1.0000

2902 0.0627 0.06
0.3882 0.0314 0.0941
0.4510 0.0627 0
0.2588 0.1608 0.0627

Figure 2-1: Pixel Values Are Indices to a Colormap in Indexed Images

The relationship between the values in the image matrix and the colormap
depends on the class of the image matrix. If the image matrix is of class double,
the value 1 points to the first row in the colormap, the value 2 points to the
second row, and so on. If the image matrix is of class uint8 or uint16, there is
an offset— the value 0 points to the first row in the colormap, the value 1 points
to the second row, and so on. The offset is also used in graphics file formats to
maximize the number of colors that can be supported. In the image above, the
image matrix is of class double. Because there is no offset, the value 5 points
to the fifth row of the colormap.

Note that the toolbox provides limited support for indexed images of class
uintl6. You can read these images into MATLAB and display them, but before
you can process a uintl6 indexed image you must first convert it to either a
double or auint8. To convert to a double, call im2double; to reduce the image
to 256 colors or fewer (uint8) call imapprox. For more information, see the
reference pages for im2double and imapprox.

Image Types in the Toolbox

Intensity Images

An intensity image is a data matrix, I, whose values represent intensities
within some range. MATLAB stores an intensity image as a single matrix, with
each element of the matrix corresponding to one image pixel. The matrix can
be of class double, uint8, or uintl6. While intensity images are rarely saved
with a colormap, MATLAB uses a colormap to display them.

The elements in the intensity matrix represent various intensities, or gray
levels, where the intensity 0 usually represents black and the intensity 1, 255,
or 65535 usually represents full intensity, or white.

The figure below depicts an intensity image of class double.

T 0.2563 0.2826 0.2826 02

0.5342 0.2051 0.2157 0.2826 0.3822 0.4391 0.439
0.5342 0.1789 0.1307 0.1789 0.2051 0.3256 0.2483
Q.4308 0.2483 0.2624 0.3344 0.3344
0.2624 0.3344 0.3344

Figure 2-2: Pixel Values in an Intensity Image Define Gray Levels

Binary Images

In a binary image, each pixel assumes one of only two discrete values.
Essentially, these two values correspond to on and off. A binary image is
stored as a two-dimensional matrix of 0's (off pixels) and 1's (on pixels).

2-7

2 Introduction

2-8

A binary image can be considered a special kind of intensity image, containing
only black and white. Other interpretations are possible, however; you can also
think of a binary image as an indexed image with only two colors.

A binary image can be stored in an array of class double or uint8. (The toolbox
does not support binary images of class uint16.) An array of class uint8 is
generally preferable to an array of class double, because a uint8 array uses far
less memory. In the Image Processing Toolbox, any function that returns a
binary image returns it as a uint8 logical array. The toolbox uses a logical flag
to indicate the data range of a uint8 logical array: if the logical flag is “on” the
data range is [0,1]; if the logical flag is off, the toolbox assumes the data range
is [0,255].)

The figure below depicts a binary image.

p O O »r O O O O

Figure 2-3: Pixels in A Binary Image Have Two Possible Values: 0 or 1

RGB Images

An RGB image, sometimes referred to as a “truecolor” image, is stored in
MATLAB as an m-by-n-by-3 data array that defines red, green, and blue color
components for each individual pixel. RGB images do not use a palette. The
color of each pixel is determined by the combination of the red, green, and blue
intensities stored in each color plane at the pixel’s location. Graphics file
formats store RGB images as 24-bit images, where the red, green, and blue
components are 8 bits each. This yields a potential of 16 million colors. The

Image Types in the Toolbox

precision with which a real-life image can be replicated has led to the
commonly used term “truecolor image.”

An RGB MATLAB array can be of class double, uint8, or uint16. In an RGB
array of class double, each color component is a value between 0 and 1. A pixel
whose color components are (0,0,0) displays as black, and a pixel whose color
components are (1,1,1) displays as white. The three color components for each
pixel are stored along the third dimension of the data array. For example, the
red, green, and blue color components of the pixel (10,5) are stored in
RGB(10,5,1), RGB(10,5,2), and RGB(10,5,3), respectively.

Figure 2-4 depicts an RGB image of class double.

—2235 0.1294 Blue 0.41
04 0.2902 0.0627 0.2902 0.2902 O.

75176 0.1922 0.0627 Green (.1922 0.2588 0.2588
0.5176 0.1294 0.1608 0.1294 0.1294 0.2588 0.2588
0.5176 0.1608 0.0627 0.1608 0.1922 0.2588

.5490 0.2235 0.5490 Red 0.7412 0.7765 0.7765

0.3882 0.5176 0.5804 0.5804 0.7765 0.7765
0.2588 0.2902 0.2588 0.2235 0.4824 0.2235
0.2235 0.1608 0.2588 0.2588 0.1608 0.2588
Q588 0.1608 0.2588 0.2588 0.2588

Figure 2-4: The Color Planes of an RGB Image

To determine the color of the pixel at (2,3), you would look at the RGB triplet
stored in (2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains
0.1608, and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

2-9

2 Introduction

2-10

To further illustrate the concept of the three separate color planes used in an
RGB image, the code sample below creates a simple RGB image containing
uninterrupted areas of red, green, and blue, and then creates one image for
each of its separate color planes (red, green, and blue). It displays each color
plane image separately, and also displays the original image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);

R=RGB(:,:,1);

G=RGB(:,:,2);
B=RGB(:,:,3);
Green Plane Original Image

imshow(R)

figure, imshow(G)
figure, imshow(B)
figure, imshow(RGB)

Red Plane Blue Plane

Figure 2-5: The Separated Color Planes of an RGB Image

Notice that each separated color plane in the figure contains an area of white.
The white corresponds to the highest values (purest shades) of each separate
color. For example, in the “Red Plane” image, the white represents the highest

Image Types in the Toolbox

concentration of pure red values. As red becomes mixed with green or blue,
gray pixels appear. The black region in the image shows pixel values that
contain no red values, i.e., R == 0.

Multiframe Image Arrays

For some applications, you may need to work with collections of images related
by time or view, such as magnetic resonance imaging (MRI) slices or movie
frames.

The Image Processing Toolbox provides support for storing multiple images in
the same array. Each separate image is called a frame. If an array holds
multiple frames, they are concatenated along the fourth dimension. For
example, an array with five 400-by-300 RGB images would be
400-by-300-by-3-by-5. A similar multiframe intensity or indexed image would
be 400-by-300-by-1-by-5.

Use the cat command to store separate images into one multiframe file. For
example, if you have a group of images A1, A2, A3, A4, and A5, you can store them
in a single array using

A = cat(4,Al,A2,A3,A4,A5)

You can also extract frames from a multiframe image. For example, if you have
a multiframe image MULTI, this command extracts the third frame.

FRM3 = MULTI(:,:,:,3)

Note that in a multiframe image array, each image must be the same size and
have the same number of planes. In a multiframe indexed image, each image
must also use the same colormap.

Multiframe Support Limitations

Many of the functions in the toolbox operate only on the first two or first three
dimensions. You can still use four-dimensional arrays with these functions, but
you must process each frame individually. For example, this call displays the
seventh frame in the array MULTI.

imshow(MULTI(:,:,:,7))

If you pass an array to a function and the array has more dimensions than the
function is designed to operate on, your results may be unpredictable. In some

2-11

2 Introduction

cases, the function will simply process the first frame of the array, but in other
cases the operation will not produce meaningful results.

See the reference pages for information about how individual functions work
with the dimensions of an image array. For more information about displaying

2-12

multiframe images, see Chapter 3, “Displaying and Printing Images.”

Summary of Image Types and Numeric Classes

This table summarizes the way MATLAB interprets data matrix elements as
pixel colors, depending on the image type and storage class.

Image Class double Class uint8 or uintl6

Type

Binary Image is an m-by-n array of Image is an m-by-n array of
integers in the range [0,1] integers in the range [0,1]
where the logical flag is on. where the logical flag is on.

Indexed Image is an m-by-n array of Image is an m-by-n array of

integers in the range
(1. pl.

Colormap is a p-by-3 array
of floating-point values in
the range [0, 1].

integers in the range
[0.p —-1].

Colormap is a p-by-3 array of
floating-point values in the
range [0, 1].

Image Types in the Toolbox

Image Class double Class uint8 or uintl6

Type

Intensity Image is an m-by-n array of Image is an m-by-n array of
floating-point values that integers that are linearly
are linearly scaled by scaled by MATLAB to
MATLAB to produce produce colormap indices.
colormap indices. The The typical range of values
typical range of values is [0, is [0, 255] or [0, 65535].
1 Colormap is a p-by-3 array of
Colormap is a p-by-3 array floating-point values in the
of floating-point values in range [0, 1] and is typically
the range [0, 1] and is grayscale.
typically grayscale.

RGB Image is an m-by-n-by-3 Image is an m-by-n-by-3

(Truecolor)

array of floating-point
values in the range [0, 1].

array of integers in the
range [0, 255] or [0, 65535].

2-13

2 Introduction

Working with Image Data

2-14

MATLAB provides commands for reading, writing, and displaying several
types of graphics file formats images. As with MATLAB-generated images,
once a graphics file format image is displayed, it becomes a Handle Graphics®
Image object. MATLAB supports the following graphics file formats:

< BMP (Microsoft Windows Bitmap)

< HDF (Hierarchical Data Format)

< JPEG (Joint Photographic Experts Group)
< PCX (Paintbrush)

= PNG (Portable Network Graphics)

< TIFF (Tagged Image File Format)

= XWD (X Window Dump)

For the latest information concerning the bit depths and/or image types
supported for these formats, see the reference pages for imread and imwrite.

This section discusses how to read, write, and work with graphics images. It
also describes how to convert the storage class or graphics format of an image.

Reading a Graphics Image

The function imread reads an image from any supported graphics image file in
any of the supported bit depths. Most of the images that you will read are 8-bit.
When these are read into memory, MATLAB stores them as class uint8. The
main exception to this rule is that MATLAB supports 16-bit data for PNG and
TIFF images. If you read a 16-bit PNG or TIFF image, it will be stored as class
uintl6.

Note For indexed images, imread always reads the colormap into an array of
class double, even though the image array itself may be of class uint8 or
uintl6.

To see the many syntax variations for reading an image, see the reference entry
for imread. For our discussion here we will show one of the most basic syntax
uses of imread. This example reads the image ngc6543a. jpg.

Working with Image Data

RGB = imread("ngc6543a.jpg”);

You can write image data using the imwrite function. The statements

load clown
imwrite(X,map, "clown._bmp®)

create a BMP file containing the clown image.

Writing a Graphics Image

The function imwrite writes an image to a graphics file in one of the supported
formats. If the image is of class uint8 and the format you choose supports 8-bit
images, by default the image is written as 8-bit. If the image is of class double,
MATLADB's default behavior is to scale the data to class uint8 before writing it
to file, since most graphics file format images do not support double-precision
data. When the image is of class uinti16, there are two possible default
outcomes: if you write an image of class uint16 to a format that supports 16-bit
images (PNG or TIFF), it is written as a 16-bit file; if you write to a format that
does not support 16-bit files, MATLAB first scales the data to class uints, as it
does for images of class double.

The most basic syntax for imwrite takes the image variable name and a
filename. If you include an extension in the filename, MATLAB infers the
desired file format from it. This example writes an RGB image RGB to a BMP
file.

imvrite(RGB, "myfile.bmp™);

For some graphics formats, you can specify additional parameters. One of the
additional parameters for PNG files sets the bit depth. This example writes an
intensity image 1 to a 4-bit PNG file.

imvrite(l, "clown.png”, "BitDepth*,4);

(The bit depths and image types supported for each format are shown in the
reference pages for imwrite.)

This example writes an image A to a JPEG file with a compression quality
setting of 100 (the default is 75).

imwrite(A, "myfile_jpg", "Quality”, 100);

See the reference entry for imwrite for more information.

2-15

2 Introduction

2-16

Querying a Graphics File
The imfinfo function enables you to obtain information about graphics files

that are in any of the formats supported by the toolbox. The information you
obtain depends on the type of file, but it always includes at least the following:

= Name of the file, including the directory path if the file is not in the current
directory

= File format

= Version number of the file format

= File modification date

= File size in bytes

= Image width in pixels

= Image height in pixels

< Number of bits per pixel

= Image type: RGB (truecolor), intensity (grayscale), or indexed

See the reference entry for imfinfo for more information.

Converting The Image Type of Images

For certain operations, it is helpful to convert an image to a different image
type. For example, if you want to filter a color image that is stored as an
indexed image, you should first convert it to RGB format. When you apply the
filter to the RGB image, MATLARB filters the intensity values in the image, as
is appropriate. If you attempt to filter the indexed image, MATLAB simply
applies the filter to the indices in the indexed image matrix, and the results
may not be meaningful.

The Image Processing Toolbox provides several functions that enable you to
convert any image to another image type. These functions have mnemonic
names; for example, ind2gray converts an indexed image to a grayscale
intensity format.

Note that when you convert an image from one format to another, the resulting
image may look different from the original. For example, if you convert a color
indexed image to an intensity image, the resulting image is grayscale, not
color. For more information about how these functions work, see their reference
pages.

Working with Image Data

The table below summarizes these image conversion functions.

Function Purpose

dither Create a binary image from a grayscale intensity image
by dithering; create an indexed image from an RGB
image by dithering

gray2ind Create an indexed image from a grayscale intensity
image
grayslice Create an indexed image from a grayscale intensity

image by thresholding

im2bw Create a binary image from an intensity image,
indexed image, or RGB image, based on a luminance
threshold

ind2gray Create a grayscale intensity image from an indexed
image

ind2gray Create an RGB image from an indexed image

mat2gray Create a grayscale intensity image from data in a
matrix, by scaling the data

rgb2gray Create a grayscale intensity image from an RGB image

rgb2ind Create an indexed image from an RGB image

You can also perform certain conversions just using MATLAB syntax. For
example, you can convert an intensity image to RGB format by concatenating
three copies of the original matrix along the third dimension.

RGB = cat(3,1,1,1);
The resulting RGB image has identical matrices for the red, green, and blue
planes, so the image displays as shades of gray.

In addition to these standard conversion tools, there are some functions that
return a different image type as part of the operation they perform. For
example, the region of interest routines each return a binary image that you

2-17

2 Introduction

2-18

can use to mask an indexed or intensity image for filtering or for other
operations.

Color Space Conversions

The Image Processing Toolbox represents colors as RGB values, either directly
(in an RGB image) or indirectly (in an indexed image). However, there are
other methods for representing colors. For example, a color can be represented
by its hue, saturation, and value components (HSV). Different methods for
representing colors are called color spaces.

The toolbox provides a set of routines for converting between RGB and other
color spaces. The image processing functions themselves assume all color data
is RGB, but you can process an image that uses a different color space by first
converting it to RGB, and then converting the processed image back to the
original color space. For more information about color space conversion
routines, see Chapter 11, “Color.”

Working with uint8 and uintl6 Data

Use imread to read graphics images into MATLAB as uint8 or uintl6 arrays;
use imshow to display these images; and use imwrite to save these images.
Most of the functions in the Image Processing Toolbox accept uint8 and uintl16
input. See the reference entries for more information about imread, imshow,
uint8, and uintl6.

MATLAB provides limited support for storing images as 8-bit or 16-bit
unsigned integers. In addition to reading and writing uint8 and uint16 arrays,
MATLAB supports the following operations:

= Displaying data values

= Indexing into arrays using standard MATLAB subscripting

= Reshaping, reordering, and concatenating arrays, using functions such as
reshape, cat, and permute

<« Saving to and loading from MAT-files

« The all and any functions

= Logical operators and indexing

= Relational operators

= The find function. Note that the returned array is of class double.

Working with Image Data

Mathematical Operations Support for uint8 and uint16

The following MATLAB mathematical operations support uint8 and uint16
data: conv2, convn, fft2, fftn, sum. In these cases, the output is always
double.

If you attempt to perform an unsupported operation on one of these arrays, you
will receive an error. For example,

BW3 = BW1 + BW2
??? Function "+" not defined for variables of class "uint8-.

Converting The Storage Class of Images

If you want to perform operations that are not supported for uint8 or uint16
arrays, you can convert the data to double precision using the MATLAB
function, double. For example,

BW3 = double(BW1) + double(BW2);

However, converting between storage classes changes the way MATLAB and
the toolbox interpret the image data. If you want the resulting array to be
interpreted properly as image data, you need to rescale or offset the data when
you convert it.

For easier conversion of storage classes, use one of these toolbox functions:
im2double, im2uint8, and im2uint16. These functions automatically handle
the rescaling and offsetting of the original data. For example, this command
converts a double-precision RGB image with data in the range [0,1] to a uint8
RGB image with data in the range [0,255].

RGB2 = im2uint8(RGB1);

Note that when you convert from one class to another that uses fewer bits to
represent numbers, you generally lose some of the information in your image.
For example, a uint16 intensity image is capable of storing up to 65,536
distinct shades of gray, but a uint8 intensity image can store only 256 distinct
shades of gray. If you convert a uintl16 intensity image to a uints8 intensity
image, im2uint8 must quantize the gray shades in the original image. In other
words, all values from 0 to 128 in the original image become 0 in the uint8
image, values from 129 to 385 all become 1, and so on. This loss of information
is often not a problem, however, since 256 still exceeds the number of shades of
gray that your eye is likely to discern.

2-19

2 Introduction

2-20

In an indexed image, the image matrix contains only indices into a colormap,
rather than the color data itself, so there is no quantization of the color data
possible during the conversion. Therefore, it is not always possible to convert
an indexed image from one storage class to another. For example, a uint16 or
double indexed image with 300 colors cannot be converted to uint8, because
uint8 arrays have only 256 distinct values. If you want to perform this
conversion, you must first reduce the number of the colors in the image using
the imapprox function. This function performs the quantization on the colorsin
the colormap, to reduce the number of distinct colors in the image. See “Using
imapprox” on page 11-12 for more information. For more information on the
storage class conversion functions see the reference pages for im2double,
im2uint8, im2uintl6.

Turning the Logical Flag on or off

As discussed in “Binary Images” on page 2-7, a uint8 binary image must have
its logical flag on. If you use im2uint8 to convert a binary image of class double
to uints8, this flag is turned on automatically. If you do the conversion
manually, however, you must use the logical function to turn on the logical
flag. For example,

B = logical(uint8(round(A)));

To turn the logical flag off, you can use the unary plus operator. For example,
if Ais a uint8 logical array,

B = +A;

Converting the Graphics File Format of an Image

Sometimes you will want to change the graphics format of an image, perhaps
for compatibility with another software product. You can do this by reading in
the image with imread, and then calling imwrite with the appropriate format
setting specified. For example, to convert an image from a BMP to a PNG, read
the BMP image using imread, convert the storage class if necessary, and then
write the image using imwrite, with 'PNG' specified as your target format. For
the specifics of which bit depths are supported for the different graphics
formats, and for how to specify the format type when writing an image to file,
see the reference entries for imread and imwrite.

Coordinate Systems

Coordinate Systems

Locations in an image can be expressed in various coordinate systems,
depending on context. This section discusses the two main coordinate systems
used in the Image Processing Toolbox, and the relationship between them.
These two coordinate systems are described in

= “Pixel Coordinates”
= “Spatial Coordinates”

Pixel Coordinates

Generally, the most convenient method for expressing locations in an image is
to use pixel coordinates. In this coordinate system, the image is treated as a
grid of discrete elements, ordered from top to bottom and left to right, as
illustrated by Figure 2-6.

(@]

1 2 3

ry

Figure 2-6: The Pixel Coordinate System

For pixel coordinates, the first component r (the row) increases downward,
while the second component c (the column) increases to the right. Pixel
coordinates are integer values and range between 1 and the length of the row
or column.

There is a one-to-one correspondence between pixel coordinates and the
coordinates MATLAB uses for matrix subscripting. This correspondence makes
the relationship between an image’s data matrix and the way the image
displays easy to understand. For example, the data for the pixel in the fifth
row, second column is stored in the matrix element (5,2).

2-21

2 Introduction

2-22

Spatial Coordinates

In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely
identified by a single coordinate pair, such as (5,2). From this perspective, a
location such as (5.3,2.2) is not meaningful.

At times, however, it is useful to think of a pixel as a square patch. From this
perspective, a location such as (5.3,2.2) is meaningful, and is distinct from (5,2).
In this spatial coordinate system, locations in an image are positions on a
plane, and they are described in terms of x and y (not r and c as in the pixel
coordinate system).

Figure 2-7 illustrates the spatial coordinate system used for images. Notice
that y increases downward.

X

-

0.5 1 1.5 2 2.5 3 3.5
5 1 1 L

0

Yy

Figure 2-7: The Spatial Coordinate System

This spatial coordinate system corresponds closely to the pixel coordinate
system in many ways. For example, the spatial coordinates of the center point
of any pixel are identical to the pixel coordinates for that pixel.

There are some important differences, however. In pixel coordinates, the
upper-left corner of an image is (1,1), while in spatial coordinates, this location
by default is (0.5,0.5). This difference is due to the pixel coordinate system
being discrete, while the spatial coordinate system is continuous. Also, the
upper-left corner is always (1,1) in pixel coordinates, but you can specify a
nondefault origin for the spatial coordinate system. See “Using a Nondefault
Spatial Coordinate System” on page 2-23 for more information.

Another potentially confusing difference is largely a matter of convention: the
order of the horizontal and vertical components is reversed in the notation for

Coordinate Systems

these two systems. As mentioned earlier, pixel coordinates are expressed as
(r,c), while spatial coordinates are expressed as (x,y). In the reference pages,
when the syntax for a function uses r and c, it refers to the pixel coordinate
system. When the syntax uses x and y, it refers to the spatial coordinate
system.

Using a Nondefault Spatial Coordinate System

By default, the spatial coordinates of an image correspond with the pixel
coordinates. For example, the center point of the pixel in row 5, column 3 has
spatial coordinates x=3, y=5. (Remember, the order of the coordinates is
reversed.) This correspondence simplifies many of the toolbox functions
considerably. Several functions primarily work with spatial coordinates rather
than pixel coordinates, but as long as you are using the default spatial
coordinate system, you can specify locations in pixel coordinates.

In some situations, however, you may want to use a nondefault spatial
coordinate system. For example, you could specify that the upper-left corner of
an image is the point (19.0,7.5), rather than (0.5,0.5). If you call a function that
returns coordinates for this image, the coordinates returned will be values in
this nondefault spatial coordinate system.

To establish a nondefault spatial coordinate system, you can specify the XData
and YData image properties when you display the image. These properties are
two-element vectors that control the range of coordinates spanned by the
image. By default, for an image A, XData is [1 size(A,2)], and YData is

[1 size(A,D)].

For example, if A is a 100 row by 200 column image, the default XData is

[1 200], and the default YData is [1 100]. The values in these vectors are
actually the coordinates for the center points of the first and last pixels (not the
pixel edges), so the actual coordinate range spanned is slightly larger; for
instance, if XData is [1 200], the x-axis range spanned by the image is

[0.5 200.5].

These commands display an image using nondefault XData and YData.

A = magic(b);

x = [19.5 23.5];

y = [8.0 12.0];

image(A, "XData“" ,x, "YData",y), axis image, colormap(jet(25))

2-23

2 Introduction

75

8

8.5

9

9.5

10

105

11

115

12

125
19 195 20 205 21 215 22 225 23 235 24

See the reference page for imshow for information about the syntax variations
that specify nondefault spatial coordinates.

2-24

Displaying and Printing

Images

Overview .
Words You Need to Know

Displaying Images with imshow .
Displaying Indexed Images
Displaying Intensity Images
Displaying Binary Images .
Displaying RGB Images .

Displaying Images Directly from DISk

Special Display Techniques .
Adding a Colorbar

Displaying Multiframe Images
Displaying Multiple Images

Setting the Preferences for imshow
Zooming in on a Region of an Image .
Texture Mapping .

Printing Images

Troubleshooting

3-2
3-2

3-3
3-3
3-4
3-7

. 3-12
. 3-13

. 3-14
. 3-14
. 3-15
. 3-19
. 3-24
. 3-26
. 3-28

. 3-30

. 3-31

3 Displaying and Printing Images

Overview

The Image Processing Toolbox supports a number of image display techniques.
For example, the function imshow displays any supported image type with a
single function call. Other functions handle more specialized display needs.
This chapter describes basic display techniques for each image type supported
by the toolbox (e.g., RGB, intensity, and so on.), as well as how to set the toolbox
preferences for the imshow function. It also discusses special display
techniques, such as multiple image display and texture mapping. The final
pages of this chapter include information about printing images and
troubleshooting display problems

Words You Need to Know

An understanding of the following terms will help you to use this chapter. For
more explanation of this table and others like it, see “Words You Need to Know”
in the Preface.

Words

Definitions

Color approximation There are two ways in which this term is used in MATLAB:

Screen bit depth

< The method by which MATLAB chooses the best colors for
an image whose number of colors you are decreasing

< MATLAB'’s automatic choice of screen colors when
displaying on a system with limited color display capability

The number of bits per screen pixel

Screen color resolution The number of distinct colors that can be produced by the

screen

Displaying Images with imshow

Displaying Images with imshow

In MATLAB, the primary way to display images is by using the image function.
This function creates a Handle Graphics® image object, and it includes syntax
for setting the various properties of the object. MATLAB also includes the
imagesc function, which is similar to image but which automatically scales the
input data.

The Image Processing Toolbox includes an additional display routine called
imshow. Like image and imagesc, this function creates a Handle Graphics
image object. However, imshow also automatically sets various Handle
Graphics properties and attributes of the image to optimize the display.

This section discusses displaying images using imshow. In general, using
imshow for image processing applications is preferable to using image and
imagesc. It is easier to use and in most cases, displays an image using one
image pixel per screen pixel. (For more information about image and imagesc,
see their pages in the MATLAB Function Reference or see the MATLAB
graphics documentation.)

Note One of the most common toolbox usage errors is using the wrong syntax
of imshow for your image type. This chapter shows which syntax is appropriate
for each type of image. If you need help determining what type of image you
are working with, see “Image Types in the Toolbox” on page 2-5.

Displaying Indexed Images
To display an indexed image with imshow, specify both the image matrix and
the colormap.

imshow(X,map)

For each pixel in X, imshow displays the color stored in the corresponding row
of map. The relationship between the values in the image matrix and the
colormap depends on whether the image matrix is of class double, uintl6, or
uint8. If the image matrix is of class double, the value 1 points to the first row
in the colormap, the value 2 points to the second row, and so on. If the image
matrix is of class uint8 or uinti6, there is an offset; the value 0 points to the
first row in the colormap, the value 1 points to the second row, and so on. (The

3-3

3 Displaying and Printing Images

3-4

offset is handled automatically by the image object, and is not controlled
through a Handle Graphics property.)

Each pixel in an indexed image is directly mapped to its corresponding
colormap entry. If the colormap contains a greater number of colors than the
image, the extra colors in the colormap will simply be ignored. If the colormap
contains fewer colors than the image requires, all image pixels over the limits
of the colormap’s capacity will be set to the last color in the colormap, i.e., if an
image of class uint8 contains 256 colors, and you display it with a colormap
that contains only 16 colors, all pixels with a value of 15 or higher are displayed
with the last color in the colormap.

To change the default behavior of imshow, set the toolbox preferences. See
“Setting the Preferences for imshow” on page 3-24 for more information.

The Image and Axes Properties of an Indexed Image

In most cases, it is not necessary to concern yourself with the Handle Graphics
property settings made when you call imshow. Therefore, this section is not
required reading, but rather information for those who really “want to know.”

When you display an indexed image, imshow sets the Handle Graphics
properties that control how colors display, as follows:

= The image CData property is set to the data in X.

= The image CDataMapping property is set to direct.

< The axes CLim property does not apply, because CDataMapping is set to
direct.

= The figure Colormap property is set to the data in map.

Displaying Intensity Images
To display a intensity (grayscale) image, the most basic syntax is

imshow(l)

imshow displays the image by scaling the intensity values to serve as indices
into a grayscale colormap. If I is double, a pixel value of 0.0 is displayed as
black, a pixel value of 1.0 is displayed as white, and pixel values in between are
displayed as shades of gray. If I isuint8, then a pixel value of 255 is displayed
as white. If I is uintl6, then a pixel value of 65535 is displayed as white.

Displaying Images with imshow

Intensity images are similar to indexed images in that each uses an m-by-3
RGB colormap, but normally, you will not specify a colormap for an intensity
image. MATLAB displays intensity images by using a grayscale system
colormap (where R=G=B). By default, the number of levels of gray in the
colormap is 256 on systems with 24-bit color, and 64 or 32 on other systems.
(See “Working with Different Screen Bit Depths” on page 11-4 for a detailed
explanation.)

Another syntax form of imshow for intensity images enables you to explicitly
specify the number of gray levels to use. To display an image I with 32 gray
levels, specify a value for n.

imshow(1,32)

Because MATLAB scales intensity images to fill the colormap range, a
colormap of any size can be used. Larger colormaps enable you to see more
detail, but they also use up more color slots. The availability of color slots is
discussed further in “Displaying Multiple Images” on page 3-19, and also in
“Working with Different Screen Bit Depths” on page 11-4.

To change the default behavior of imshow, set the toolbox preferences. See
“Setting the Preferences for imshow” on page 3-24 for more information.

Displaying Intensity Images That Have Unconventional Ranges

In some cases, you may have data you want to display as an intensity image,
even though the data is outside the conventional toolbox range (i.e., [0,1] for
double arrays, [0,255] for uint8 arrays, or [0,65535] for uint16 arrays). For
example, if you filter an intensity image, some of the output data may fall
outside the range of the original data.

To display unconventional range data as an image, you can specify the data
range directly, using

imshow(l,[low high])

If you use an empty matrix ([1) for the data range, imshow scales the data
automatically, setting low and high to the minimum and maximum values in
the array. The next example filters an intensity image, creating
unconventional range data. imshow is then called using an empty matrix.

imread("testpatl.tif");
filter2([1 2;-1 -21,1);

|
J =
min(J3(:)) %Find the minimum pixel value of the filtered image.

3-5

3 Displaying and Printing Images

ans =
-364

max(J(:)) %Find the maximum pixel value of the filtered image.

ans =
723
imshow(J,[1);

When you use this syntax, imshow sets the axes CLim property to [low high].
CDataMapping is always scaled for intensity images, so that low corresponds
to the first row of the grayscale colormap and high corresponds to the last row.

The Image and Axes Properties of an Intensity Image

In most cases, it is not necessary to concern yourself with the Handle Graphics
property settings made when you call imshow. Therefore, this section is not
required reading, but rather information for those who really “want to know.”

When you display an intensity image, imshow sets the Handle Graphics
properties that control how colors display, as follows:

< The image CData property is set to the data in I.

= The image CDataMapping property is set to scaled.

= The axes CLim property is set to [0 1] if the image matrix is of class double,
[0 255] if the matrix is of class uint8, or [0 65535] if it is of class uint16.

< The figure Colormap property is set to a grayscale colormap whose values
range from black to white.

3-6

Displaying Images with imshow

Displaying Binary Images
To display a binary image, the syntax is
imshow(BW)

In MATLAB, a binary image is a logical two-dimensional uint8 or double
matrix that contains only 0's and 1's. (The toolbox does not support uintl6
binary images.) All toolbox functions that return a binary image, return them
as uint8 logical arrays.

Generally speaking, working with binary images with the toolbox is very
straightforward. In most cases you will load a 1-bit binary image, and
MATLAB will create a logical uint8 image in memory. You will normally not
encounter double binary images unless you create them yourself using
MATLAB.

If you load an image with a bit depth greater than 1 bit per pixel, or use
MATLAB to create a new double or uint8 image containing only 0's and 1's,
you may encounter unexpected results. For example, the mere presence of all
0's and 1's does not always indicate a binary image. For MATLAB to interpret
the image as binary, it must be logical, meaning that its logical flag must be
turned “on.” Therefore, intensity images that happen to contain only 0'sand 1's
are not binary images.

To change the default behavior of imshow, set the toolbox preferences. See
“Setting the Preferences for imshow” on page 3-24 for more information.

This example underscores the importance of having the logical flag turned on
if you want your image to behave like a binary image.

Create an image of class double that contains only 0's and 1's.

BW1 = zeros(20,20);
BW1(2:2:18,2:2:18)=1;
imshow(BW1, "notruesize®);

3-7

3 Displaying and Printing Images

whos
Name Size Bytes Class
BW1 20x20 3200 double array

Grand total is 400 elements using 3200 bytes

While this image may look like a binary image, it is really a grayscale image —
it will not be recognized as a binary image by any toolbox function. If you were
to save this image to a file (without specifying a bit depth) it would be saved as
an 8-bit grayscale image containing 0's and 255's.

The fact that BW1 is not really a binary image becomes evident when you
convert it to class uints8.

BW2=uint8(BW1);
figure, imshow(BW2, "notruesize”)

BW1 still contains 0's and 1's, but since the dynamic range of an uint8 intensity
image is [0 255], the value 1 is very close to black.

3-8

Displaying Images with imshow

To make BW1 a true binary image use the NOT EQUAL (~=) operator, which
will turn the logical flag on.

BW3 = BW2 ~= 0;

figure, imshow(BW3, "notruesize®)

whos
Name Size Bytes Class
BW1 20x20 3200 double array
BW2 20x20 400 uint8 array
BW3 20x20 400 uint8 array (logical)

Grand total is 1225 elements using 4025 bytes

Write BW3 to a file using one of the formats that supports writing 1-bit images.
You will not need to specify a bit depth, because MATLAB automatically saves
logical uint8 or double images as 1-bit images if the file format supports it.

imvrite(BW3, "grid.tif"); % MATLAB supports writing 1-bit TIFFs.

You can check the bit depth of grid. tif by calling imfinfo. As you will see, the
BitDepth field indicates that it has been saved as a 1-bit image, with the
beginning of your output looking something like this.

imFinfo("BW1.tif")
ans =
Filename: "d:\mystuff\grid.tif"
FileModDate: "25-Nov-1998 11:36:17"
FileSize: 340
Format: "tif"
FormatVersion: []
Width: 20

3-9

3 Displaying and Printing Images

Height: 20
BitDepth: 1
ColorType: “grayscale*
FormatSignature: [73 73 42 0]
ByteOrder: "little-endian”
NewSubfileType: 0
BitsPerSample: 1
Compression: "CCITT 1D*

Note You may have noticed that the ColorType field of the binary image
gueried above has a value of "grayscale”. MATLAB sets this field to one of
three values: "grayscale”, "indexed", and “truecolor”. When reading an
image, MATLAB evaluates the image type by checking both the BitDepth and
the ColorType fields.

Changing the Display Colors of a Binary Image

You may prefer to invert binary images when you display them, so that 0
values display as white and 1 values display as black. To do this, use the NOT
(~) operator in MATLAB. For example,

BW = imread(“circles.tif”);
imshow(~BW)

You can also display a binary image using a colormap. If the image is of class
uint8, 0’'s display as the first color in the colormap, and 1's values display as

3-10

Displaying Images with imshow

the second color. For example, the following command displays 0's as red and
1's as blue.

imshow(BW,[1 0 0; 0 0 1D

Figure 3-1: Binary Image Displayed with a Colormap

If the image is of class double, you need to add 1 to each value in the image
matrix, because there is no offset in the colormap indexing.

BW = double(BW);
imshow(BW + 1,[1 0 0; 0 O 1])

The Image and Axes Properties of a Binary Image

In most cases, it is not necessary to concern yourself with the Handle Graphics
property settings made when you call imshow. Therefore, this section is not
required reading, but rather information for those who really “want to know.”

imshow sets the Handle Graphics properties that control how colors display, as
follows:

< The image CData is set to the data in Bw.

= The image CDataMapping property is set to direct.

= The axes CLim property is set to [0 1].

= The figure Colormap property is set to a grayscale colormap whose values
range from black to white.

3-11

3 Displaying and Printing Images

3-12

Displaying RGB Images
RGB images, also called truecolor images, represent color values directly,
rather than through a colormap.

To display an RGB image, the most basic syntax is
imshow(RGB)

RGB is m-by-n-by-3 array. For each pixel (r,c) in RGB, imshow displays the color
represented by the triplet (r,c,1:3).

Systems that use 24 bits per screen pixel can display truecolor images directly,
because they allocate 8 bits (256 levels) each to the red, green, and blue color
planes. On systems with fewer colors, MATLAB displays the image using a
combination of color approximation and dithering. See “Working with Different
Screen Bit Depths” on page 11-4 for more information.

To change the default behavior of imshow, set the toolbox preferences. See
“Setting the Preferences for imshow” on page 3-24 for more information.

The Image and Axes Properties of an RGB Image

In most cases, it is not necessary to concern yourself with the Handle Graphics
property settings made when you call imshow. Therefore, this section is not
required reading, but rather information for those who really “want to know.”

When you display an RGB image, imshow sets the Handle Graphics properties
that control how colors display, as follows.

< The image CData property is set to the data in RGB. The data will be
three-dimensional. When CData is three-dimensional, MATLAB interprets
the array as truecolor data, and ignores the values of the CDataMapping,
CLim, and Colormap properties.

< The image CDataMapping property is ignored.
= The axes CLim property is ignored.
<« The figure Colormap property is ignored.

Displaying Images with imshow

Displaying Images Directly from Disk

Generally, when you want to display an image, you will first use imread to load
it and the data is stored as one or more variables in the MATLAB workspace.
However, if you do not want to load an image before displaying it, you can
display a file directly using this syntax.

imshow filename
The file must be in the current directory or on the MATLAB path.
For example, to display a file named flowers.tiT,

imshow flowers.tif

If the image has multiple frames, imshow will only display the first frame. For
information on the display options for multiframe images, see “Displaying
Multiframe Images” on page 3-15.

This syntax is very useful for scanning through images. Note, however, that
when you use this syntax, the image data is not stored in the MATLAB
workspace. If you want to bring the image into the workspace, use the
getimage function, which gets the image data from the current Handle
Graphics image object. For example,

rgb = getimage;

will assign flowers.tif to rgb if the figure window in which it is displayed is
currently active.

3-13

3 Displaying and Printing Images

3-14

Special Display Techniques

In addition to imshow, the toolbox includes functions that perform specialized
display operations, or exercise more direct control over the display format.
These functions, together with the MATLAB graphics functions, provide a
range of image display options.

This section includes the following topics:

< “Adding a Colorbar” on page 3-14

= “Displaying Multiframe Images” on page 3-15

=« “Displaying Multiple Images” on page 3-19

= “Zooming in on a Region of an Image” on page 3-26
= “Texture Mapping” on page 3-28

Adding a Colorbar

Use the colorbar function to add a colorbar to an axes object. If you add a
colorbar to an axes object that contains an image object, the colorbar indicates
the data values that the different colors in the image correspond to.

Seeing the correspondence between data values and the colors displayed by
using a colorbar is especially useful if you are displaying unconventional range
data as an image, as described under “Displaying Intensity Images That Have
Unconventional Ranges” on page 3-5.

In the example below, a grayscale image of class uint8 is filtered, resulting in
data that is no longer in the range [0,255].

| imread("saturn.tif");

h [121; 000; -1 -2 -1];
12 = filter2(h,1);
imshow(12,[]), colorbar

Special Display Techniques

400

-100

-200

-300

Figure 3-2: Image Displayed with Colorbar

Displaying Multiframe Images

A multiframe image is an image file that contains more than one image. The
MATLAB-supported formats that enable the reading and writing of
multiframe images are HDF and TIFF. See “Multiframe Image Arrays” on
page 2-11 for more information about reading and writing multiframe images.

Once read into MATLAB, the image frames of a multiframe image are always
handled in the fourth dimension. Multiframe images can be loaded from disk
using a special syntax of imread, or created using MATLAB. Multiframe
images can be displayed in several different ways; to display a multiframe
image, you can

=« Display the frames individually, using the imshow function. See “Displaying
the Frames of a Multiframe Image Individually” on page 3-16 below.

=« Display all of the frames at once, using the montage function. See “Displaying
All Frames of a Multiframe Image at Once” on page 3-17.

= Convert the frames to a movie, using the immovie function. See “Converting
a Multiframe Image to a Movie” on page 3-18.

3-15

3 Displaying and Printing Images

3-16

Displaying the Frames of a Multiframe Image Individually

In MATLAB, the frames of a multiframe image are handled in the fourth
dimension. To view an individual frame, call imshow and specify the frame
using standard MATLAB indexing notation. For example, to view the seventh
frame in the intensity array I,

imshow(1(:,:,:,7))
The following example loads mri . tif and displays the third frame.

% Initialize an array to hold the 27 frames of mri.tif
mri = uint8(zeros(128,128,1,27));
for frame=1:27
% Read each frame into the appropriate frame in memory
[nri(:z,:,:,Fframe),map] = imread("mri.tif",frame);
end
imshow(mri(:,:,:,3),map);

Intensity, indexed, and binary multiframe images have a dimension of
m-by-n-by-1-by-k, where k represents the total number of frames, and 1
signifies that the image data has just one color plane. Therefore, the following
call,

imshow(mri(:,:,:,3),map);
is equivalent to,
imshow(mri(:,:,1,3),map);

RGB multiframe images have a dimension of m-by-n-by-3-by-k, where k
represents the total number of frames, and 3 signifies the existence of the three
color planes used in RGB images. This example,

imshow(RGB(:,:,:,7));

Special Display Techniques

shows all three color planes of the seventh frame, and is not equivalent to
imshow(RGB(:,:,3,7));
which shows only the third color plane (blue) of the seventh frame. These two

calls will only yield the same results if the image is RGB grayscale (R=G=B).

Displaying All Frames of a Multiframe Image at Once

To view all of the frames in a multiframe array at one time, use the montage
function. montage divides a figure into multiple display regions and displays
each image in a separate region.

The syntax for montage is similar to the imshow syntax. To display a
multiframe intensity image, the syntax is

montage(l)
To display a multiframe indexed image, the syntax is

montage(X,map)

Note All of the frames in a multiframe indexed array must use the same
colormap.

This example loads and displays all frames of a multiframe indexed image.

% Initialize an array to hold the 27 frames of mri.tif.
mri = uint8(zeros(128,128,1,27));
for frame=1:27
% Read each frame into the appropriate frame in memory.
[mri(:z,:,:,frame),map] = imread("mri.tif",frame);
end
montage(mri,map);

3-17

3 Displaying and Printing Images

3-18

Figure 3-3: All Frames of Multiframe Image Displayed in One Figure

Notice that montage displays images in a row-wise manner. The first frame
appears in the first position of the first row, the next frame in the second
position of the first row, and so on. montage arranges the frames so that they
roughly form a square.

Converting a Multiframe Image to a Movie

To create a MATLAB movie from a multiframe image array, use the immovie
function. This function works only with indexed images; if your images are of
another type, you must first convert them using one of the conversion functions
described in “Converting The Image Type of Images” on page 2-16.

Special Display Techniques

This call creates a movie from a multiframe indexed image X
mov = immovie(X,map);

where X is a four-dimensional array of structures that you want to use for the
movie.

You can play the movie in MATLAB using the movie function.

colormap(map), movie(mov);

Note that when you play the movie, you need to supply the colormap used by
the original image array.

This example loads the multiframe image mri . ti f and makes a movie out of it.
It won't do any good to show the results here, so try it out; it's fun to watch.

% Initialize and array to hold the 27 frames of mri.tif.
mri = uint8(zeros(128,128,1,27));
for frame=1:27
% Read each frame into the appropriate frame in memory.
[mri(:z,:,:,frame),map] = imread("mri._tif",frame);
end

mov = immovie(mri,map);
colormap(map), movie(mov);

Note that immovie displays the movie as it is being created, so you will actually
see the movie twice. The movie runs much faster the second time (using movie).

Note MATLAB movies require MATLAB in order to be run. To make a movie
that can be run outside of MATLAB, you can use the MATLAB avifile and
addframe functions to create an AVI file. AVI files can be created using
indexed and RGB images of classes uint8 and double, and don't require a
multiframe image. For instructions on creating an AV file, see the
“Development Environment.”

Displaying Multiple Images
MATLAB does not place any restrictions on the number of images you can
display simultaneously. However, there are usually system limitations that

3-19

3 Displaying and Printing Images

3-20

are dependent on the computer hardware you are using. The sections below
describe how to display multiple figures separately, or within the same figure.

The main limitation is the number of colors your system can display. This
number depends primarily on the number of bits that are used to store the color
information for each pixel. Most systems use either 8, 16, or 24 bits per pixel.

If you are using a system with 16 or 24 bits per pixel, you are unlikely to run
into any problems, regardless of the number of images you display. However,
if your system uses 8 bits per pixel, it can only display a maximum of 256
different colors, and you can therefore quickly run out of color slots if you
display multiple images. (Actually, the total number of colors you can display
is slightly fewer than 256, because some color slots are reserved for Handle
Graphics objects. The operating system usually reserves a few colors as well.)

To determine the number of bits per pixel on your system, enter this command.
get(0, "ScreenDepth™)

See “Working with Different Screen Bit Depths” on page 11-4 for more
information.

This section discusses

= Displaying each image in a separate figure
=« Displaying multiple images in the same figure

It also includes information about working around system limitations.

Displaying Each Image in a Separate Figure

The simplest way to display multiple images is to display them in different
figure windows. imshow always displays an image in the current figure, so if
you display two images in succession, the second image replaces the first
image. To avoid replacing the image in the current figure, use the figure
command to explicitly create a new empty figure before calling imshow for the
next image. For example,

imshow(l)
figure, imshow(12)
figure, imshow(13)

When you use this approach, the figures you create are empty initially.

Special Display Techniques

If you have an 8-bit display, you must make sure that the total number of
colormap entries does not exceed 256. For example, if you try to display three
images, each having a different colormap with 128 entries, at least one of the
images will display with the wrong colors. (If all three images have identical
colormaps, there will not be a problem, because only 128 color slots are used.)
Remember that intensity images are also displayed using colormaps, so the
color slots used by these images count toward the 256-color total.

In the next example, two indexed images are displayed on an 8-bit display.
Since these images do not have similar colormaps and due to the limitation of
the screen color resolution, the first image is forced to use the colormap of the
second image, resulting in an inaccurate display.

[X1,mapl]=imread(" forest._tif");
[X2,map2]=imread("trees.tif");
imshow(X1,mapl), figure, imshow(X2,map2);

3-21

3 Displaying and Printing Images

3-22

Figure 3-4: Displaying Two Indexed Images on an 8-bit Screen

As X2 is displayed, X1 is forced to use X2's colormap (and now you can’t see the
forest for the trees). Note that the actual display results of this example will
vary depending on what other application windows are open and using up
system color slots.

One way to avoid these display problems is to manipulate the colormaps to use
fewer colors. There are various ways to do this, such as using the imapprox
function. See “Reducing the Number of Colors in an Image” on page 11-6 for
information.

Another solution is to convert images to RGB (truecolor) format for display,
because MATLAB automatically uses dithering and color approximation to
display these images. Use the ind2rgb function to convert indexed images to
RGB.

imshow(ind2rgb(X,map))

Or, simply use the cat command to display an intensity image as an RGB
image.

imshow(cat(3,1,1,1))

Displaying Multiple Images in the Same Figure

You can display multiple images in a single figure window with some
limitations. This discussion shows you how to do this in one of two ways:

1 By using imshow in conjunction with subplot

Special Display Techniques

2 By using subimage in conjunction with subplot

subplot divides a figure into multiple display regions. The syntax of subplot is
subplot(m,n,p)

This syntax divides the figure into an m-by-n matrix of display regions and

makes the pth display region active.

For example, if you want to display two images side by side, use

[X1,mapl]=imread("forest.tif");
[X2,map2]=imread("trees.tif");

subplot(1,2,1), imshow(X1,map2)
subplot(1,2,2), imshow(X2,map2)

+ |Figure No. 1 =] E3
Fil= Edit Toolz ‘Window Help

DEeE& NA A/ PP

Figure 3-5: Two Images in Same Figure Using the Same Colormap

If sharing a colormap (using the subplot function) produces unacceptable
display results as Figure 3-5 shows, use the subimage function (shown below).
Or, as another alternative, you can map all images to the same colormap as you
load them. See “Colormap Mapping” on page 11-11 for more information.

3-23

3 Displaying and Printing Images

subimage converts images to RGB before displaying and therefore circumvents
the colormap sharing problem. This example displays the same two images
shown in Figure 3-5 with better results.

[X1,mapl]=imread("forest.tif");
[X2,map2]=imread("trees.tif");
subplot(1,2,1), subimage(X1,mapl)
subplot(1,2,2), subimage(X2,map2)

+# | Figure No. 1 [_ O] x|
File Edit Tool: ‘window Help

DEE& NA A/ 2P

100 200 300 <400

Figure 3-6: Two Images in Same Figure Using Separate Colormaps

Setting the Preferences for imshow

The behavior of imshow is influenced in part by the current settings of the
toolbox preferences. Depending on the arguments you specify and the current
settings of the toolbox preferences, imshow may

=« Suppress the display of axes and tick marks.

= Include or omit a “border” around the image.

=« Call the truesize function to display the image without interpolation.

= Set other figure and axes properties to tailor the display.

3-24

Special Display Techniques

All of these settings can be changed by using the iptsetpref function, and the
truesize preference, in particular, can also be changed by setting the
display_option parameter of imshow. This section describes how to set the
toolbox preferences and how to use the display_option parameter.

When you display an image using the imshow function, MATLAB also sets the
Handle Graphics figure, axes, and image properties, which control the way
image data is interpreted. These settings are optimized for each image type.
The specific properties set are described under the following sections:

= “The Image and Axes Properties of an Indexed Image” on page 3-4
= “The Image and Axes Properties of an Intensity Image” on page 3-6

= “The Image and Axes Properties of a Binary Image” on page 3-11
= “The Image and Axes Properties of an RGB Image” on page 3-12

Toolbox Preferences

The toolbox preferences affect the behavior of imshow for the duration of the
current MATLAB session. You can change these settings at any time by using
the iptsetpref function. To preserve your preference settings from one session
to the next, make your settings in your startup.m file. These are the
preferences that you may set.

= The ImshowBorder preference controls whether imshow displays the figure
window as larger than the image (leaving a border between the image axes
and the edges of the figure), or the same size as the image (leaving no
border).

= The ImshowAxesVisible preference controls whether imshow displays
images with the axes box and tick labels.

= The ImshowTruesize preference controls whether imshow calls the truesize
function. This preference can be overridden for a single call to imshow; see
“The truesize Function” below for more details.

= The TrueSizeWarning preference controls whether you will receive a
warning message if an image is too large for the screen.

This example call to iptsetpref resizes the figure window so that it fits tightly
around displayed images.

iptsetpref (" ImshowBorder®, "tight");

To determine the current value of a preference, use the iptgetpref function.

3-25

3 Displaying and Printing Images

3-26

For more information about toolbox preferences and the values they accept, see
the reference entries for iptgetpref and iptsetpref.

The truesize Function

The truesize function assigns a single screen pixel to each image pixel, e.g., a
200-by-300 image will be 200 screen pixels in height and 300 screen pixels in
width. This is generally the preferred way to display an image. In most
situations, when the toolbox is operating under default behavior, imshow calls
the truesize command automatically before displaying an image.

In some cases, you may not want imshow to automatically call truesize (for
example, if you are working with a small image). If you display an image
without calling truesize, the image displays at the default axis size. In such
cases, MATLAB must use interpolation to determine the values for screen
pixels that do not directly correspond to elements in the image matrix. (See
“Interpolation” on page 4-4 for more information.)

There are two ways to affect whether or not MATLAB will automatically call
truesize:

1 Set the preference for the current MATLAB session. This example sets the
ImshowTruesize preference to "manual ", meaning that truesize will not be
automatically called by imshow.

iptsetpref (" ImshowTruesize®, "manual *)

2 Set the preference for a single imshow command by setting the
display_option parameter. This example sets the display_option
parameter to truesize, so that truesize is called for the image displayed,
regardless of the current preference setting.

imshow(X, map, "truesize®)

For more information see the reference descriptions for imshow and truesize.

Zooming in on a Region of an Image

The simplest way to zoom in on a region of an image is to use the zoom buttons
provided on the figure window. To enable zooming from the command line, use
the zoom command.When you zoom in, the figure window remains the same
size, but only a portion of the image is displayed, at a higher magnification.

Special Display Techniques

(zoom works by changing the axis limits; it does not change the image data in
the figure.)

Once zooming in is enabled, there are two ways to zoom in on an image:

1 Single mouse click: click on a spot in the image by placing the cursor on the
spot and the pressing the left mouse button. The image is magnified and the
center of the new view is the spot where you clicked.

2 Click and drag the mouse: select a region by clicking on the image, holding
down the left mouse button, and dragging the mouse. This creates a dotted
rectangle. When you release the mouse button, the region enclosed by the
rectangle is displayed with magnification.

Zooming In or Out With the Zoom Buttons

The zoom buttons in the MATLAB figure enable you to zoom in or out on an
image using your mouse.

& To zoom in, click the “magnifying glass” button with the plus sign in it.
J There are two ways to zoom in on an image after selecting the zoom in
button. See “Zooming in on a Region of an Image” above.

2 To zoom out, click the “magnifying glass” button with the minus sign in
it. Click your left mouse button over the spot in the image you would like
to zoom out from.

Zooming In or Out from the Command Line

The zoom command enables you to zoom in or out on an image using your
mouse.

To enable zooming (in or out), type

Zoom on

There are two ways to zoom in on an image. See “Zooming in on a Region of an
Image” above.

To zoom out, click on the image with the right mouse button. (If you have a
single-button mouse, hold down the Shift key and click.)

To zoom out completely and restore the original view, enter

zoom out

3-27

3 Displaying and Printing Images

3-28

To disable zooming, enter

zoom off

Texture Mapping

When you use the imshow command, MATLAB displays the image in a
two-dimensional view. However, it is also possible to map an image onto a
parametric surface, such as a sphere, or below a surface plot. The warp function
creates these displays by texture mapping the image. Texture mapping is a
process that maps an image onto a surface grid using interpolation.

This example texture maps an image of a test pattern onto a cylinder.

[X,y,z] = cylinder;
I = imread("testpatl.tif");
warp(x,y,z,1);

Figure 3-7: An Image Texture Mapped onto a Cylinder

The image may not map onto the surface in the way that you had expected. One
way to modify the way the texture map appears is to change the settings of the
Xdir, Ydir, and zdir properties. For more information, see Changing Axis
Direction in the MATLAB graphics documentation.

Special Display Techniques

For more information about texture mapping, see the reference entry for the
warp function.

3-29

3 Displaying and Printing Images

3-30

Printing Images

If you want to output a MATLAB image to use in another application (such as
a word-processing program or graphics editor), use imwrite to create a file in
the appropriate format. See “Writing a Graphics Image” on page 2-15 for
details.

If you want to print the contents of a MATLAB figure (including nonimage
elements such as labels), use the MATLAB print command, or choose the
Print option from the File menu of the figure window. Note that if you produce
output in either of these ways, the results reflect the settings of various Handle
Graphics properties. In some cases, you may need to change the settings of
certain properties to get the results you want.

Here are some tips that may be helpful when you print images.

=« Image colors print as shown on the screen. This means that images are not
affected by the InvertHardcopy figure property.

= To ensure that printed images have the proper size and aspect ratio,
you should set the figure's PaperPositionMode property to auto. When
PaperPositionMode is set to auto, the width and height of the printed figure
are determined by the figure's dimensions on the screen. By default, the
value of PaperPositionMode is manual. If you want the default value of
PaperPositionMode to be auto, you can add this line to your startup.m file.

set(0, "DefaultFigurePaperPositionMode”, "auto*®)

For detailed information about printing with File/Print or the print command
(and for information about Handle Graphics), see “Printing and Exporting
Figures with MATLAB” in in the MATLAB graphics documentation. For a
complete list of options for the print command, enter help print at the
MATLAB command line prompt or see print in the MATLAB Function
Reference.

Troubleshooting

Troubleshooting

This section contains three common scenarios (in bold text) which can occur
unexpectedly, and what you can do to derive the expected results.

My color image is displaying as grayscale. Your image must be an indexed image,
meaning that it should be displayed using a colormap. Perhaps you did not use
the correct syntax for loading an indexed image, which is,

[X, map]=imread("filename.ext");

Also, be sure to use the correct form of imshow for an indexed image.

imshow(X,map);

See “Displaying Indexed Images” on page 3-3 for more information about
displaying indexed images.

My binary image displays as all black pixels. Check to see if its logical flag is “on.” To
do this, either use the islogical command or call whos. If the image is logical,
the whos command will display the word “logical” after the word “array” under
the class heading. If you have created your own binary image, chances are it is
of class uint8, where a value of 1 is nearly black. Remember that the dynamic
range of a uint8 intensity image is [0 255], not [0 1]. For more information
about valid binary images, see “Displaying Binary Images” on page 3-7.

| have loaded a multiframe image but MATLAB only displays one frame. You must load
each frame of a multiframe image separately. This can be done using a for
loop, and it may be helpful to first use imfinfo to find out how many frames
there are, and what their dimensions are. To see an example that loads all of
the frames of a multiframe image, go to “Displaying the Frames of a
Multiframe Image Individually” on page 3-16.

3-31

3 Displaying and Printing Images

3-32

Geometric Operations

Overviewo 4-2
Words You NeedtoKnow 4-2
Interpolation 4-4
Image Types o 4-5
Image Resizing 4-6
Image Rotation. 4-7

Image Cropping 4-8

4 Geometric Operations

Overview
This chapter describes the geometric functions, which are basic image
processing tools. These functions modify the geometry of an image by resizing,
rotating, or cropping the image. They support all image types.
The chapter begins with a discussion of interpolation, an operation common to
most of the geometric functions. It then discusses each of the geometric
functions separately, and shows how to apply them to sample images.
Words You Need to Know
An understanding of the following terms will help you to use this chapter. For
more explanation of this table and others like it, see “Words You Need to Know”
in the Preface.
Words Definitions
Aliasing Artifacts in an image that can appear as a result of reducing
an image’s size. When the size of an image is reduced, original
pixels are downsampled to create fewer pixels. Aliasing that
occurs as a result of size reduction normally appears as
stair-step patterns (especially in high contrast images), or as
Moire (ripple-effect) patterns.
Anti-aliasing Any method for preventing aliasing (see above). The method
discussed in this chapter is interpolation (see below).
Bicubic interpolation Output pixel values are calculated from a weighted average of
pixels in the nearest 4-by-4 neighborhood.
Bilinear interpolation Output pixel values are calculated from a weighted average of
pixels in the nearest 2-by-2 neighborhood.
Geometric operation An operation that modifies the spatial relations between

pixels in an image. Examples include resizing (growing or
shrinking), rotating, and shearing.

4-2

Overview

Words

Definitions

Interpolation

Nearest neighbor
interpolation

The process by which we estimate an image value at a location
in between image pixels.

Output pixel values are assigned the value of the pixel that
the point falls within. No other pixels are considered.

4-3

4 Geometric Operations

4-4

Interpolation

Interpolation is the process by which we estimate an image value at a location
in between image pixels. For example, if you resize an image so it contains
more pixels than it did originally, the software obtains values for the additional
pixels through interpolation. The imresize and imrotate geometric functions
use two-dimensional interpolation as part of the operations they perform. (The
improfile image analysis function also uses interpolation. See “Intensity
Profile” on page 8-5 for information about this function.)

The Image Processing Toolbox provides three interpolation methods:

= Nearest neighbor interpolation
= Bilinear interpolation
= Bicubic interpolation

The interpolation methods all work in a fundamentally similar way. In each
case, to determine the value for an interpolated pixel, you find the point in the
input image that the output pixel corresponds to. You then assign a value to
the output pixel by computing a weighted average of some set of pixels in the
vicinity of the point. The weightings are based on the distance each pixel is
from the point.

The methods differ in the set of pixels that are considered.

= For nearest neighbor interpolation, the output pixel is assigned the value of
the pixel that the point falls within. No other pixels are considered.

= For bilinear interpolation, the output pixel value is a weighted average of
pixels in the nearest 2-by-2 neighborhood.

= For bicubic interpolation, the output pixel value is a weighted average of
pixels in the nearest 4-by-4 neighborhood.

The number of pixels considered affects the complexity of the computation.
Therefore the bilinear method takes longer than nearest neighbor
interpolation, and the bicubic method takes longer than bilinear. However, the
greater the number of pixels considered, the more accurate the computation is,
so there is a trade-off between processing time and quality.

Interpolation

Image Types

The functions that use interpolation take an argument that specifies the
interpolation method. For these functions, the default method is nearest
neighbor interpolation. This method produces acceptable results for all image
types, and is the only method that is appropriate for indexed images. For
intensity and RGB images, however, you should generally specify bilinear or
bicubic interpolation, because these methods produce better results than
nearest neighbor interpolation.

For RGB images, interpolation is performed on the red, green, and blue image
planes individually.

For binary images, interpolation has effects that you should be aware of. If you
use bilinear or bicubic interpolation, the computed values for the pixels in the
output image will not all be 0 or 1. The effect on the resulting output image
depends on the class of the input image.

= If the class of the input image is double, the output image is a grayscale
image of class double. The output image is not binary, because it includes
values other than 0 and 1.

= |If the class of the input image is uint8, the output image is a binary image
of class uint8. The interpolated pixel values are rounded off to 0 and 1 so the
output image can be of class uints.

If you use nearest neighbor interpolation, the result is always binary, because
the values of the interpolated pixels are taken directly from pixels in the input
image.

4-5

4 Geometric Operations

4-6

Image Resizing

The toolbox function imresize changes the size of an image using a specified
interpolation method. If you do not specify an interpolation method, the
function uses nearest neighbor interpolation.

You can use imresize to resize an image by a specific magnification factor. To
enlarge an image, specify a factor greater than 1. For example, the command
below doubles the number of pixels in X in each direction.

Y = imresize(X,2)

To reduce an image, specify a number between 0 and 1 as the magnification
factor.

You can also specify the actual size of the output image. The command below
creates an output image of size 100-by-150.

Y = imresize(X,[100 150])

If the specified size does not produce the same aspect ratio as the input image
has, the output image will be distorted.

If you reduce the image size and use bilinear or bicubic interpolation, imresize
applies a low-pass filter to the image before interpolation. This reduces the
effect of Moiré patterns, ripple patterns that result from aliasing during
resampling. Note, however, that even with low-pass filtering, the resizing
operation can introduce artifacts, because information is always lost when you
reduce the size of an image.

imresize does not apply a low-pass filter if nearest neighbor interpolation is
used, unless you explicitly specify the filter. This interpolation method is
primarily used for indexed images, and low-pass filtering is not appropriate for
these images.

For information about specifying a different filter, see the reference page for
imresize.

Image Rotation

Image Rotation

The imrotate function rotates an image, using a specified interpolation
method and rotation angle. If you do not specify an interpolation method, the
function uses nearest neighbor interpolation.

You specify the rotation angle in degrees. If you specify a positive value,
imrotate rotates the image counterclockwise; if you specify a negative value,
imrotate rotates the image clockwise.

For example, these commands rotate an image 35° counterclockwise.

I = imread("ic.tif");

J = imrotate(l1,35, "bilinear”);
imshow(l)

figure, imshow(J)

In order to include the entire original image, imrotate pads the outside with
0's. This creates the black background in J and results in the output image
being larger than the input image.

imrotate has an option for cropping the output image to the same size as the
input image. See the reference page for imrotate for more information.

4-7

4 Geometric Operations

Image Cropping

The function imcrop extracts a rectangular portion of an image. You can
specify the crop rectangle through input arguments, or select it with a mouse.

If you call imcrop without specifying the crop rectangle, the cursor changes to
a cross hair when it is over the image. Click on one corner of the region you
want to select, and while holding down the mouse button, drag across the
image. imcrop draws a rectangle around the area you are selecting. When you
release the mouse button, imcrop creates a new image from the selected region.

In this example, you display an image and call imcrop. The rectangle you select
is shown in red.

imshow ic.tif
I = imcrop;

Now display the cropped image.
imshow(l)

If you do not provide any output arguments, imcrop displays the image in a
new figure.

4-8

Neighborhood and Block

Operations

Overview .
Words You Need to Know
Types of Block Processing Operatlons

Sliding Neighborhood Operations
Padding of Borders . Co
Linear and Nonlinear Flltermg .

Distinct Block Operations .
Overlap

Column Processing .
Sliding Neighborhoods
Distinct Blocks

5-2
5-3

5-5
5-6
5-6

5-9

. 5-10

. 5-12
. 5-12
. 5-13

5 Neighborhood and Block Operations

5-2

Overview
Certain image processing operations involve processing an image in sections
called blocks, rather than processing the entire image at once.
The Image Processing Toolbox provides several functions for specific
operations that work with blocks, for example, the dilate function for binary
image dilation. In addition, the toolbox provides more generic functions for
processing an image in blocks. This chapter discusses these generic block
processing functions.
To use one of the functions described in this chapter, you supply information
about the size of the blocks, and specify a separate function to use to process
the blocks. The block processing function does the work of breaking the input
image into blocks, calling the specified function for each block, and
reassembling the results into an output image.
Words You Need to Know
An understanding of the following terms will help you to use this chapter. For
more explanation of this table and others like it, see “Words You Need to Know”
in the Preface.

Words Definitions

Block operation

Border padding

Center pixel

Column processing

An operation in which an image is processed in blocks rather than
all at once. The blocks have the same size across the image. Some
operation is applied to one block at a time. The blocks are
reassembled to form an output image.

Additional rows and columns temporarily added to the border(s) of
an image when some of the blocks extend outside the image. The
additional rows and columns normally contain zeros.

The pixel at the center of a neighborhood.

An operation in which neighborhoods are reshaped into columns
before processing in order to speed up computation time.

Distinct block operation A block operation in which the blocks do not overlap.

Overview

Words

Definitions

Inline function

A user-defined function created using the MATLAB function
inline. Toolbox functions whose syntax includes a parameter called
FUN can take an inline function as an argument.

Neighborhood operation An operation in which each output pixel is computed from a set of

Overlap

neighboring input pixels. Convolution, dilation, and median
filtering are examples of neighborhood operations. A neighborhood
operation can also be called a sliding neighborhood operation.

Extra rows and columns of pixels outside a block whose values are
taken into account when processing the block. These extra pixels
cause distinct blocks to overlap one another. The blkproc function
enables you to specify an overlap.

Types of Block Processing Operations

Using these functions, you can perform various block processing operations,
including sliding neighborhood operations and distinct block operations.

= In a sliding neighborhood operation, the input image is processed in a
pixelwise fashion. That is, for each pixel in the input image, some operation
is performed to determine the value of the corresponding pixel in the output

image. The operation is based on the values of a block of neighboring pixels.

= In a distinct block operation, the input image is processed a block at a time.
That is, the image is divided into rectangular blocks, and some operation is
performed on each block individually to determine the values of the pixels in
the corresponding block of the output image.

In addition, the toolbox provides functions for column processing operations.
These operations are not actually distinct from block operations; instead, they
are a way of speeding up block operations by rearranging blocks into matrix
columns.

Note that even if you do not use the block processing functions described in this
chapter, the information here may be useful to you, as it includes concepts

fundamental to many areas of image processing. In particular, the discussion
of sliding neighborhood operations is applicable to linear filtering and binary
morphological operations. See Chapter 6, “Linear Filtering and Filter Design”

5-3

5 Neighborhood and Block Operations

and Chapter 9, “Binary Image Operations” for information about these
applications.

5-4

Sliding Neighborhood Operations

Sliding Neighborhood Operations

A sliding neighborhood operation is an operation that is performed a pixel at a
time, with the value of any given pixel in the output image being determined
by applying some algorithm to the values of the corresponding input pixel’s
neighborhood. A pixel’'s neighborhood is some set of pixels, defined by their
locations relative to that pixel, which is called the center pixel. The
neighborhood is a rectangular block, and as you move from one element to the
next in an image matrix, the neighborhood block slides in the same direction.

Figure 5-1 shows the neighborhood blocks for some of the elements in a 6-by-5
matrix with 2-by-3 sliding blocks. The center pixel for each neighborhood is
marked with a dot.

Figure 5-1: 2-by-3 Sliding Blocks for Sliding Neighborhood Operations

The center pixel is the actual pixel in the input image being processed by the
operation. If the neighborhood has an odd number of rows and columns, the
center pixel is actually in the center of the neighborhood. If one of the
dimensions has even length, the center pixel is just to the left of center or just
above center. For example, in a 2-by-2 neighborhood, the center pixel is the
upper left one.

For any m-by-n neighborhood, the center pixel is

floor(([m n]+1)/2)

In the 2-by-3 block shown in Figure 5-1, the center pixel is (1,2), or, the pixel in
the second column of the top row of the neighborhood.

5-5

5 Neighborhood and Block Operations

5-6

To perform a sliding neighborhood operation
1 Select a single pixel.
2 Determine the pixel's neighborhood.

3 Apply a function to the values of the pixels in the neighborhood. This
function must return a scalar.

4 Find the pixel in the output image whose position corresponds to that of the
center pixel in the input image. Set this output pixel to the value returned
by the function.

5 Repeat steps 1 through 4 for each pixel in the input image.

For example, suppose Figure 5-1 represents an averaging operation. The
function might sum the values of the six neighborhood pixels and then divide
by 6. The result is the value of the output pixel.

Padding of Borders

As Figure 5-1 shows, some of the pixels in a neighborhood may be missing,
especially if the center pixel is on the border of the image. Notice that in the
figure, the upper left and bottom right neighborhoods include “pixels” that are
not part of the image.

To process these neighborhoods, sliding neighborhood operations pad the
borders of the image, usually with 0’s. In other words, these functions process
the border pixels by assuming that the image is surrounded by additional rows
and columns of 0's. These rows and columns do not become part of the output
image and are used only as parts of the neighborhoods of the actual pixels in
the image.

Linear and Nonlinear Filtering

You can use sliding neighborhood operations to implement many kinds of
filtering operations. One example of a sliding neighbor operation is
convolution, which is used to implement linear filtering. MATLAB provides the
conv and Fi lter2 functions for performing convolution. See Chapter 6, “Linear
Filtering and Filter Design” for more information about these functions.

Sliding Neighborhood Operations

In addition to convolution, there are many other filtering operations you can
implement through sliding neighborhoods. Many of these operations are
nonlinear in nature. For example, you can implement a sliding neighborhood
operation where the value of an output pixel is equal to the standard deviation
of the values of the pixels in the input pixel’'s neighborhood.

You can use the nifilter function to implement a variety of sliding
neighborhood operations. nlfilter takes as input arguments an image, a
neighborhood size, and a function that returns a scalar, and returns an image
of the same size as the input image. The value of each pixel in the output image
is computed by passing the corresponding input pixel’'s neighborhood to the
function. For example, this call computes each output pixel by taking the
standard deviation of the values of the input pixel’s 3-by-3 neighborhood (that
is, the pixel itself and its eight contiguous neighbors).

12 = nifilter(1,[3 3], "std2");

You can write an M-file to implement a specific function, and then use this
function with nlfilter. For example, this command processes the matrix I in
2-by-3 neighborhoods with a function called myfun_m.

nifilter(1,[2 3], "myfun®);

You can also use an inline function; in this case, the function name appears in
the nifilter call without quotation marks. For example,

f = inline(Csqrt(min(x(:)))");
12 = nifilter(1,[2 2],9);

The example below uses nlfilter to set each pixel to the maximum value in
its 3-by-3 neighborhood.

| imread("tire_tif");

f = inline("max(x(z))"):

12 = nifilter(1,[3 3].,7);

imshow(l);

figure, imshow(12);

5-7

5 Neighborhood and Block Operations

5-8

Figure 5-2: Each Output Pixel Set to Maximum Input Neighborhood Value

Many operations that nlfilter can implement run much faster if the
computations are performed on matrix columns rather than rectangular
neighborhoods. For information about this approach, see the reference page for
colfilt.

Note nlfilter is an example of a “function function.” For more information
on how to use this kind of function, see Appendix A. For more information on
inline functions, see inline in the MATLAB Function Reference.

Distinct Block Operations

Distinct Block Operations

Distinct blocks are rectangular partitions that divide a matrix into m-by-n
sections. Distinct blocks overlay the image matrix starting in the upper-left
corner, with no overlap. If the blocks don't fit exactly over the image, the
toolbox adds zero padding so that they do. Figure 5-3 shows a 15-by-30 matrix
divided into 4-by-8 blocks.

Figure 5-3: An Image Divided into Distinct Blocks
The zero padding process adds 0's to the bottom and right of the image matrix,
as needed. After zero padding, the matrix is size 16-by-32.

The function blkproc performs distinct block operations. blkproc extracts
each distinct block from an image and passes it to a function you specify.
blkproc assembles the returned blocks to create an output image.

For example, the command below processes the matrix 1 in 4-by-6 blocks with
the function myfun.

12 = blkproc(l,[4 6], "myfun®);

You can specify the function as an inline function; in this case, the function
name appears in the blkproc call without quotation marks. For example,

f = inline("mean2(x)*ones(size(x))");
12 = blkproc(l,[4 6].T);

5-9

5 Neighborhood and Block Operations

5-10

The example below uses blkproc to set every pixel in each 8-by-8 block of an
image matrix to the average of the elements in that block.

I = imread("tire.tif");

f = inline("uint8(round(mean2(x)*ones(size(x))))");
12 = blkproc(l,[8 8],F);

imshow(l)

figure, imshow(12);

Notice that inline computes the mean of the block and then multiplies the
result by a matrix of ones, so that the output block is the same size as the input
block. As a result, the output image is the same size as the input image.
blkproc does not require that the images be the same size; however, if this is
the result you want, you must make sure that the function you specify returns
blocks of the appropriate size.

Note blkproc is an example of a “function function.” For more information
on how to use this kind of function, see “Working with Function Functions”
(Appendix A).

Overlap

When you call blkproc to define distinct blocks, you can specify that the blocks
overlap each other, that is, you can specify extra rows and columns of pixels
outside the block whose values are taken into account when processing the
block. When there is an overlap, blkproc passes the expanded block (including
the overlap) to the specified function.

Distinct Block Operations

Figure 5-4 shows the overlap areas for some of the blocks in a 15-by-30 matrix
with 1-by-2 overlaps. Each 4-by-8 block has a one-row overlap above and below,
and a two-column overlap on each side. In the figure, shading indicates the
overlap. The 4-by-8 blocks overlay the image matrix starting in the upper-left
corner.

Figure 5-4: An Image Divided into Distinct Blocks With Specified Overlaps

To specify the overlap, you provide an additional input argument to blkproc.
To process the blocks in the figure above with the function myfun, the call is

B = blkproc(A,[4 8],.[1 2], "myfun®)

Overlap often increases the amount of zero padding needed. For example, in
Figure 5-3, the original 15-by-30 matrix became a 16-by-32 matrix with zero
padding. When the 15-by-30 matrix includes a 1-by-2 overlap, the padded
matrix becomes an 18-by-36 matrix. The outermost rectangle in the figure
delineates the new boundaries of the image after padding has been added to
accommodate the overlap plus block processing. Notice that in the figure above,
padding has been added to the left and top of the original image, not just to the
right and bottom.

5-11

5 Neighborhood and Block Operations

5-12

Column Processing

The toolbox provides functions that you can use to process sliding
neighborhoods or distinct blocks as columns. This approach is useful for
operations that MATLAB performs columnwise; in many cases, column
processing can reduce the execution time required to process an image.

For example, suppose the operation you are performing involves computing the
mean of each block. This computation is much faster if you first rearrange the
blocks into columns, because you can compute the mean of every column with
a single call to the mean function, rather than calling mean for each block
individually.

You can use the col filt function to implement column processing. This
function

1 Reshapes each sliding or distinct block of an image matrix into a column in
a temporary matrix

2 Passes the temporary matrix to a function you specify

3 Rearranges the resulting matrix back into the original shape

Sliding Neighborhoods

For a sliding neighborhood operation, col il t creates a temporary matrix that
has a separate column for each pixel in the original image. The column
corresponding to a given pixel contains the values of that pixel's neighborhood
from the original image.

Figure 5-5 illustrates this process. In this figure, a 6-by-5 image matrix is
processed in 2-by-3 neighborhoods. col filt creates one column for each pixel
in the image, so there are a total of 30 columns in the temporary matrix. Each
pixel’s column contains the value of the pixels in its neighborhood, so there are
six rows. colfilt zero pads the input image as necessary. For example, the
neighborhood of the upper left pixel in the figure has two zero-valued
neighbors, due to zero padding.

Column Processing

Figure 5-5: colfilt Creates a Temporary Matrix for Sliding Neighborhood

The temporary matrix is passed to a function, which must return a single value
for each column. (Many MATLAB functions work this way, for example, mean,
median, std, sum, etc.) The resulting values are then assigned to the
appropriate pixels in the output image.

colfiltcan produce the same results as nlfilter with faster execution time;
however, it may use more memory. The example below sets each output pixel
to the maximum value in the input pixel's neighborhood, producing the same
result as the nlfilter example shown in Figure 5-2. Notice that the function
is max(x) rather than max(x(:)), because each neighborhood in the original
image is a separate column in the temporary matrix.

f = inline("max(xX)");
12 = colfilt(1,[3 3],"sliding",f);

Distinct Blocks

For a distinct block operation, col filt creates a temporary matrix by
rearranging each block in the image into a column. col filt pads the original
image with 0's, if necessary, before creating the temporary matrix.

Figure 5-6 illustrates this process. In this figure, a 6-by-16 image matrix is
processed in 4-by-6 blocks. col filt first zero pads the image to make the size

5-13

5 Neighborhood and Block Operations

8-by-18 (six 4-by-6 blocks), and then rearranges the blocks into 6 columns of 24
elements each.

Figure 5-6: colfilt Creates a Temporary Matrix for Distinct Block Operation

After rearranging the image into a temporary matrix, col filt passes this
matrix to the function. The function must return a matrix of the same size as
the temporary matrix. If the block size is m-by-n, and the image is mm-by-nn, the
size of the temporary matrix is (m*n)-by-(cei l (mm/m)*cei l(nn/n)). After the
function processes the temporary matrix, the output is rearranged back into
the shape of the original image matrix.

This example sets all the pixels in each 8-by-8 block of an image to the mean
pixel value for the block, producing the same result as the blkproc example in
“Distinct Block Operations” on page 5-9.

I = im2double(imread("tire.tif"));

5-14

Column Processing

f = inline(Tones(64,1)*mean(x)");
12 = colfilt(l,[8 8], "distinct",f);

Notice that the inline function computes the mean of the block and then
multiplies the result by a vector of ones, so that the output block is the same
size as the input block. As a result, the output image is the same size as the
input image.

Restrictions

You can use colfilt to implement many of the same distinct block operations
that blkproc performs. However, col filt has certain restrictions that
blkproc does not.

= The output image must be the same size as the input image.
= The blocks cannot overlap.

For situations that do not satisfy these constraints, use blkproc.

5-15

5 Neighborhood and Block Operations

5-16

Linear Filtering and Filter

Design

Overview .
Words You Need to Know

Linear Filtering

Convolution . .

Padding of Borders .

The filter2 Function
Separability .
Higher-Dimensional Convolutlon
Using Predefined Filter Types

Filter Design .

FIR Filters

Frequency Transformatlon Method

Frequency Sampling Method .

Windowing Method .

Creating the Desired Frequency Response Matrlx
Computing the Frequency Response of a Filter

6-2
6-2

6-4
6-6

6-8
6-9

. 6-10
. 6-11

. 6-14
. 6-14
. 6-15
. 6-16
. 6-17
. 6-18
. 6-19

6 Linear Filtering and Filter Design

6-2

Overview

The Image Processing Toolbox provides a number of functions for designing
and implementing two-dimensional linear filters for image data. This chapter
describes these functions and how to use them effectively.

The material in this chapter is divided into two parts:

= The first part is an explanation of linear filtering and how it is implemented
in the toolbox. This topic describes filtering in terms of the spatial domain,
and is accessible to anyone doing image processing.

< The second part is a discussion about designing two-dimensional finite
infinite response (FIR) filters. This section assumes you are familiar with
working in the frequency domain.

Words You Need to Know

An understanding of the following terms will help you to use this chapter. For
more explanation of this table and others like it, see “Words You Need to Know”
in the Preface. Note that this table includes brief definitions of terms related to
filter design; a detailed discussion of these terms and the theory behind filter
design is outside the scope of this User Guide.

Words

Definitions

Computational molecule A filter matrix used to perform correlation. The filter design

Convolution

Convolution kernel

functions in the Image Processing Toolbox return computational
molecules. A computational molecule is a convolution kernel that
has been rotated 180 degrees.

A neighborhood operation in which each output pixel is a weighted
sum of neighboring input pixels. The weights are defined by the
convolution kernel. Image processing operations implemented with
convolution include smoothing, sharpening, and edge enhancement.

A filter matrix used to perform convolution. A convolution kernel is
a computational molecule that has been rotated 180 degrees.

Overview

Words

Definitions

Correlation

FIR filter

Frequency response

Neighborhood operation

Ripples

Separable filter

Window method

A neighborhood operation in which each output pixel is a weighted
sum of neighboring input pixels. The weights are defined by the
computational molecule. Image processing operations implemented
with convolution include smoothing, sharpening, and edge
enhancement. Correlation is closely related mathematically to
convolution.

A filter whose response to a single point, or impulse, has finite
extent. FIR stands for finite impulse response. An FIR filter can be
implemented using convolution. All filter design functions in the
Image Processing Toolbox return FIR filters.

A mathematical function describing the gain of a filter in response
to different input frequencies.

An operation in which each output pixel is computed from a set of
neighboring input pixels. Convolution, dilation, and median
filtering are examples of neighborhood operations.

Oscillations around a constant value. The frequency response of a
practical filter often has ripples where the frequency response of an
ideal filter is flat.

A two-dimensional filter that can be implemented by a sequence of
two one-dimensional filters. Separable filters can be implemented
much faster than nonseparable filters. The function filter2 checks
a filter for separability before applying it to an image.

A filter design method that multiples the ideal impulse response by
a window function, which tapers the ideal impulse response. The
resulting filter’s frequency response approximates a desired
frequency response.

6-3

6 Linear Filtering and Filter Design

6-4

Linear Filtering

Filtering is a technique for modifying or enhancing an image. For example, you
can filter an image to emphasize certain features or remove other features.

Filtering is a neighborhood operation, in which the value of any given pixel in
the output image is determined by applying some algorithm to the values of the
pixels in the neighborhood of the corresponding input pixel. A pixel’s
neighborhood is some set of pixels, defined by their locations relative to that
pixel. (See Chapter 5, “Neighborhood and Block Operations”, for a general
discussion of neighborhood operations.)

Linear filtering is filtering in which the value of an output pixel is a linear
combination of the values of the pixels in the input pixel's neighborhood. For
example, an algorithm that computes a weighted average of the neighborhood
pixels is one type of linear filtering operation.

This section discusses linear filtering in MATLAB and the Image Processing
Toolbox. It includes

= A description of how MATLAB performs linear filtering, using convolution
= A discussion about using predefined filter types

See “Filter Design” on page 6-14 for information about how to design filters.

Convolution

In MATLAB, linear filtering of images is implemented through
two-dimensional convolution. In convolution, the value of an output pixel is
computed by multiplying elements of two matrices and summing the results.
One of these matrices represents the image itself, while the other matrix is the
filter. For example, a filter might be

k=[4-3 1
4 6 2]

This filter representation is known as a convolution kernel. The MATLAB
function conv2 implements image filtering by applying your convolution kernel
to an image matrix. conv2 takes as arguments an input image and a filter, and
returns an output image. For example, in this call, k is the convolution kernel,
Ais the input image, and B is the output image.

B = conv2(A,Kk);

Linear Filtering

conv2 produces the output image by performing these steps:

1 Rotate the convolution kernel 180 degrees to produce a computational
molecule.

2 Determine the center pixel of the computational molecule.

3 Apply the computational molecule to each pixel in the input image.
Each of these steps is explained below.

Rotating the Convolution Kernel

In two-dimensional convolution, the computations are performed using a
computational molecule. This is simply the convolution kernel rotated 180
degrees, as in this call.

h = rot90(k,2);
h =
2 6 4
1-3 4

Determining the Center Pixel

To apply the computational molecule, you must first determine the center pixel.
The center pixel is defined as floor((size(h)+1)/2). For example, in a 5-by-5
molecule, the center pixel is (3,3). The molecule h shown above is 2-by-3, so the
center pixel is (1,2).

Applying the Computational Molecule

The value of any given pixel in B is determined by applying the computational
molecule h to the corresponding pixel in A. You can visualize this by overlaying
h on A, with the center pixel of h over the pixel of interest in A. You then
multiply each element of h by the corresponding pixel in A, and sum the results.

6-5

6 Linear Filtering and Filter Design

6-6

For example, to determine the value of the pixel (4,6) in B, overlay h on A, with
the center pixel of h covering the pixel (4,6) in A. The center pixel is circled in

Figure 6-1.
A
2 4 -4 —4 -4 2 4 -1 1
4 -4 0 2 3 5 -2 -3 1
/h
2 4 2 0o -1 3 __0 40/_1
2 6 2
2 1 1 3 27 3)\) 37| 4 5
11 -3 4
5 2 5 5 3 2 0 5 0
1 -4 4 3 5 -4 -2 -4 -2
1 -1 1 -2 2 2 5 4

Figure 6-1: Overlaying the Computational Molecule for Convolution

Now, look at the six pixels covered by h. For each of these pixels, multiply the
value of the pixel by the value in h. Sum the results, and place this sum in
B(4,6).

B(4,6) = 2*2 + 3*6 + 3*4 + 3*1 + 2*-3 + 0*4 = 31

Perform this procedure for each pixel in A to determine the value of each
corresponding pixel in B.

Padding of Borders

When you apply a filter to pixels on the borders of an image, some of the
elements of the computational molecule may not overlap actual image pixels.
For example, if the molecule is 3-by-3 and you are computing the result for a
pixel on the top row of the image, some of the elements of the molecule are
outside the border of the image.

Linear Filtering

Figure 6-2 illustrates a 3-by-3 computational molecule being applied to the
pixel (1,3) of a 5-by-5 matrix. The center pixel is indicated by a filled circle.

Figure 6-2: Computational Molecule Overhanging Top Row of Image

In order to compute output values for the border pixels, conv2 pads the image
matrix with zeroes. In other words, the output values are computed by
assuming that the input image is surrounded by additional rows and columns
of zeroes. In the figure shown above, the elements in the top row of the
computational molecule are assumed to overlap zeroes.

Depending on what you are trying to accomplish, you may want to discard
output pixels whose values depend on zero padding. To indicate what portion
of the convolution to return, conv2 takes a third input argument, called the
shape parameter, whose value is one of these three strings.

= “valid” — returns only the pixels whose values can be computed without
using zero padding of the input image. The resulting output image is smaller
than the input image. In this example, the output image is 3-by-3.

= "same” — returns the set of pixels that can be computed by applying the filter
to all pixels that are actually part of the input image. Border pixels are
computed using zero padding, but the center pixel of the computational
kernel is applied only to pixels in the image. This results in an output image
that is the same size as the input image.

= “full* —returns the full convolution. This means conv2 returns all pixels for
which any of the pixels in the computational molecule overlap pixels in the
image, even when the center pixel is outside the input image. The resulting
output image is larger than the input image. In this example, the output
image is 7-by-7.

6-7

6 Linear Filtering and Filter Design

6-8

conv2 returns the full convolution by default.

Figure 6-3 below illustrates applying a computational molecule to three
different places in an image matrix.

The computational molecule The computational molecule overlaps The computational molecule

overlaps only pixels that are in pixels outside the original image, but overlaps pixels at the edges only.

the original image. The result is the center pixel overlaps a pixel in The center pixel is outside the

included in the output matrix, the image. The result is included in image. The result is included in the

regardless of the shape parameter. the output matrix if the shape output matrix if the shape
parameter is same or full. parameter is full.

Figure 6-3: Computation Molecule Applied to Different Areas at Edge

If you use the full option, then the order of the first two input arguments is
interchangeable, because full convolution is commutative. In other words, it
does not matter which matrix is considered the convolution kernel, because the
result is the same in either case. If you use the val id or same option, the
operation is not commutative, so the convolution kernel must be the second
argument.

The filter2 Function

In addition to the conv2 function, MATLAB also provides the filter2 function
for two-dimensional linear filtering. filter2 can produce the same results as
conv2, and differs primarily in that it takes a computational molecule as an
input argument, rather than a convolution kernel. (filter2 operates by
forming the convolution kernel from the computational molecule and then
calling conv2.) The operation that filter2 performs is called correlation.

Linear Filtering

If k is a convolution kernel, h is the corresponding computational molecule, and
A is an image matrix, the following calls produce identical results

B = conv2(A,k, "same");

and

B = filter2(h,A, "same");

The functions in the Image Processing Toolbox that produce filters (fspecial,
fsample, etc.) all return computational molecules. You can use these filters
directly with filter2, or you can rotate them 180 degrees and call conv2.

Separability

If a filter has separability, meaning that it can be separated into two
one-dimensional filters (one column vector and one row vector), the
computation speed for the filter can be greatly enhanced. Before calling conv2
to perform two-dimensional convolution, filter2 first checks whether the
filter is separable. If the filter is separable, filter2 uses singular value
decomposition to find the two vectors. filter2 then calls conv2 with this
syntax.

conv2(A,kcol ,krow);

where kcol and krow are the column and row vectors that the two-dimensional
convolution kernel k separates into (that is, k = kcol*krow).

conv2 filters the columns with the column vector, and then, using the output of
this operation, filters the rows using the row vector. The result is equivalent to
two-dimensional convolution but is faster because it requires fewer
computations.

Determining Separability
A filter is separable if its rank is 1. For example, this filter is separable.

k =

1 2 3

2 4 6

4 8 12
rank(k)

6-9

6 Linear Filtering and Filter Design

ans =

1

If k is separable (that is, it has rank 1), then you can determine the
corresponding column and row vectors with

[u,s,v] = svd(k);
kcol = u(:,1) * sgrt(s(l))

kcol =
0.9036
1.8072
3.6144

krow = conj(v(:,1))" * sqrt(s(l))
krow =

1.1067 2.2134 3.3200

Perform array multiplication on the separated vectors to verify your results.

kcol * krow

ans =
1.0000 2.0000 3.0000
2.0000 4._0000 6.0000
4._.0000 8.0000 12.0000

Higher-Dimensional Convolution

To perform two-dimensional convolution, you use conv2 or filter2. To perform
higher-dimensional convolution, you use the convn function. convn takes as
arguments a data array and a convolution kernel, both of which can be of any
dimension, and returns an array whose dimension is the higher of the two
input arrays’ dimensions. convn also takes a shape parameter argument that
accepts the same values as in conv2 and filter2, and which has analogous
effects in higher dimensions.

6-10

Linear Filtering

One important application for the convn function is to filter image arrays that
have multiple planes or frames. For example, suppose you have an array A
containing five RGB images that you want to filter using a two-dimensional
convolution kernel k. The image array is a four-dimensional array of size
m-by-n-by-3-by-5. To filter this array with conv2, you would need to call the
function 15 times, once for each combination of planes and frames, and
assemble the results into a four-dimensional array. Using convn, you can filter
the array in a single call.

B = convn(A,Kk);

For more information, see convn in the MATLAB Function Reference.

Using Predefined Filter Types

The function fspecial produces several kinds of predefined filters, in the form
of computational molecules. After creating a filter with fspecial, you can
apply it directly to your image data using filter2, or you can rotate it 180
degrees and use conv2 or convn.

One simple filter fspecial can produce is an averaging filter. This type of filter
computes the value of an output pixel by simply averaging the values of its
neighboring pixels.

The default size of the averaging filter fspecial creates is 3-by-3, but you can
specify a different size. The value of each element is 1/1ength(h(:)). For
example, a 5-by-5 averaging filter would be

0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400

Applying this filter to a pixel is equivalent to adding up the values of that
pixel's 5-by-5 neighborhood and dividing by 25. This has the effect of smoothing
out local highlights and blurring edges in an image.

This example illustrates applying a 5-by-5 averaging filter to an intensity
image.

1
h

imread("bloodl.tif");
fspecial ("average*®,5);

6-11

6 Linear Filtering and Filter Design

6-12

12 = uint8(round(filter2(h,1)));
imshow(1l)
figure, imshow(12)

Figure 6-4: Blood.tif (left) and Blood.tif After Averaging Filter Applied (right)

Note that the output from filter2 (and conv2 and convn) is always of class
double. In the example above, the input image is of class uint8, so the output
from filter2 consists of double-precision values in the range [0,255]. The call
to the uint8 function converts the output to uint8; the data is not in the proper
range for an image of class double.

Another relatively simple filter fspecial can produce is a 3-by-3 Sobel filter,
which is effective at detecting the horizontal edges of objects in an image.

h = fspecial ("sobel ™)
h =
1 2 1
0 0 0
-1 -2 -1

Unlike an averaging filter, the Sobel filter produces values outside the range of
the input data. For example, if the input image is of class double, the output
array may include values outside the range [0,1]. To display the output as an
image, you can use imshow and specify the data range, or you can use the
mat2gray function to convert the values to the range [0,1].

Linear Filtering

Note that if the input image is of class uint8 or uint16, you should not simply
convert the output array to the same class as the input image, because the
output may contain values outside the range that the class can represent. For
example, if the input image is of class uint8, the output may include values
that cannot be represented as 8-bit integers. You can, however, rescale the
output and then convert it. For example,

h = fspecial("sobel™);
12 = filter2(h,1);
J = uint8(round(mat2gray(12)*255));

You can also use imshow to display the output array without first rescaling the
data. The following example creates a Sobel filter and uses fi lter2 to apply
the filter to the blood1 image. Notice that in the call to imshow, the intensity
range is specified as an empty matrix ([]). This instructs imshow to display the
minimum value in 12 as black, the maximum value as white, and values in
between as intermediate shades of gray, thus enabling you to display the
filter2 output without converting or rescaling it.

I = imread("bloodl.tif");
h = fspecial("sobel™);

12 = filter2(h,1);
imshow(12,[1)

Figure 6-5: Blood.tif with Sobel Filter Applied

For a description of all the filter types fspecial provides, see the reference
page for fspecial.

6-13

6 Linear Filtering and Filter Design

6-14

Filter Design

This section describes working in the frequency domain to design filters. Topics
discussed include:

= Finite impulse response (FIR) filters, the class of linear filter that the toolbox
supports

= The frequency transformation method, which transforms a one-dimensional
FIR filter into a two-dimensional FIR filter

= The frequency sampling method, which creates a filter based on a desired
frequency response

= The windowing method, which multiplies the ideal impulse response with a
window function to generate the filter

=« Creating the desired frequency response matrix
= Computing the frequency response of a filter
This section assumes you are familiar with working in the frequency domain.

This topic is discussed in many signal processing and image processing
textbooks.

Note Most of the design methods described in this section work by creating a
two-dimensional filter from a one-dimensional filter or window created using
functions from the Signal Processing Toolbox. Although this toolbox is not
required, you may find it difficult to design filters in the Image Processing
Toolbox if you do not have the Signal Processing Toolbox as well.

FIR Filters

The Image Processing Toolbox supports one class of linear filter, the
two-dimensional finite impulse response (FIR) filter. FIR filters have several
characteristics that make them ideal for image processing in the MATLAB
environment.

= FIR filters are easy to represent as matrices of coefficients.

« Two-dimensional FIR filters are natural extensions of one-dimensional FIR
filters.

Filter Design

= There are several well-known, reliable methods for FIR filter design.
= FIR filters are easy to implement.

= FIR filters can be designed to have linear phase, which helps prevent
distortion.

Another class of filter, the infinite impulse response (1IR) filter, is not as
suitable for image processing applications. It lacks the inherent stability and
ease of design and implementation of the FIR filter. Therefore, this toolbox
does not provide IR filter support.

Frequency Transformation Method

The frequency transformation method transforms a one-dimensional FIR filter
into a two-dimensional FIR filter. The frequency transformation method
preserves most of the characteristics of the one-dimensional filter, particularly
the transition bandwidth and ripple characteristics. This method uses a
transformation matrix, a set of elements that defines the frequency
transformation.

The toolbox function ftrans2 implements the frequency transformation
method. This function’s default transformation matrix produces filters with
nearly circular symmetry. By defining your own transformation matrix, you
can obtain different symmetries. (See Jae S. Lim, Two-Dimensional Signal and
Image Processing, 1990, for details.)

The frequency transformation method generally produces very good results, as
it is easier to design a one-dimensional filter with particular characteristics
than a corresponding two-dimensional filter. For instance, the next example
designs an optimal equiripple one-dimensional FIR filter and uses it to create
a two-dimensional filter with similar characteristics. The shape of the
one-dimensional frequency response is clearly evident in the two-dimensional
response.

b = remez(10,[0 0.4 0.6 1],[1 1 0 O]);
h = ftrans2(b);

[H,w] = freqz(b,1,64, whole");
colormap(jJet(64))
plot(w/pi-1,fftshift(abs(H)))

figure, freqz2(h,[32 32])

6-15

6 Linear Filtering and Filter Design

SIS
r‘&\\‘vl'//:\
IR XSSEEN
ey SRR S

Magnitude

A ‘A\\\\

$\\\‘0:'

0 h f " " " " " n f
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 Frequency -1 -1 FreqUenCy

Figure 6-6: A One-Dimensional Frequency Response (left) and the
Corresponding Two-Dimensional Frequency Response (right)

Frequency Sampling Method

The frequency sampling method creates a filter based on a desired frequency
response. Given a matrix of points that defines the shape of the frequency
response, this method creates a filter whose frequency response passes through
those points. Frequency sampling places no constraints on the behavior of the
frequency response between the given points; usually, the response ripples in
these areas.

The toolbox function fsamp2 implements frequency sampling design for
two-dimensional FIR filters. fsamp2 returns a filter h with a frequency
response that passes through the points in the input matrix Hd. The example
below creates an 11-by-11 filter using fsamp2, and plots the frequency response
of the resulting filter. (The freqgz2 function in this example calculates the
two-dimensional frequency response of a filter. See “Computing the Frequency
Response of a Filter” on page 6-19 for more information.)

Hd = zeros(11,11); Hd(4:8,4:8) =

[f1,f2] = fregspace(1ll, "meshgrid®);

mesh(f1l,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fsamp2(Hd);

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

6-16

Filter Design

Magnitude
o o
> ® =~

o
IS

IRAR
I

S 05

Frequency B Frequency

Figure 6-7: Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

Notice the ripples in the actual frequency response, compared to the desired
frequency response. These ripples are a fundamental problem with the
frequency sampling design method. They occur wherever there are sharp
transitions in the desired response.

You can reduce the spatial extent of the ripples by using a larger filter.
However, a larger filter does not reduce the height of the ripples, and requires
more computation time for filtering. To achieve a smoother approximation to
the desired frequency response, consider using the frequency transformation
method or the windowing method.

Windowing Method

The windowing method involves multiplying the ideal impulse response with a
window function to generate a corresponding filter. Like the frequency
sampling method, the windowing method produces a filter whose frequency
response approximates a desired frequency response. The windowing method,
however, tends to produce better results than the frequency sampling method.

The toolbox provides two functions for window-based filter design, fwindl and
fwind2. fwindl designs a two-dimensional filter by using a two-dimensional
window that it creates from one or two one-dimensional windows that you
specify. fwind2 designs a two-dimensional filter by using a specified
two-dimensional window directly.

6-17

6 Linear Filtering and Filter Design

6-18

fwindl supports two different methods for making the two-dimensional
windows it uses:

=« Transforming a single one-dimensional window to create a two-dimensional
window that is nearly circularly symmetric, by using a process similar to
rotation

= Creating a rectangular, separable window from two one-dimensional
windows, by computing their outer product

The example below uses fwind1l to create an 11-by-11 filter from the desired
frequency response Hd. Here, the hamming function from the Signal Processing
Toolbox is used to create a one-dimensional window, which fwind1 then
extends to a two-dimensional window.

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = fregspace(1ll, "meshgrid®);

mesh(f1l,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fwind1l(Hd,hamming(11));

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Magnitude
o o
> ® e

o
IS

Frequency - Frequency

Figure 6-8: Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

Creating the Desired Frequency Response Matrix

The filter design functions fsamp2, fwind2, and fwind2 all create filters based
on a desired frequency response magnitude matrix. You can create an
appropriate desired frequency response matrix using the fregspace function.

Filter Design

fregspace returns correct, evenly spaced frequency values for any size
response. If you create a desired frequency response matrix using frequency
points other than those returned by fregspace, you may get unexpected
results, such as nonlinear phase.

For example, to create a circular ideal lowpass frequency response with cutoff
at 0.5 use:

[f1,f2] = fregspace(25, "meshgrid®);

Hd = zeros(25,25); d = sqrt(fl1.”~2 + f2.22) < 0.5;
Hd(d) = 1;

mesh(f1,f2,Hd)

Figure 6-9: Ideal Circular Lowpass Frequency Response

Note that for this frequency response, the filters produced by fsamp2, fwind1l,
and fwind2 are real. This result is desirable for most image processing
applications. To achieve this in general, the desired frequency response should
be symmetric about the frequency origin (f1 =0, f2 = 0).

Computing the Frequency Response of a Filter

The freqz2 function computes the frequency response for a two-dimensional
filter. With no output arguments, freqz2 creates a mesh plot of the frequency
response. For example, consider this FIR filter:

h =[0.1667 0.6667 0.1667
0.6667 -3.3333 0.6667
0.1667 0.6667 0.1667];

6-19

6 Linear Filtering and Filter Design

6-20

This command computes and displays the 64-by-64 point frequency response of
h:

freqz2(h)

Magnitude
w 52 o o

~

Frequency Frequency

Figure 6-10: The Frequency Response of a Two-Dimensional Filter

To obtain the frequency response matrix H and the frequency point vectors f1
and f2, use output arguments:

[H,f1,f2] = freqz2(h);

freqz2 normalizes the frequencies 1 and f2 so that the value 1.0 corresponds
to half the sampling frequency, or mtradians.

For a simple m-by-n response, as shown above, freqz2 uses the
two-dimensional fast Fourier transform function £Ft2. You can also specify
vectors of arbitrary frequency points, but in this case freqz2 uses a slower
algorithm.

See “Fourier Transform” on page 7-4 for more information about the fast
Fourier transform and its application to linear filtering and filter design.

Transforms

Overview .o
Words You Need to Know

Fourier Transform Co
Definition of Fourier Transform .
The Discrete Fourier Transform
Applications .

Discrete Cosine Transform
The DCT Transform Matrix
The DCT and Image Compression .

Radon Transform . e e
Using the Radon Transform to Detect Lines .
The Inverse Radon Transform

7-2
7-2

7-4
7-4
7-9

. 7-12

. 7-17
. 7-18
. 7-19

. 7-21
. 7-25
. 7-27

7 Transforms

7-2

Overview

The usual mathematical representation of an image is a function of two spatial
variables: f(x, y). The value of the function at a particular location (x,y)
represents the intensity of the image at that point. The term transform refers
to an alternative mathematical representation of an image.

For example, the Fourier transform is a representation of an image as a sum of
complex exponentials of varying magnitudes, frequencies, and phases. This
representation is useful in a broad range of applications, including (but not
limited to) image analysis, restoration, and filtering.

The discrete cosine transform (DCT) also represents an image as a sum of
sinusoids of varying magnitudes and frequencies. The DCT is extremely useful
for image compression; it is the basis of the widely used JPEG image
compression algorithm.

The Radon transform represents an image as a collection of projections along
various directions. It is used in areas ranging from seismology to computer
vision.

This chapter defines each of these transforms, describes related toolbox
functions, and shows examples of related image processing applications.

Words You Need to Know

An understanding of the following terms will help you to use this chapter. For
more explanation of this table and others like it, see “Words You Need to Know”
in the Preface. Note that this table includes brief definitions of terms related to

Overview

transforms; a detailed discussion of these terms and the theory behind
transforms is outside the scope of this User’s Guide.

Words Definitions

Discrete transform A transform whose input and output values are discrete samples,
making it convenient for computer manipulation. Discrete
transforms implemented by MATLAB and the Image Processing
Toolbox include the discrete Fourier transform (DFT) and the
discrete cosine transform (DCT).

Frequency domain The domain in which an image is represented by a sum of periodic
signals with varying frequency.

Inverse transform An operation that when performed on a transformed image,
produces the original image.

Spatial domain The domain in which an image is represented by intensities at given
points in space. This is the most common representation for image
data.

Transform An alternative mathematical representation of an image. For

example, the Fourier transform is a representation of an image as a
sum of complex exponentials of varying magnitudes, frequencies,
and phases. Transforms are useful for a wide range of purposes,
including convolution, enhancement, feature detection, and
compression.

7-3

7 Transforms

Fourier Transform

7-4

The Fourier transform plays a critical role in a broad range of image processing
applications, including enhancement, analysis, restoration, and compression.
This section includes the following subsections:

« “Definition of Fourier Transform”

= “The Discrete Fourier Transform”, including a discussion of fast Fourier
transform

= “Applications” (sample applications using Fourier transforms)

Definition of Fourier Transform

If f(m, n) is a function of two discrete spatial variables m and n, then we define
the two-dimensional Fourier transform of f(m, n) by the relationship

(o) [ee]

Flwp) = 3 Y f(m,njedomedon

m=—-0 N =-0

The variables w; and w, are frequency variables; their units are radians per
sample. F(w,, w,) is often called the frequency-domain representation of
f(m, n). F(w;, w,) is acomplex-valued function that is periodic both in w; and
w, , with period 27t. Because of the periodicity, usually only the range

—-T< w;, W, <7 isdisplayed. Note that F(0, 0) is the sum of all the values of
f(m, n) . For this reason, F(0, 0) is often called the constant component or DC
component of the Fourier transform. (DC stands for direct current; it is an
electrical engineering term that refers to a constant-voltage power source, as
opposed to a power source whose voltage varies sinusoidally.)

The inverse two-dimensional Fourier transform is given by

jom jw,n

f(m,n) = iz Jﬂ Jﬂ F(w, wy)e e dw; dw,
410 W, =-T

= —TT W, = —

Roughly speaking, this equation means that f(m, n) can be represented as a
sum of an infinite number of complex exponentials (sinusoids) with different
frequencies. The magnitude and phase of the contribution at the frequencies
(wy, w,) are given by F(w,, w,).

Fourier Transform

Example

Consider a function f(m, n) that equals 1 within a rectangular region and 0
everywhere else.

n

f(m,n)

Figure 7-1: A Rectangular Function

To simplify the diagram, f(m, n) is shown as a continuous function, even
though the variables m and n are discrete.

7-5

7 Transforms

Figure 7-2 shows the magnitude of the Fourier transform, |F((o1, oo2)| , of
Figure 7-1 as a mesh plot. The mesh plot of the magnitude is a common way to
visualize the Fourier transform.

Figure 7-2: Magnitude Image of a Rectangular Function

The peak at the center of the plot is F(0, 0), which is the sum of all the values
in f(m, n). The plot also shows that F(w,;, w,) has more energy at high
horizontal frequencies than at high vertical frequencies. This reflects the fact
that horizontal cross sections of f(m, n) are narrow pulses, while vertical cross
sections are broad pulses. Narrow pulses have more high-frequency content
than broad pulses.

7-6

Fourier Transform

Another common way to visualize the Fourier transform is to display
log|F(w,, w,)| as an image, as in

5

-1

Figure 7-3: The Log of the Fourier Transform of a Rectangular Function

Using the logarithm helps to bring out details of the Fourier transform in
regions where F(w,, w,) is very close to 0.

7-7

7 Transforms

Examples of the Fourier transform for other simple shapes are shown below.

Figure 7-4: Fourier Transforms of Some Simple Shapes

Fourier Transform

The Discrete Fourier Transform

Working with the Fourier transform on a computer usually involves a form of
the transform known as the discrete Fourier transform (DFT). There are two
principal reasons for using this form:

= The input and output of the DFT are both discrete, which makes it
convenient for computer manipulations.

= There is a fast algorithm for computing the DFT known as the fast Fourier
transform (FFT).

The DFT is usually defined for a discrete function f(m, n) that is nonzero only
over the finite region 0<sm<M -1 and 0<n<N-1. The two-dimensional
M-by-N DFT and inverse M-by-N DFT relationships are given by

M-1 N-1
F(p.q) = z Z f(m,n)e—j(Zn/M)pme—j(ZT[/N)qn p i 0,1,..,.M-1

m=0 n=0
M-1 N-1
1 j@evMpm jvNgn M =0,1,..,M-1
f(m, n) = TN z F(p,q)e e n=01 .. N-1
p:O qZO

The values F(p, q) are the DFT coefficients of f(m, n) 1. In particular, the value
F(0, 0) is often called the DC coefficient. (Note that matrix indices in MATLAB
always start at 1 rather than 0; therefore, the matrix elements £(1,1) and
F(1,1) correspond to the mathematical quantities f(0, 0) and F(0, 0),
respectively.)

The MATLAB functions fft, fft2, and fftn implement the fast Fourier
transform algorithm for computing the one-dimensional DFT, two-dimensional
DFT, and N-dimensional DFT, respectively. The functions ifft, ifft2, and
ifftn compute the inverse DFT.

1. The zero-frequency coefficien (0, 0) s often called the “DC component.” DC
is an electrical engineering term that stands for direct current.

7-9

7 Transforms

7-10

Relationship to the Fourier Transform
The DFT coefficients F(p, q) are samples of the Fourier transform F(w;, w,).

F(p,q) = F(wy, w,) . p=01...M-1
1

21p/M q=01,..,N-1
21q/N

W,

Example

Let’s construct a matrix f that is similar to the function f(m,n) in the example
in “Definition of Fourier Transform” on page 7-4. Remember that f(m,n) is
equal to 1 within the rectangular region and 0 elsewhere. We use a binary
image to represent f(m,n).

f = zeros(30,30);
£(5:24,13:17) = 1;
imshow(f, "notruesize®)

Compute and visualize the 30-by-30 DFT of ¥ with these commands

F = ffe2(f);
F2 = log(abs(F));
imshow(F2,[-1 5], "notruesize®); colormap(jet); colorbar

Fourier Transform

| | -1
Figure 7-5: A Discrete Fourier Transform Computed Without Padding

This plot differs from the Fourier transform displayed on Figure 7-3. First, the
sampling of the Fourier transform is much coarser. Second, the zero-frequency
coefficient is displayed in the upper-left corner instead of the traditional
location in the center.

We can obtain a finer sampling of the Fourier transform by zero-padding
when computing its DFT. The zero-padding and DFT computation can be
performed in a single step with this command:

F = FFt2(F,256,256);

This command zero-pads f to be 256-by-256 before computing the DFT.
imshow(log(abs(F)),[-1 5]); colormap(Jet); colorbar

7-11

7 Transforms

— - -1
Figure 7-6: A Discrete Fourier Transform Computed With Padding

The zero-frequency coefficient, however, is still displayed in the upper-left
corner rather than the center. You can fix this problem by using the function
fftshift, which swaps the quadrants of F so that the zero-frequency coefficient
is in the center.

F = fft2(F,256,256);
F2 = fftshift(F);
imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

The resulting plot is identical to the one on Figure 7-3.

Applications

This section presents a few of the many image processing-related applications
of the Fourier transform.

Frequency Response of Linear Filters

The Fourier transform of the impulse response of a linear filter gives the
frequency response of the filter. The function freqz2 computes and displays a
filter's frequency response. The frequency response of the Gaussian

7-12

Fourier Transform

convolution kernel shows that this filter passes low frequencies and attenuates

high frequencies.

Magnitude

h = fspecial("gaussian®);

freqz2(h)

o
©

o
o

0.4

S SRINR

RN
IR

A RBRERSSIONMNRN

4 n,,’}l,:o‘:o:o:o:"‘g&\\:\““\\‘

ARSI

Frequency

Figure 7-7: The Frequency Response of a Gaussian Filter

See Chapter 6, “Linear Filtering and Filter Design” for more information about
linear filtering, filter design, and frequency responses.

Fast Convolution

A key property of the Fourier transform is that the multiplication of two
Fourier transforms corresponds to the convolution of the associated spatial
functions. This property, together with the fast Fourier transform, forms the
basis for a fast convolution algorithm.

Suppose that A is an M-by-N matrix and B is a P-by-Q matrix. The convolution
of A and B can be computed using the following steps:

1 Zero-pad A and B so that they are at least (M+P-1)-by-(N+Q-1). (Often A and
B are zero-padded to a size that is a power of 2 because fft2 is fastest for

these sizes.)

7-13

7 Transforms

7-14

2 Compute the two-dimensional DFT of A and B using Fft2.
3 Multiply the two DFTs together.

4 Using ifft2, compute the inverse two-dimensional DFT of the result from
step 3.

For example,
A = magic(3);
B = ones(3);
A(8,8) = 0; % Zero—pad A to be 8-by-8
B(8,8) = 0; % Zero—pad B to be 8-by-8
C = iff2(ffe2(A) . *ffe2(B));
C = C(1:5,1:5); % Extract the nonzero portion
C = real(C) % Remove imaginary part caused by roundoff error
C =

8.0000 9.0000 15.0000 7.0000 6.0000
11.0000 17.0000 30.0000 19.0000 13.0000
15.0000 30.0000 45.0000 30.0000 15.0000

7.0000 21.0000 30.0000 23.0000 9.0000

4.0000 13.0000 15.0000 11.0000 2.0000

The FFT-based convolution method is most often used for large inputs. For
small inputs it is generally faster to use filter2 or conv2.

Locating Image Features

The Fourier transform can also be used to perform correlation, which is closely
related to convolution. Correlation can be used to locate features within an
image; in this context correlation is often called template matching.

For instance, suppose you want to locate occurrences of the letter “a” in an
image containing text. This example reads in text.tif and creates a template
image by extracting a letter “a” from it,

bw = imread("text._tif");

a=bw(59:71,81:91); %Extract one of the letters “a” from the image.
imshow(bw) ;

figure, imshow(a);

Fourier Transform

Cross-Correlation Used
To Locate A Known
Target in an Image

2l

Text Running
In Another
Direction

Figure 7-8: An Image (left) and the Template to Correlate (right)

The correlation of the image of the letter “a” with the larger image can be
computed by first rotating the image of “a” by 180° and then using the
FFT-based convolution technique described above. (Note that convolution is
equivalent to correlation if you rotate the convolution kernel by 180°.) To match
the template to the image, you can use the fft2 and ifft2 functions,

C = real(iffe2(ffe2(bw) .* fFt2(rot90(a,?2),256,256)));
figure, imshow(C,[])%Display, scaling data to appropriate range.
max(C(:)) %Find max pixel value in C.

ans =
51.0000

thresh = 45; %Use a threshold that’s a little less than max.
figure, imshow(C > thresh)%Display showing pixels over threshold.

Figure 7-9: A Correlated Image (left) and its Thresholded Result (right)

7-15

7 Transforms

7-16

The left image above is the result of the correlation; bright peaks correspond to
occurrences of the letter. The locations of these peaks are indicated by the
white spots in the thresholded correlation image shown on the right.

Note that you could also have created the template image by zooming in on the
image and using the interactive version of imcrop. For example, with text.tif
displayed in the current figure window, enter

Zoom on

a = imcrop

To determine the coordinates of features in an image, you can use the pixval
function.

Discrete Cosine Transform

Discrete Cosine Transform

The dct2 function in the Image Processing Toolbox computes the
two-dimensional discrete cosine transform (DCT) of an image. The DCT has the
property that, for a typical image, most of the visually significant information
about the image is concentrated in just a few coefficients of the DCT. For this
reason, the DCT is often used in image compression applications. For example,
the DCT is at the heart of the international standard lossy image compression
algorithm known as JPEG. (The name comes from the working group that
developed the standard: the Joint Photographic Experts Group.)

The two-dimensional DCT of an M-by-N matrix A is defined as follows.

M-1 N-1
- m2m + 1)p T[(Zn 1)g OspsM-1
aaqz ZA cos M 5N " 0<qsN-1
m=0n=0
a_{l/N,p=O O(_{1/Jﬁ,q=o
P V2/M, 1spsM-1 9 [V2/N, 1<qsN-1

The values B are called the DCT coefficients of A. (Note that matrix indices
in MATLAB always start at 1 rather than 0O; therefore, the MATLAB matrix
elements A(1,1) and B(1,1) correspond to the mathematical quantities A,
and By, respectively.)

The DCT is an invertible transform, and its inverse is given by

M-1 N-1 0 M—1
m2m+1)p __1(2n+1)q smsM-
= 2 D UpUaBpgCs T ST L N
p=0q9g=0
G_{l/m,p=0 O(_{1/JN,q=o
P lV2/M, 1<spsM-1 9 /27N, 12qsN-1

7-17

7 Transforms

7-18

The inverse DCT equation can be interpreted as meaning that any M-by-N
matrix A can be written as a sum of MN functions of the form

n2m+1)p m(2n+1)g 0<psM-1
00 COS == =" C0S ===, 0<q<N-_1

These functions are called the basis functions of the DCT. The DCT coefficients
B qr then, can be regarded as the weights applied to each basis function. For
8—%y—8 matrices, the 64 basis functions are illustrated by this image.

Figure 7-10: The 64 Basis Functions of an 8-by-8 Matrix

Horizontal frequencies increase from left to right, and vertical frequencies
increase from top to bottom. The constant-valued basis function at the upper
left is often called the DC basis function, and the corresponding DCT coefficient
B is often called the DC coefficient.

The DCT Transform Matrix

The Image Processing Toolbox offers two different ways to compute the DCT.
The first method is to use the function dct2. dct2 uses an FFT-based algorithm
for speedy computation with large inputs. The second method is to use the DCT
transform matrix, which is returned by the function dctmtx and may be more
efficient for small square inputs, such as 8-by-8 or 16-by-16. The M-by-M
transform matrix T is given by

Discrete Cosine Transform

— ool Swusbut RUNIuus? 4 v <')<M 1 OS(I_M 1
MCOS M = - ’

For an M-by-M matrix A, T*A is an M-by-M matrix whose columns contain the
one-dimensional DCT of the columns of A. The two-dimensional DCT of A can
be computed as B=T*A*T". Since T is a real orthonormal matrix, its inverse is
the same as its transpose. Therefore, the inverse two-dimensional DCT of B is
given by T=*B*T.

The DCT and Image Compression

In the JPEG image compression algorithm, the input image is divided into
8-by-8 or 16-by-16 blocks, and the two-dimensional DCT is computed for each
block. The DCT coefficients are then quantized, coded, and transmitted. The
JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients,
computes the inverse two-dimensional DCT of each block, and then puts the
blocks back together into a single image. For typical images, many of the DCT
coefficients have values close to zero; these coefficients can be discarded
without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks in
the input image; discards (sets to zero) all but 10 of the 64 DCT coefficients in
each block; and then reconstructs the image using the two-dimensional inverse
DCT of each block. The transform matrix computation method is used.

1 = imread("cameraman.tif");

1 = im2double(l);

T = dctmtx(8);

B = blkproc(l,[8 8], "P1*x*P2",T,T");

mask = [1 1 1 1 0 0 0 0
1 1 1 0 O o0 o0 o
1 1 0 0 O o o0 o
1 0 0O O O o o0 o
O 0O O O O o o0 o
O 0O O O O o o0 o
O 0O O O O o o0 o
O 0O O O O o0 o0 O01;

7-19

7 Transforms

B2 blkproc(B,[8 8], "P1.*x",mask);
12 = blkproc(B2,[8 8], "P1*x*P2*,T",T);
imshow(l1), figure, imshow(12)

Although there is some loss of quality in the reconstructed image, it is clearly
recognizable, even though almost 85% of the DCT coefficients were discarded.
To experiment with discarding more or fewer coefficients, and to apply this
technique to other images, try running the demo function dctdemo.

7-20

Radon Transform

Radon Transform

The radon function in the Image Processing Toolbox computes projections of an
image matrix along specified directions. A projection of a two-dimensional
function f(x,y) is a line integral in a certain direction. For example, the line
integral of f(x,y) in the vertical direction is the projection of f(x,y) onto the
x-axis; the line integral in the horizontal direction is the projection of f(x,y) onto
the y-axis. Figure 7-11 shows horizontal and vertical projections for a simple
two-dimensional function.

y

f(x.y)

Projection onto the y-axis

Projection onto the x-axis
Figure 7-11: Horizontal and Vertical Projections of a Simple Function

Projections can be computed along any angle 6. In general, the Radon
transform of f(x,y) is the line integral of f parallel to the y' axis

Rg(X') = I f(x'cosB®—y'sind, x'sinB +y'cos0O) dy’

—00

7-21

7 Transforms

where

X'l = | cosB sinB||x
y' —sin® cosf| |y

Figure 7-12 illustrates the geometry of the Radon transform.

y

Rq(x'y™~

Figure 7-12: The Geometry of the Radon Transform

This command computes the Radon transform of 1 for the angles specified in
the vector theta

[R,xp] = radon(l,theta);

7-22

Radon Transform

The columns of R contain the Radon transform for each angle in theta. The
vector xp contains the corresponding coordinates along the x'-axis. The “center
pixel” of I is defined to be Floor((size(1)+1)/2); this is the pixel on the
x'-axis corresponding to x' = 0.

The commands below compute and plot the Radon transform at 0° and 45° of
an image containing a single square object.

I = zeros(100,100);
1(25:75, 25:75) = 1;
imshow(l)

[R,xp] = radon(l,[0 451);
figure; plot(xp,R(:,1)); title("R_{070} (X\prime)")
figure; plot(xp,R(:,2)); title("R_{45%0} (X\prime)")

Ry (0 R o (X)
60 80
70
50
60
40
50
30 40
30
20
20
1
0 10
0 0
-80 -60 40 -20 0 20 40 60 80 -80 -60 40 -20 0 20 40 60 80

Figure 7-13: Two Radon Transforms of a Square Function

Note xp is the same for all projection angles.

7-23

7 Transforms

The Radon transform for a large number of angles is often displayed as an
image. In this example, the Radon transform for the square image is computed
at angles from 0° to 180°, in 1° increments.

theta = 0:180;

[R,xp] = radon(l,theta);
imagesc(theta,xp,R);
title("R_{\theta} (X\prime)");
xlabel ("\theta (degrees)");
ylabel ("X\prime");

set(gca, "XTick",0:20:180);
colormap(hot);

colorbar

R, 0)

100
-150

90

-100 80

70
-50

60

50

100

0 20 40 60 80 100 120 140 160
0 (degrees)

Figure 7-14: A Radon Transform Using 180 Projections

7-24

Radon Transform

Using the Radon Transform to Detect Lines

The Radon transform is closely related to a common computer vision operation
known as the Hough transform. You can use the radon function to implement
a form of the Hough transform used to detect straight lines. The steps are:

1 Compute a binary edge image using the edge function.

I = imread("ic.tif");
BW = edge(l);
imshow(l)

figure, imshow(BW)

2 Compute the Radon transform of the edge image.

theta = 0:179;

[R,xp] = radon(BW,theta);

figure, imagesc(theta, xp, R); colormap(hot);
xlabel ("\theta (degrees)"); ylabel("X\prime");
title("R_{\theta} (X\prime)");

colorbar

7-25

7 Transforms

R, (X)

100
-150

90

-100 80

70
-50

60

50

100

150

0 20 40 60 80 100 120 140 160
0 (degrees)

Figure 7-15: Radon Transform of an Edge Image

3 Find the locations of strong peaks in the Radon transform matrix. The
locations of these peaks correspond to the location of straight lines in the
original image.

In this example, the strongest peak in R corresponds to 6 = 94° and
x' = =101. The line perpendicular to that angle and located at x’ = =101 is

7-26

Radon Transform

shown below, superimposed in red on the original image. The Radon transform
geometry is shown in black.

X' q= 94°

Figure 7-16: The Radon Transform Geometry and the Strongest Peak (Red)

Notice that the other strong lines parallel to the red line also appear as peaks
at 8 = 94° in the transform. Also, the lines perpendicular to this line appear
as peaksat 6 = 4°.

The Inverse Radon Transform

The iradon function performs the inverse Radon transform, which is
commonly used in tomography applications. This transform inverts the Radon
transform (which was introduced in the previous section), and can therefore be
used to reconstruct images from projection data.

As discussed in the previous section “Radon Transform” on page 7-21, given an
image 1 and a set of angles theta, the function radon can be used to calculate
the Radon transform.

R = radon(l,theta);

The function iradon can then be called to reconstruct the image 1.

IR = iradon(R,theta);

7-27

7 Transforms

7-28

In the example above, projections are calculated from the original image I. In
most application areas, there is no original image from which projections are
formed. For example, in X-ray absorption tomography, projections are formed
by measuring the attenuation of radiation that passes through a physical
specimen at different angles. The original image can be thought of as a cross
section through the specimen, in which intensity values represent the density
of the specimen. Projections are collected using special purpose hardware, and
then an internal image of the specimen is reconstructed by iradon. This allows
for noninvasive imaging of the inside of a living body or another opaque object.

iradon reconstructs an image from parallel beam projections. In parallel beam
geometry, each projection is formed by combining a set of line integrals through
an image at a specific angle.

Figure 7-17 below illustrates how parallel beam geometry is applied in X-ray
absorption tomography. Note that there is an equal number of n emitters and
n detectors. Each detector measures the radiation emitted from its
corresponding emitter, and the attenuation in the radiation gives a measure of
the integrated density, or mass, of the object. This corresponds to the line
integral that is calculated in the Radon transform.

The parallel beam geometry used in the figure is the same as the geometry that
was described under “Radon Transform” on page 7-21. f(x,y) denotes the
brightness of the image and Rq(x') is the projection at angle q.

Radon Transform

Rq(x'

|

0y)

Figure 7-17: Parallel Beam Projections Through an Object

Another geometry that is commonly used is fan beam geometry, in which there
is one emitter and n detectors. There are methods for resorting sets of fan beam
projections into parallel beam projections, which can then be used by iradon.
(For more information on these methods, see Kak & Slaney, Principles of
Computerized Tomographic Imaging, IEEE Press, NY, 1988, pp. 92-93.)

iradon uses the filtered backprojection algorithm to compute the inverse Radon
transform. This algorithm forms an approximation to the image 1 based on the
projections in the columns of R. A more accurate result can be obtained by using

7-29

7 Transforms

7-30

more projections in the reconstruction. As the number of projections (the length
of theta) increases, the reconstructed image IR more accurately approximates
the original image 1. The vector theta must contain monotonically increasing
angular values with a constant incremental angle A8. When the scalar A8 is
known, it can be passed to iradon instead of the array of theta values. Here is
an example.

IR = iradon(R,Dtheta);

The filtered backprojection algorithm filters the projections in R and then
reconstructs the image using the filtered projections. In some cases, hoise can
be present in the projections. To remove high frequency noise, apply a window
to the filter to attenuate the noise. Many such windowed filters are available
in iradon. The example call to iradon below applies a Hamming window to the
filter. See the iradon reference page for more information.

IR = iradon(R,theta, "Hamming®);

iradon also enables you to specify a normalized frequency, D, above which the
filter has zero response. D must be a scalar in the range [0,1]. With this option,
the frequency axis is rescaled, so that the whole filter is compressed to fit into
the frequency range [0,D]. This can be useful in cases where the projections
contain little high frequency information but there is high frequency noise. In
this case, the noise can be completely suppressed without compromising the
reconstruction. The following call to iradon sets a normalized frequency value
of 0.85.

IR = iradon(R,theta,0.85);

Examples

The commands below illustrate how to use radon and iradon to form
projections from a sample image and then reconstruct the image from the
projections. The test image is the Shepp-Logan head phantom, which can be
generated by the Image Processing Toolbox function phantom. The phantom
image illustrates many of the qualities that are found in real-world
tomographic imaging of human heads. The bright elliptical shell along the
exterior is analogous to a skull, and the many ellipses inside are analogous to
brain features or tumors.

P = phantom(256);

Radon Transform

imshow(P)

As a first step the Radon transform of the phantom brain is calculated for three
different sets of theta values. R1 has 18 projections, R2 has 36 projections, and
R3 had 90 projections.

thetal = 0:10:170; [R1,xp] = radon(P,thetal);
theta2 = 0:5:175; [R2,xp] = radon(P,theta?);
theta3 = 0:2:178; [R3,xp] = radon(P,theta3l);

Now the Radon transform of the Shepp-Logan Head phantom is displayed
using 90 projections (R3).

figure, imagesc(theta3,xp,R3); colormap(hot); colorbar
xlabel ("\theta"); ylabel("x\prime");

7-31

7 Transforms

7-32

o
N
o
N
o
[}
o

80 100 120 140 160
0

Figure 7-18: Radon Transform of Head Phantom Using 90 Projections

When we look at Figure 7-18, we can see some of the features of the input
image. The first column in the Radon transform corresponds to a projection at
0° which is integrating in the vertical direction. The centermost column
corresponds to a projection at 90°, which is integrating in the horizontal
direction. The projection at 90° has a wider profile than the projection at 0° due
to the larger vertical semi-axis of the outermost ellipse of the phantom.

Figure 7-19 shows the inverse Radon transforms of R1, R2, and R3, which were
generated above. Image 11 was reconstructed with the projections in R1, and it
is the least accurate reconstruction, because it has the fewest projections. 12
was reconstructed with the 36 projections in R2, and the quality of the
reconstruction is better, but it is still not clear enough to discern clearly the
three small ellipses in the lower portion of the test image. 13 was reconstructed
using the 90 projections in R3, and the result closely resembles the original
image. Notice that when the number of projections is relatively small (as in 11
and 12), the reconstruction may include some artifacts from the back
projection. To avoid this, use a larger number of angles.

11 = iradon(R1,10);
12 = iradon(R2,5);
13 = iradon(R3,2);

Radon Transform

imshow(11)
figure, imshow(12)
figure, imshow(13)

13

Figure 7-19: Inverse Radon Transforms of the Shepp-Logan Head Phantom

7-33

7 Transforms

7-34

Analyzing and Enhancing

Images

Overview .o
Words You Need to Know

Pixel Values and Statistics
Pixel Selection .

Intensity Profile

Image Contours

Image Histogram

Summary Statistics .

Feature Measurement

Image Analysis .
Edge Detection .
Quadtree Decomposition .

Image Enhancement
Intensity Adjustment .
Noise Removal .

8-2
8-2

8-4
8-5

8-8
8-9

. 8-10
. 8-10

. 8-11
. 8-11
. 8-12

. 8-15
. 8-15
. 8-21

8 Analyzing and Enhancing Images

Overview

The Image Processing Toolbox supports a range of standard image processing
operations for analyzing and enhancing images. Its functions simplify several
categories of tasks, including:

< Obtaining pixel values and statistics, which are numerical summaries of
data in an image

= Analyzing images to extract information about their essential structure

= Enhancing images to make certain features easier to see or to reduce noise

This section describes specific operations within each category, and shows how
to implement each kind of operation using toolbox functions.

Words You Need to Know

An understanding of the following terms will help you to use this chapter. For
more explanation of this table and others like it, see “Words You Need to Know”
in the Preface.

Words

Definitions

Adaptive filter

Contour

Edge

Feature

A filter whose properties vary across an image depending on
the local characteristics of the image pixels.

A path in an image along which the image intensity values are
equal to a constant.

A curve that follows a path of rapid change in image intensity.
Edges are often associated with the boundaries of objects in a
scene. Edge detection is used to identify the edges in an
image.

A guantitative measurement of an image or image region.
Examples of image region features include centroid, bounding
box, and area.

8-2

Overview

Words

Definitions

Histogram

Noise

Profile

Quadtree decomposition

A graph used in image analysis that shows the distribution of
intensities in an image. The information in a histogram can be
used to choose an appropriate enhancement operation. For
example, if an image histogram shows that the range of
intensity values is small, you can use an intensity adjustment
function to spread the values across a wider range.

Errors in the image acquisition process that result in pixel
values that do not reflect the true intensities of the real scene.

A set of intensity values taken from regularly spaced points
along a line segment or multiline path in an image. For points
that do not fall on the center of a pixel, the intensity values
are interpolated.

An image analysis technique that partitions an image into
homogeneous blocks.

8-3

8 Analyzing and Enhancing Images

8-4

Pixel Values and Statistics

The Image Processing Toolbox provides several functions that return
information about the data values that make up an image. These functions
return information about image data in various forms, including:

< The data values for selected pixels (pixval, impixel)

= The data values along a path in an image (improfile)

= A contour plot of the image data (imcontour)

= A histogram of the image data (imhist)

= Summary statistics for the image data (mean2, std2, corr2)
=« Feature measurements for image regions (imfeature)

Pixel Selection

The toolbox includes two functions that provide information about the color
data values of image pixels you specify:

= The pixval function interactively displays the data values for pixels as you
move the cursor over the image. pixval can also display the Euclidean
distance between two pixels.

= The impixel function returns the data values for a selected pixel or set of
pixels. You can supply the coordinates of the pixels as input arguments, or
you can select pixels using a mouse.

To use pixval, you first display an image and then enter the pixval command.
pixval installs a black bar at the bottom of the figure, which displays the (x,y)
coordinates for whatever pixel the cursor is currently over, and the color data
for that pixel.

If you click on the image and hold down the mouse button while you move the
cursor, pixval also displays the Euclidean distance between the point you
clicked on and the current cursor location. pixval draws a line between these
points to indicate the distance being measured. When you release the mouse
button, the line and the distance display disappear.

pixval gives you more immediate results than impixel, but impixel has the
advantage of returning its results in a variable, and it can be called either

interactively or noninteractively. If you call impixel with no input arguments,
the cursor changes to a crosshair when it is over the image. You can then click

Pixel Values and Statistics

on the pixels of interest; impixel displays a small star over each pixel you
select. When you are done selecting pixels, press Return. impixel returns the
color values for the selected pixels, and the stars disappear.

In this example, you call impixel and click on three points in the displayed
image, and then press Return.

imshow canoe.tif
vals = impixel

vals =

0.1294 0.1294 0.1294
0.5176 0 0
0.7765 0.6118 0.4196

Notice that the second pixel, which is part of the canoe, is pure red; its green
and blue values are both 0.

For indexed images, pixval and impixel both show the RGB values stored in
the colormap, not the index values.

Intensity Profile

The improfile function calculates and plots the intensity values along a line
segment or a multiline path in an image. You can supply the coordinates of the
line segments as input arguments, or you can define the desired path using a
mouse. In either case, improfile uses interpolation to determine the values of
equally spaced points along the path. (By default, improfile uses nearest

8-5

23 Analyzing and Enhancing Images

8-6

neighbor interpolation, but you can specify a different method. See Chapter 4,
“Geometric Operations”, for a discussion of interpolation.) improfile works
best with intensity and RGB images.

For a single line segment, improfile plots the intensity values in a
two-dimensional view. For a multiline path, improfile plots the intensity
values in a three-dimensional view.

If you call improfile with no arguments, the cursor changes to a cross hair
when it is over the image. You can then specify line segments by clicking on the
endpoints; improfile draws a line between each two consecutive points you
select. When you finish specifying the path, press Return. improfile displays
the plot in a new figure.

In this example, you call improfile and specify a single line with the mouse.
The line is shown in red, and is drawn from left to right.

imshow debyel.tif
improfile

B
RN F—

Pixel Values and Statistics

improfile displays a plot of the data along the line.

220

200

180

160

140

120

100

o 50 100 150 200 250 300
Distance along profile

Figure 8-1: A Plot of Intensity Values Along a Line Segment in an Intensity
Image

Notice the peaks and valleys and how they correspond to the light and dark
bands in the image.

The example below shows how improfile works with an RGB image. The red
line indicates where the line selection was made. Note that the line was drawn
from top to bottom.

imshow flowers.tif
improfile

8-7

8 Analyzing and Enhancing Images

improfile displays a plot with separate lines for the red, green, and blue
intensities.

300

250

200

150

100

100
Distance along profile

Figure 8-2: A Plot of Intensity Values Along a Line Segment in an RGB Image

Notice how the lines correspond to the colors in the image. For example, the
central region of the plot shows high intensities of green and red, while the blue
intensity is 0. These are the values for the yellow flower.

Image Contours

You can use the toolbox function imcontour to display a contour plot of the data
in an intensity image. This function is similar to the contour function in
MATLAB, but it automatically sets up the axes so their orientation and aspect
ratio match the image.

This example displays an intensity image of grains of rice and a contour plot of
the image data.

I = imread("rice.tif");

imshow(l)

figure, imcontour(l)

8-8

Pixel Values and Statistics

20

o

S 7 A
D

250

§ -
= m@)’?ﬂﬂL

50 100 150 200 250

Figure 8-3: Rice.tif and Its Contour Plot

You can use the clabel function to label the levels of the contours. See the
description of clabel in the MATLAB Function Reference for details.

Image Histogram

An image histogram is a chart that shows the distribution of intensities in an
indexed or intensity image. The image histogram function imhist creates this
plot by making n equally spaced bins, each representing a range of data values.
It then calculates the number of pixels within each range. For example, the
commands below display an image of grains of rice, and a histogram based on
64 bins.

I = imread("rice.tif");
imshow(l)
figure, imhist(l,64)

8 Analyzing and Enhancing Images

8-10

4500 F

4000 |

3500 |

3000 |

2500 |

2000 |

1500

1000

500

Figure 8-4: Rice.tif and Its Histogram

The histogram shows a peak at around 100, due to the dark gray background
in the image.

For information about how to modify an image by changing the distribution of
its histogram, see “Intensity Adjustment” on page 8-15.

Summary Statistics

You can compute standard statistics of an image using the mean2, std2, and
corr2 functions. mean2 and std2 compute the mean and standard deviation of
the elements of a matrix. corr2 computes the correlation coefficient between
two matrices of the same size.

These functions are two-dimensional versions of the mean, std, and corrcoef
functions described in the MATLAB Function Reference.

Feature Measurement

You can use the imfeature function to compute feature measurements for
image regions. For example, imfeature can measure such features as the area,
center of mass, and bounding box for a region you specify. See the reference
page for imfeature for more information.

Image Analysis

Image Analysis

Image analysis techniques return information about the structure of an image.
This section describes toolbox functions that you can use for these image
analysis techniques:

< Edge detection
= Quadtree decomposition

The functions described in this section work only with intensity images.

Edge Detection

You can use the edge function to detect edges, which are those places in an
image that correspond to object boundaries. To find edges, this function looks
for places in the image where the intensity changes rapidly, using one of these
two criteria:

= Places where the first derivative of the intensity is larger in magnitude than
some threshold

= Places where the second derivative of the intensity has a zero crossing

edge provides a number of derivative estimators, each of which implements one
of the definitions above. For some of these estimators, you can specify whether
the operation should be sensitive to horizontal or vertical edges, or both. edge
returns a binary image containing 1's where edges are found and 0's elsewhere.

The most powerful edge-detection method that edge provides is the Canny
method. The Canny method differs from the other edge-detection methods in
that it uses two different thresholds (to detect strong and weak edges), and
includes the weak edges in the output only if they are connected to strong
edges. This method is therefore less likely than the others to be “fooled” by
noise, and more likely to detect true weak edges.

The example below illustrates the power of the Canny edge detector. It shows
the results of applying the Sobel and Canny edge detectors to the rice.tif
image.

I = imread("rice.tif");

BW1 = edge(l, "sobel™);
BW2 = edge(l,"canny®);
imshow(BW1)

8-11

8 Analyzing and Enhancing Images

8-12

figure, imshow(BW2)

Sobel Filter Canny Filter

For an interactive demonstration of edge detection, try running edgedemo.

Quadtree Decomposition

Quadtree decomposition is an analysis technique that involves subdividing an
image into blocks that are more homogeneous than the image itself. This
technique reveals information about the structure of the image. It is also useful
as the first step in adaptive compression algorithms.

You can perform quadtree decomposition using the gtdecomp function. This
function works by dividing a square image into four equal-sized square blocks,
and then testing each block to see if it meets some criterion of homogeneity
(e.g., if all of the pixels in the block are within a specific dynamic range). If a
block meets the criterion, it is not divided any further. If it does not meet the
criterion, it is subdivided again into four blocks, and the test criterion is applied
to those blocks. This process is repeated iteratively until each block meets the
criterion. The result may have blocks of several different sizes.

For example, suppose you want to perform quadtree decomposition on a
128-by-128 intensity image. The first step is to divide the image into four
64-by-64 blocks. You then apply the test criterion to each block; for example,
the criterion might be

max(block(:)) — min(block(:)) <= 0.2

If one of the blocks meets this criterion, it is not divided any further; it is
64-by-64 in the final decomposition. If a block does not meet the criterion, it is

Image Analysis

then divided into four 32-by-32 blocks, and the test is then applied to each of
these blocks. The blocks that fail to meet the criterion are then divided into four
16-by-16 blocks, and so on, until all blocks “pass.” Some of the blocks may be as
small as 1-by-1, unless you specify otherwise.

The call to gtdecomp for this example would be

S = qtdecomp(1,0.2)

S is returned as a sparse matrix whose nonzero elements represent the
upper-left corners of the blocks; the value of each nonzero element indicates the
block size. S is the same size as I.

Note The threshold value is specified as a value between 0 and 1, regardless
of the class of I. If 1 is uint8, the threshold value you supply is multiplied by
255 to determine the actual threshold to use; if 1 is uint16, the threshold
value you supply is multiplied by 65535.

The example below shows an image and a representation of its quadtree
decomposition. Each black square represents a homogeneous block, and the
white lines represent the boundaries between blocks. Notice how the blocks are
smaller in areas corresponding to large changes in intensity in the image.

I |

Figure 8-5: An Image (left) and a Representation of its Quadtree
Decomposition

You can also supply gtdecomp with a function (rather than a threshold value)
for deciding whether to split blocks; for example, you might base the decision

8-13

8 Analyzing and Enhancing Images

on the variance of the block. See the reference page for gtdecomp for more
information.

For an interactive demonstration of quadtree decomposition, try running
qtdemo.

8-14

Image Enhancement

Image Enhancement

Image enhancement techniques are used to improve an image, where
“improve” is sometimes defined objectively (e.g., increase the signal-to-noise
ratio), and sometimes subjectively (e.g., make certain features easier to see by
modifying the colors or intensities).

This section discusses these image enhancement techniques:

= “Intensity Adjustment”
= “Noise Removal”

The functions described in this section apply primarily to intensity images.
However, some of these functions can be applied to color images as well. For
information about how these functions work with color images, see the
reference pages for the individual functions.

Intensity Adjustment

Intensity adjustment is a technique for mapping an image’s intensity values to
a new range. For example, look at rice.tif. It is a low contrast image. If you
look at a histogram of rice.tif in Figure 8-4, it indicates that there are no
values below 40 or above 255. If you remap the data values to fill the entire
intensity range [0, 255], you can increase the contrast of the image.

You can do this kind of adjustment with the imadjust function. For example,
this code performs the adjustment described above.

I = imread("rice.tif");
J imadjust(l,[0.15 0.9],[0 1]);

With the two vectors supplied, imadjust scales pixel values of 0.15 to 0 and 0.9
to 1. Notice that the intensities are specified as values between 0 and 1
regardless of the class of 1. If I is uint8, the values you supply are multiplied
by 255 to determine the actual values to use; if I is uint16, the values are
multiplied by 65535.

Now display the adjusted image and its histogram.

imshow(J)
figure, imhist(J,64)

8-15

8 Analyzing and Enhancing Images

8-16

3500

3000

2500

2000

1500

1000

500

Figure 8-6: Rice.tif After an Intensity Adjustment and a Histogram of Its
Adjusted Intensities

Notice the increased contrast in the image, and that the histogram now fills the
entire range.

Similarly, you can decrease the contrast of an image by narrowing the range of
the data, as in this call.

J = imadjust(l,[0 1],[0-3 0.8]);

The general syntax is

J = imadjust(l,[low high],[bottom top])

where low and high are the intensities in the input image, which are mapped
to bottom and top in the output image.

In addition to increasing or decreasing contrast, you can perform a wide variety
of other image enhancements with imadjust. In the example below, the man’s
coat is too dark to reveal any detail. The call to imadjust maps the range [0,51]
in the uint8 input image to [128,255] in the output image. This brightens the
image considerably, and also widens the dynamic range of the dark portions of
the original image, making it much easier to see the details in the coat.

I = imread("cameraman._tif");

J = imadjust(l,[0 0.2],[0.5 1]);
imshow(l)

figure, imshow(J)

Image Enhancement

Figure 8-7: Cameraman.tif Before and After Remapping, and Widening its
Dynamic Range

Notice that this operation results in much of the image being washed out. This
is because all values above 51 in the original image get mapped to 255 in the
adjusted image.

Gamma Correction

imadjust maps low to bottom, and high to top. By default, the values between
low and high are mapped linearly to values between bottom and top. For
example, the value halfway between low and high corresponds to the value
halfway between bottom and top.

imadjust can accept an additional argument which specifies the gamma
correction factor. Depending on the value of gamma, the mapping between
values in the input and output images may be nonlinear. For example, the
value halfway between low and high may map to a value either greater than
or less than the value halfway between bottom and top.

Gamma can be any value between 0 and infinity. If gamma is 1 (the default),
the mapping is linear. If gamma is less than 1, the mapping is weighted toward
higher (brighter) output values. If gamma is greater than 1, the mapping is
weighted toward lower (darker) output values.

The figure below illustrates this relationship. The three transformation curves
show how values are mapped when gamma is less than, equal to, and greater

8-17

8 Analyzing and Enhancing Images

than 1. (In each graph, the x-axis represents the intensity values in the input
image, and the y-axis represents the intensity values in the output image.)

y<1 y=1 y>1

top top top

bottom bottom bottom

———
Tow high Tow high low high

Figure 8-8: Plots Showing Three Different Gamma Correction Settings

The example below illustrates gamma correction. Notice that in the call to
imadjust, the data ranges of the input and output images are specified as
empty matrices. When you specify an empty matrix, imadjust uses the default
range of [0,1]. In the example, both ranges are left empty; this means that
gamma correction is applied without any other adjustment of the data.

[X,map] = imread("forest.tif")

I = ind2gray(X,map);
J = imadjust(1,[1.[1.0.5);
imshow(l)

figure, imshow(J)

Figure 8-9: Forest.tif Before and After Applying Gamma Correction of 0.5

Image Enhancement

Histogram Equalization

The process of adjusting intensity values can be done automatically by the
histeq function. histeq performs histogram equalization, which involves
transforming the intensity values so that the histogram of the output image
approximately matches a specified histogram. (By default, histeq tries to
match a flat histogram with 64 bins, but you can specify a different histogram
instead; see the reference page for histeq.)

This example illustrates using histeq to adjust an intensity image. The
original image has low contrast, with most values in the middle of the intensity
range. histeq produces an output image having values evenly distributed
throughout the range.

I = imread("pout.tif™);
J = histeq(l);
imshow(l)

figure, imshow(J)

4!

Figure 8-10: Pout.tif Before and After Histogram Equalization

The example below shows the histograms for the two images.

figure, imhist(l)
figure, imhist(J)

8-19

8 Analyzing and Enhancing Images

8-20

1600 -

1400

1200 -

1000

800 |

600 |

400

200 |

1600 -

1400 -

1200 |

1000

800 |

600 |

400

200 |

200 250

Figure 8-11: Histogram Before Equalization (left) and After Equalization (right)

histeq can return an additional 1-by-256 vector that shows, for each possible
input value, the resulting output value. (The values in this vector are in the
range [0,1], regardless of the class of the input image.) You can plot this data
to get the transformation curve. For example,

I = imread("pout.tif");
[J.T] = histeq(l);
figure,plot((0:255)/255,T);

1

09}

08 |

0.7

0.6 |

05}

04}

03}

02}

0.1}

0

L L y L L L L L L
0 01 02 03 04 05 06 07 08 09 1

Image Enhancement

Notice how this curve reflects the histograms in the previous figure, with the
input values being mostly between 0.3 and 0.6, while the output values are
distributed evenly between 0 and 1.

For an interactive demonstration of intensity adjustment, try running
imadjdemo.

Noise Removal

Digital images are prone to a variety of types of noise. There are several ways
that noise can be introduced into an image, depending on how the image is
created. For example,

= |If the image is scanned from a photograph made on film, the film grain is a
source of noise. Noise can also be the result of damage to the film, or be
introduced by the scanner itself.

= |If the image is acquired directly in a digital format, the mechanism for
gathering the data (such as a CCD detector) can introduce noise.

= Electronic transmission of image data can introduce noise.
The toolbox provides a number of different ways to remove or reduce noise in

an image. Different methods are better for different kinds of noise. The
methods available include:

= Linear filtering

= Median filtering

= Adaptive filtering

Also, in order to simulate the effects of some of the problems listed above, the

toolbox provides the imnoise function, which you can use to add various types
of noise to an image. The examples in this section use this function.

Linear Filtering

You can use linear filtering to remove certain types of noise. Certain filters,
such as averaging or Gaussian filters, are appropriate for this purpose. For
example, an averaging filter is useful for removing grain noise from a
photograph. Because each pixel gets set to the average of the pixels in its
neighborhood, local variations caused by grain are reduced.

See “Linear Filtering” on page 6-4 for more information.

8-21

8 Analyzing and Enhancing Images

8-22

Median Filtering

Median filtering is similar to using an averaging filter, in that each output
pixel is set to an “average” of the pixel values in the neighborhood of the
corresponding input pixel. However, with median filtering, the value of an
output pixel is determined by the median of the neighborhood pixels, rather
than the mean. The median is much less sensitive than the mean to extreme
values (called outliers). Median filtering is therefore better able to remove
these outliers without reducing the sharpness of the image.

The medfi 1t2 function implements median filtering. The example below
compares using an averaging filter and medfi 1t2 to remove salt and pepper
noise. This type of noise consists of random pixels being set to black or white
(the extremes of the data range). In both cases the size of the neighborhood
used for filtering is 3-by-3.

First, read in the image and add noise to it.

I = imread("eight.tif");

J = imnoise(l, "salt & pepper~,0.02);
imshow(l)

figure, imshow(J)

Figure 8-12: Eight.tif Before and After Adding Salt-and-Pepper Noise

Now filter the noisy image and display the results. Notice that medfi 1t2 does
a better job of removing noise, with less blurring of edges.

K = filter2(fspecial("average-,3),J)/255;
L = medfilt2(J,[3 31);

figure, imshow(K)

figure, imshow(L)

Image Enhancement

Figure 8-13: Noisy Version of Eight.tif Filtered with Averaging Filter (left) and
Median Filter (right)

Median filtering is a specific case of order-statistic filtering, also known as rank
filtering. For information about order-statistic filtering, see the reference page
for the ordfilt2 function.

Adaptive Filtering

The wiener2 function applies a Wiener filter (a type of linear filter) to an image
adaptively, tailoring itself to the local image variance. Where the variance is
large, wiener2 performs little smoothing. Where the variance is small, wiener2
performs more smoothing.

This approach often produces better results than linear filtering. The adaptive
filter is more selective than a comparable linear filter, preserving edges and
other high frequency parts of an image. In addition, there are no design tasks;
the wiener2 function handles all preliminary computations, and implements
the filter for an input image. wiener2, however, does require more computation
time than linear filtering.

wiener2 works best when the noise is constant-power (“white”) additive noise,
such as Gaussian noise. The example below applies wiener2 to an image of
Saturn that has had Gaussian noise added.

| imread("saturn.tif");

J imnoise(l, "gaussian”,0,0.005);
K = wiener2(J3,[5 5]):;

imshow(J)

figure, imshow(K)

8-23

8 Analyzing and Enhancing Images

Figure 8-14: Noisy Version of Saturn.tif Before and After Adaptive Filtering

For an interactive demonstration of filtering to remove noise, try running
nrfiltdemo.

8-24

Binary Image Operations

Overview G
Words You Need to Know
Neighborhoods .

Padding of Borders .
Displaying Binary Images .

Morphological Operations .
Dilation and Erosion
Related Operations .

Object-Based Operations .
4- and 8-Connected Neighborhoods
Perimeter Determination

Flood Fill . e
Connected-Components Labeling
Object Selection

Feature Measurement
Image Area .
Euler Number .

Lookup Table Operations .

9-2
9-2
9-3
9-3

9-5
9-5
9-8

. 9-11
. 9-11
. 9-13
.9-14
. 9-16
. 9-18

. 9-19
. 9-19
. 9-20

.9-21

9 Binary Image Operations

9-2

Overview

A binary image is an image in which each pixel assumes one of only two
discrete values. Essentially, these two values correspond to on and off.
Looking at an image in this way makes it easier to distinguish structural
features. For example, in a binary image, it is easy to distinguish objects from
the background.

In the Image Processing Toolbox, a binary image is stored as a two-dimensional
matrix of 0's (which represent off pixels) and 1's (which represent on pixels).
The on pixels are the foreground of the image, and the off pixels are the
background.

Binary image operations return information about the form or structure of
binary images only. To perform these operations on another type of image, you
must first convert it to binary (using, for example, the im2bw function).

Words You Need to Know

An understanding of the following terms will help you to use this chapter. For
more explanation of this table and others like it, see “Words You Need to Know”
in the Preface.

Words

Definitions

Background

Binary image

The set of black (or off) pixels in a binary object.

An image containing only black and white pixels. In MATLAB,
a binary image is represented by a uint8 or double logical
matrix containing 0's and 1's (which usually represent black
and white, respectively). A matrix is logical when its “logical
flag” is turned “on.” We often use the variable name BW to
represent a binary image in memory.

Connected component A set of white pixels that form a connected group. A connected

Foreground

component is “8-connected” if diagonally adjacent pixels are
considered to be touching, otherwise, it is “4-connected.” In the
context of this chapter, “object” is a synonym for “connected
component.”

The set of white (or on) pixels in a binary object.

Overview

Words

Definitions

Morphology

Neighborhood

Object

Structuring element

A broad set of binary image operations that process images
based on shapes. Morphological operations apply a
structuring element to an input image, creating an output
image of the same size. The most basic morphological
operations are dilation and erosion.

A set of pixels that are defined by their locations relative to
the pixel of interest. In binary image operations, a
neighborhood can be defined by a structuring element or by
using the criterion for a 4- or 8-connected neighborhood.

A set of white pixels that form a connected group. In the
context of this chapter, “object” and “connected component”
are basically equivalent. See “Connected component” above.

A matrix used to define a neighborhood shape and size for
binary image operations, including dilation and erosion. It
consists of only O's and 1's and can have an arbitrary shape
and size. The pixels with values of 1 define the neighborhood.
By choosing a proper structuring element shape, you can
construct a morphological operation that is sensitive to
specific shapes.

Neighborhoods

Most binary image algorithms work with groups of pixels called neighborhoods.
A pixel’s neighborhood is some set of pixels that are defined by their locations
relative to that pixel. The neighborhood can include or omit the pixel itself, and
the pixels included in the neighborhood are not necessarily adjacent to the
pixel of interest. Different types of neighborhoods are used for different binary
operations.

Padding of Borders

If a pixel is near the border of an image, some of the pixels in the image’s
neighborhood may be missing. For example, if the neighborhood is defined to
include the pixel directly above the pixel of interest, then a pixel in the top row
of an image will be missing this neighbor.

9-3

9 Binary Image Operations

9-4

In order to determine how to process these pixels, the binary image functions
pad the borders of the image, usually with 0’s. In other words, these functions
process the border pixels by assuming that the image is surrounded by
additional rows and columns of 0's. These rows and columns do not become part
of the output image and are used only as parts of the neighborhoods of the
actual pixels in the image. However, the padding can in some cases produce
border effects, in which the regions near the borders of the output image do not
appear to be homogeneous with the rest of the image. Their extent depends on
the size of the neighborhood.

Displaying Binary Images

When you display a binary image with imshow, by default the foreground (i.e.,
the on pixels) is white and the background is black. You may prefer to invert
these images when you display or print them, or else display them using a
colormap. See “Displaying Binary Images” on page 3-7 for more information.

The remainder of this chapter describes the functions in the Image Processing
Toolbox that perform various types of binary image operations. These
operations are described in the following sections:

= “Morphological Operations” on page 9-5

=« “Object-Based Operations” on page 9-11

= “Feature Measurement” on page 9-19

=« “Lookup Table Operations” on page 9-21

Morphological Operations

Morphological Operations

Morphological operations are methods for processing binary images based on
shapes. These operations take a binary image as input, and return a binary
image as output. The value of each pixel in the output image is based on the
corresponding input pixel and its neighbors. By choosing the neighborhood
shape appropriately, you can construct a morphological operation that is
sensitive to specific shapes in the input image.

Dilation and Erosion

The main morphological operations are dilation and erosion. Dilation and
erosion are related operations, although they produce very different results.
Dilation adds pixels to the boundaries of objects (i.e., changes them from off to
on), while erosion removes pixels on object boundaries (changes them from on
to off).

Each dilation or erosion operation uses a specified neighborhood. The state of
any given pixel in the output image is determined by applying a rule to the
neighborhood of the corresponding pixel in the input image. The rule used
defines the operation as a dilation or an erosion.

= For dilation, if any pixel in the input pixel’s neighborhood is on, the output
pixel is on. Otherwise, the output pixel is off.

= For erosion, if every pixel in the input pixel’s neighborhood is on, the output
pixel is on. Otherwise, the output pixel is off.

The neighborhood for a dilation or erosion operation can be of arbitrary shape
and size. The neighborhood is represented by a structuring element, which is a
matrix consisting of only 0's and 1's. The center pixel in the structuring element
represents the pixel of interest, while the elements in the matrix that are on
(i.e., = 1) define the neighborhood.

The center pixel is defined as floor((size(SE)+1)/2), where SE is the
structuring element. For example, in a 4-by-7 structuring element, the center
pixel is (2,4). When you construct the structuring element, you should make
sure that the pixel of interest is actually the center pixel. You can do this by
adding rows or columns of 0's, if necessary. For example, suppose you want the
neighborhood to consist of a 3-by-3 block of pixels, with the pixel of interest in
the upper-left corner of the block. The structuring element would not be

9-5

9 Binary Image Operations

9-6

ones(3), because this matrix has the wrong center pixel. Rather, you could use
this matrix as the structuring element.

0] 0 0 0
0] 1 1 1
0 1 1 1
0] 1 1 1

For erosion, the neighborhood consists of the on pixels in the structuring
element. For dilation, the neighborhood consists of the on pixels in the
structuring element rotated 180 degrees. (The center pixel is still selected
before the rotation.)

Suppose you want to perform an erosion operation. Figure 9-1 shows a sample
neighborhood you might use. Each neighborhood pixel is indicated by an x, and
the center pixel is the one with a circle.

X

Figure 9-1: A Neighborhood That Will Represented as a Structuring Element

The structuring element is therefore

1 0 0 0 0
0] 1 0 0 0
0] 0 1 0 0]
0] 0 0 1 0]
0] 0] 0 0 1

The state (i.e., on or off) of any given pixel in the output image is determined
by applying the erosion rule to the neighborhood pixels for the corresponding
pixel in the input image. For example, to determine the state of the pixel (4,6)
in the output image:

=« Overlay the structuring element on the input image, with the center pixel of
the structuring element covering the pixel (4,6).

Morphological Operations

= Look at the pixels in the neighborhood of the input pixel. These are the five
pixels covered by 1's in the structuring element. In this case the pixels are:
(2,4), (3,5), (4,6), (5,7), (6,8). If all of these pixels are on, then set the pixel in
the output image (4,6) to on. If any of these pixels is off, then set the pixel
(4,6) in the output image to off.

You perform this procedure for each pixel in the input image to determine the
state of each corresponding pixel in the output image.

Note that for pixels on borders of the image, some of the 1's in the structuring
element are actually outside the image. These elements are assumed to cover
off pixels. (See the earlier section, “Padding of Borders” on page 9-3.) As a
result, the output image will usually have a black border, as in the example
below.

The Image Processing Toolbox performs dilation through the di late function,
and erosion through the erode function. Each of these functions takes an input
image and a structuring element as input, and returns an output image.

This example illustrates the erosion operation described above.

BW1 = imread("circbw.tif");

SE = eye(5);
BW2 = erode(BW1,SE);
imshow(BW1)

figure, imshow(BW2)

Figure 9-2: Circbw.tif Before and After Erosion with a Diagonal Structuring
Element

9-7

9 Binary Image Operations

9-8

Notice the diagonal streaks in the output image (on the right). These are due
to the shape of the structuring element.

Related Operations

There are many other types of morphological operations in addition to dilation
and erosion. However, many of these operations are just modified dilations or
erosions, or combinations of dilation and erosion. For example, closure consists
of a dilation operation followed by erosion with the same structuring element.
A related operation, opening, is the reverse of closure; it consists of erosion
followed by dilation.

For example, suppose you want to remove all the circuit lines from the original
circuit image, leaving only the rectangular outlines of microchips. You can
accomplish this through opening.

To perform the opening, you begin by choosing a structuring element. This
structuring element should be large enough to remove the lines when you erode
the image, but not large enough to remove the rectangles. It should consist of
all 1's, so it removes everything but large continuous patches of foreground
pixels. Therefore, you create the structuring element like this.

SE = ones(40,30);

Next, you perform the erosion. This removes all of the lines, but also shrinks
the rectangles.

BW2 = erode(BW1,SE);
imshow(BW2)

Morphological Operations

Finally, you perform dilation, using the same structuring element, to restore
the rectangles to their original sizes.

BW3 = dilate(BW2,SE);
imshow(BW3)

Predefined Operations

You can use di late and erode to implement any morphological operation that
can be defined as a set of dilations and erosions. However, there are certain
operations that are so common that the toolbox provides them as predefined
procedures. These operations are available through the bwmorph function.

bwmorph provides eighteen predefined operations, including opening and
closure.

For example, suppose you want to reduce all objects in the circuit image to
lines, without changing the essential structure (topology) of the image. This
process is known as skeletonization. You can use bwmorph to do this.

BW1 = imread("circbw.tif");
BW2 = bwmorph(BW1, "skel*,Inf);
imshow(BW1)

figure, imshow(BW2)

9-9

9 Binary Image Operations

Figure 9-3: Circbw.tif Before and After Skeletonization

The third argument to bwmorph indicates the number of times to perform the
operation. For example, if this value is 2, the operation is performed twice, with
the result of the first operation being used as the input for the second
operation. In the example above, the value is Inf. In this case bwmorph
performs the operation repeatedly until it no longer changes.

For more information about the predefined operations available, see the
reference page for bwmorph.

9-10

Object-Based Operations

Object-Based Operations

In a binary image, an object is any set of connected pixels with the value 1.
(meaning that they are “on”). For example, this matrix represents a binary
image containing a single object, a 3-by-3 square. The rest of the image is
background.

ocooooo
OrRrRRPROO
OrRrRRPROO
OrRrRrRRPROO
ocooooo
ocooooo

This section discusses the types of neighborhoods used for object-based
operations, and describes how to use toolbox functions to perform:

= Perimeter determination

< Binary flood fill

= Connected-components labeling

= Object selection

4- and 8-Connected Neighborhoods

For many operations, distinguishing objects depends on the convention used to
decide whether pixels are connected. There are two different conventions
typically used: 4-connected or 8-connected neighborhoods.

In an 8-connected neighborhood, all of the pixels that touch the pixel of interest
are considered, including those on the diagonals. This means that if two
adjoining pixels are on, they are part of the same object, regardless of whether
they are connected along the horizontal, vertical, or diagonal direction.

9-11

9 Binary Image Operations

r-1, c-1 r-1,c r-1, c+1
r,c-1 rc r, c+1
r+1,c-1 r+1, ¢ r+l, c+1

Figure 9-4: An 8-Connected Neighborhood

In a 4-connected neighborhood, the pixels along the diagonals are not
considered. This means that a pair of adjoining pixels are part of the same
object only if they are both on and are connected along the horizontal or vertical
direction.

r-1,c

r,c-1 r,c r,c+l

r+1, c

Figure 9-5: A 4-Connected Neighborhood

9-12

Object-Based Operations

The type of neighborhood you choose affects the number of objects found in an
image and the boundaries of those objects. Therefore, the results of the
object-based operations often differ for the two types of neighborhoods.

For example, this matrix represents a binary image that has one 8-connected
object or two 4-connected objects.

0 0 0 0

O OO OO0
OO ORrPER
OO ORrpER
Ormr oo
OrmFrOoOOoOo
OO OO0OO0oOOo

Perimeter Determination

The bwperim function determines the perimeter pixels of the objects in a binary
image. You can use either a 4- or 8-connected neighborhood for perimeter
determination. A pixel is considered a perimeter pixel if it satisfies both of
these criteria:

= |t is an on pixel.
= One (or more) of the pixels in its neighborhood is off.

This example finds the perimeter pixels in the circuit image.

Bw1 imread("circbw._tif");
BW2 = bwperim(BW1);
imshow(BW1)

figure, imshow(BW2)

9-13

9 Binary Image Operations

Figure 9-6: Circbwv.tif Before and After Perimeter Determination

Flood Fill

The bwfi 1l function performs a flood-fill operation on a binary image. You
specify a background pixel as a starting point, and bwfill changes connected
background pixels (0's) to foreground pixels (1's), stopping when it reaches
object boundaries. The boundaries are determined based on the type of
neighborhood you specify.

This operation can be useful in removing irrelevant artifacts from images. For
example, suppose you have a binary image, derived from a photograph, in
which the foreground objects represent spheres. In the binary image, these
objects should appear as circles, but instead are donut shaped because of
reflections in the original photograph. Before doing any further processing of
the image, you may want to first fill in the “donut holes” using bwfill.

bwFi Il differs from the other object-based operations in that it operates on
background pixels, rather than the foreground. If the foreground is
8-connected, the background is 4-connected, and vice versa. Note, however,
that as with the other object-based functions, you specify the connectedness of
the foreground when you call bwfill.

9-14

Object-Based Operations

The implications of 4- vs. 8-connected foreground can be illustrated with

flood-fill operation matrix.

BW1 =

OO O0OO0OO0OO0OO0oOOo

OCORRRRLRPRO

OO0OPFrOO0OO0OFr o

OOPFrOO0OO0OrOo

OOPFr OO0OO0OrOo

[eNeolNoN 2 ol e

OO OO0 O0OO0oOOo

OO O0OO0OO0OO0OO0oOOo

Regardless of whether the foreground is 4-connected or 8-connected, this image
contains a single object. However, the topology of the object differs depending
on the type of neighborhood. If the foreground is 8-connected, the object is a
closed contour, and there are two separate background elements (the part
inside the loop and the part outside). If the foreground is 4-connected, the

contour is open, and there is only one background element.

Suppose you call bwFill, specifying the pixel BW1(4,3) as the starting point.

bwFi 11 (BW1,4,3)

ans =

O O O0OO0OO0OO0oOOo

o

OCORRRRLRPRLRO

OCORRRRLRRLRO

OO RRRRLRPRO

OO RRRRLRERO

[eNeolNol S o e

OO OO0 O0OOoOOo

O O O0OO0OO0OO0oOOo

0]

bwFill fills in just the inside of the loop, because bwfill uses an 8-connected
foreground by default. If you specify a 4-connected foreground instead, bwfill
fills in the entire image, because the entire background is a single 8-connected

element.

9-15

9 Binary Image Operations

For example,
bwfill(BW1,4,3,4)

ans =

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Note that unlike other binary image operations, bwfill pads with 1's rather
than O’s along the image border. This prevents the fill operation from wrapping
around the border.

You can also use bwFill interactively, selecting starting pixels with a mouse.
See the reference page for bwfill for more information.

Connected-Components Labeling

The bwlabel function performs connected-components labeling, which is a
method for indicating each discrete object in a binary image. You specify an
input binary image and the type of neighborhood, and bwlabel returns a
matrix of the same size as the input image. The different objects in the input
image are distinguished by different integer values in the output matrix.

For example, suppose you have this binary image.
BW1 =

OO OO0 O0OO0oOOo
Oo0oOo0OoOoOkrkrErOo
O oo OoOrkrPrFrOo
OrPFrEFPOOOO
OFrRrRFRPEFPLOOOO
e eolNeololNoNoll e
OO0 OO0 r r+ro
OO0 O0OO0OO0OkrrOo

9-16

Object-Based Operations

You call bwlabel, specifying 4-connected neighborhoods.

bwlabel (BW1,4)
ans =

0 0 0 0 0 0 0 0
0 1 1 0 0 3 3 3
0 1 1 0 0 0 3 3
0 1 1 0 0 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 0 0 0 0 0

In the output matrix, the 1's represent one object, the 2's a second object, and
the 3's a third. Notice that if you had used 8-connected neighborhoods (the
default), there would be only two objects, because the first and second objects
would be a single object, connected along the diagonal.

The output matrix is not a binary image, and its class is double. A useful
approach to viewing it is to display it as a pseudocolor indexed image, first
adding 1 to each element, so that the data is in the proper range. Each object
displays in a different color, so the objects are easier to distinguish than in the
original image.

The example below illustrates this technique. Notice that this example uses a
colormap in which the first color (the background) is black and the other colors
are easily distinguished.

X = bwlabel (BW1,4);
map = [0 O O;jet(3)];
imshow(X+1,map, "notruesize®)

9-17

9 Binary Image Operations

9-18

Figure 9-7: A Binary Image Displayed with a Colormap After
Connected-Components Labeling

Object Selection

You can use the bwselect function to select individual objects in a binary
image. You specify pixels in the input image, and bwselect returns a binary
image that includes only those objects from the input image that contain one of
the specified pixels.

You can specify the pixels either noninteractively or with a mouse. For
example, suppose you want to select 8-connected objects in the image displayed
in the current axes. You type

BW2 = bwselect(8);

The cursor changes to a cross-hair when it is over the image. Click on the
objects you want to select; bwselect displays a small star over each pixel you
click on. When you are done, press Return. bwselect returns a binary image
consisting of the objects you selected, and removes the stars.

See the reference page for bwselect for more information.

Feature Measurement

Feature Measurement

When you process an image, you may want to obtain information about how
certain features of the image change. For example, when you perform dilation,
you may want to determine how many pixels are changed from off to on by the
operation, or to see if the number of objects in the image changes. This section
describes two functions, bwarea and bweuler, that return two common
measures of binary images: the image area and the Euler number.

In addition, you can use the imfeature function, in combination with bwlabel,
to compute measurements of various features in a binary image. See the
reference page for imfeature for more information.

Image Area

The bwarea function returns the area of a binary image. The area is a measure
of the size of the foreground of the image. Roughly speaking, the area is the
number of on pixels in the image.

bwarea does not simply count the number of on pixels, however. Rather, bwarea
weights different pixel patterns unequally when computing the area. This
weighting compensates for the distortion that is inherent in representing a
continuous image with discrete pixels. For example, a diagonal line of 50 pixels
is longer than a horizontal line of 50 pixels. As a result of the weighting bwarea
uses, the horizontal line has area of 50, but the diagonal line has area of 62.5.

This example uses bwarea to determine the percentage area increase in
circbw. tif that results from a dilation operation.

BW1 = imread("circbw.tif");

SE = ones(5);

BW2 = dilate(BW1,SE);

increase = (bwarea(BW2) — bwarea(BW1))/bwarea(BW1);

increase =

0.3456

The dilation increases the area by about 35%.

See the reference page for bwarea for more information about the weighting
pattern.

9-19

9 Binary Image Operations

9-20

Euler Number

The bweuler function returns the Euler number for a binary image. The Euler
number is a measure of the topology of an image. It is defined as the total
number of objects in the image minus the number of holes in those objects. You
can use either 4- or 8-connected neighborhoods.

This example computes the Euler number for the circuit image, using
8-connected neighborhoods.

BW1 = imread("circbw.tif");
eul = bweuler(Bw1,8)

eul

-85

In this example, the Euler number is negative, indicating that the number of
holes is greater than the number of objects.

Lookup Table Operations

Lookup Table Operations

Certain binary image operations can be implemented most easily through
lookup tables. A lookup table is a column vector in which each element
represents the value to return for one possible combination of pixels in a
neighborhood.

You can use the makelut function to create lookup tables for various
operations. makelut creates lookup tables for 2-by-2 and 3-by-3 neighborhoods.
This figure illustrates these types of neighborhoods. Each neighborhood pixel
is indicated by an x, and the center pixel is the one with a circle.

X | x| X
(X)X X |(X)] x
X | X X | X | X
2-hy-2 neighborhood 3-by-3 neighborhood

For a 2-by-2 neighborhood, there are 16 possible permutations of the pixels in
the neighborhood. Therefore, the lookup table for this operation is a 16-element
vector. For a 3-by-3 neighborhood, there are 512 permutations, so the lookup
table is a 512-element vector.

Once you create a lookup table, you can use it to perform the desired operation
by using the applylut function.

The example below illustrates using lookup-table operations to modify an
image containing text. You begin by writing a function that returns 1 if three
or more pixels in the 3-by-3 neighborhood are 1, and 0 otherwise. You then call
makelut, passing in this function as the first argument, and using the second
argument to specify a 3-by-3 lookup table.

f = inline("sum(x(:)) >= 37);
lut = makelut(f,3);

lut is returned as a 512-element vector of 1's and 0's. Each value is the output
from the function for one of the 512 possible permutations.

You then perform the operation using applylut.

BwW1
BW2

imread("text._tif");
applylut(Bwi, lut);

9-21

9 Binary Image Operations

9-22

imshow(BW1)
figure, imshow(BW2)

Cross-Correlation Used Cross-Correlation Used
To Locate A Known To Loc_ale A Known
Target in an Image Target in an Image

[=1)]
g
L
g L4 o
53 &
SR~
- &)
=
i) =
=SS0

Figure 9-8: Text.tif Before and After Applying a Lookup Table Operation

For information about how applylut maps pixel combinations in the image to
entries in the lookup table, see the reference page for applylut.

Note You cannot use makelut and applylut for neighborhoods of sizes other
than 2-by-2 or 3-by-3. These functions support only 2-by-2 and 3-by-3
neighborhoods, because lookup tables are not practical for neighborhoods
larger than 3-by-3. For example, a lookup table for a 4-by-4 neighborhood
would have 65,536 entries.

Region-Based Processing

Overviewo 10-2
Words You NeedtoKnow 10-2
Specifying a Region of Interest 10-4
SelectingaPolygon 10-4
Other Selection Methods 10-5
FilteringaRegion 10-7

FillingaRegion 10-9

10 Region-Based Processing

Overview
This chapter describes operations that you can perform on a selected region of
an image. It discusses these topics:
= “Specifying a Region of Interest” on page 10-4
= “Filtering a Region” on page 10-7
< “Filling a Region” on page 10-9
For an interactive demonstration of region-based processing, try running
roidemo.
Words You Need to Know
An understanding of the following terms will help you to use this chapter. For
more explanation of this table and others like it, see “Words You Need to Know”
in the Preface.

Words Definitions

Binary mask

Filling a region

Filtering a region

Interpolation

A binary image with the same size as the image you want to
process. The mask contains 1's for all pixels that are part of
the region of interest, and 0's everywhere else.

A process that “fills” a region of interest by interpolating the
pixel values from the borders of the region. This process can
be used to make objects in an image seem to disappear as they
are replaced with values that blend in with the background
area.

The process of applying a filter to a region of interest. For
example, you can apply an intensity adjustment filter to
certain regions of an image.

The process by which we estimate an image value at a location
in between image pixels.

10-2

Overview

Words

Definitions

Masked filtering

Region of interest

An operation that applies filtering only to the regions of
interest in an image that are identified by a binary mask.
Filtered values are returned for pixels where the binary mask
contains 1's; unfiltered values are returned for pixels where
the binary mask contains 0's.

A portion of an image that you want to filter or perform some
other operation on. You define a region of interest by creating
a binary mask. There can be more than one region defined in
an image. The regions can be “geographic” in nature, such as
polygons that encompass contiguous pixels, or they can be
defined by a range of intensities. In the latter case, the pixels
are not necessarily contiguous.

10-3

10 Region-Based Processing

10-4

Specifying a Region of Interest

A region of interest is a portion of an image that you want to filter or perform
some other operation on. You define a region of interest by creating a binary
mask, which is a binary image with the same size as the image you want to
process. The mask contains 1's for all pixels that are part of the region of
interest, and O's everywhere else.

The following subsections discuss methods for creating binary masks:

=« “Selecting a Polygon” on page 10-4

= “Other Selection Methods” on page 10-5 (using any binary mask or the
roicolor function)

Selecting a Polygon

You can use the roipoly function to specify a polygonal region of interest. If
you call roipoly with no input arguments, the cursor changes to a cross hair
when it is over the image displayed in the current axes. You can then specify
the vertices of the polygon by clicking on points in the image with the mouse.
When you are done selecting vertices, press Return; roipoly returns a binary
image of the same size as the input image, containing 1's inside the specified
polygon, and 0's everywhere else.

The example below illustrates using the interactive syntax of roipoly to create
a binary mask. The border of the selected region in Figure 10-1, which was
created using a mouse, is shown in red.

I = imread("pout._tif");
imshow(l)
BW = roipoly;

Specifying a Region of Interest

Figure 10-1: A Polygonal Region of Interest Selected Using roipoly

imshow(BW)

Figure 10-2: A Binary Mask Created for the Region Shown in Figure 10-1.

You can also use roipoly noninteractively. See the reference page for roipoly
for more information.

Other Selection Methods

roipoly provides an easy way to create a binary mask. However, you can use
any binary image as a mask, provided that the binary image is the same size
as the image being filtered.

10-5

10 Region-Based Processing

For example, suppose you want to filter the intensity image I, filtering only
those pixels whose values are greater than 0.5. You can create the appropriate
mask with this command.

BW = (I > 0.5);

You can also use the roicolor function to define the region of interest based on
a color or intensity range. For more information, see the reference page for
roicolor.

10-6

Filtering a Region

Filtering a Region

You can use the roifilt2 function to process a region of interest. When you call
roifilt2, you specify an intensity image, a binary mask, and a filter. roifilt2
filters the input image and returns an image that consists of filtered values for
pixels where the binary mask contains 1's, and unfiltered values for pixels

where the binary mask contains 0’s. This type of operation is called masked
filtering.

This example uses the mask created in the example in “Selecting a Polygon” on
page 10-4 to increase the contrast of the logo on the girl's coat.

h = fspecial(“unsharp®);
12 = roifilt2¢Ch,1,BW);
imshow(l)

figure, imshow(12)

Figure 10-3: An Image Before and After Using an Unsharp Filter on the
Region of Interest.

roifilt2 also enables you to specify your own function to operate on the region
of interest. In the example below, the imadjust function is used to lighten parts
of an image. The mask in the example is a binary image containing text. The
resulting image has the text imprinted on it.

BW = imread("text.tif");

I = imread("cameraman.tif®);

f = inline(CTimadjust(x,[1,[1,0-3)");
12 = roifilt2(1,BW,F);

10-7

10 Region-Based Processing

10-8

imshow(12)

Figure 10-4: An Image Brightened Using a Binary Mask Containing Text

Note that roifilt2 is best suited to operations that return data in the same
range as in the original image because the output image takes some of its data
directly from the input image. Certain filtering operations can result in values
outside the normal image data range (i.e., [0,1] for images of class double,
[0,255] for images of class uint8, [0,65535] for images of class uint16). For
more information, see the reference page for roifilt2.

Filling a Region

Filling a Region

You can use the roifill function to fill a region of interest, interpolating from
the borders of the region. This function is useful for image editing, including
removal of extraneous details or artifacts.

roifill performs the fill operation using an interpolation method based on
Laplace’s equation. This method results in the smoothest possible fill, given the
values on the boundary of the region.

As with roipoly, you select the region of interest with the mouse. When you
complete the selection, roifill returns an image with the selected region filled
in.

This example uses roifill to modify the trees image. The border of the
selected region is shown in red on the original image.

load trees

1 = ind2gray(X,map);
imshow(l)

12 = roifill;

Figure 10-5: A Region of Interest Selected for Filling

imshow(12)

10-9

10 Region-Based Processing

Figure 10-6: The Region of Interest Shown in Figure 10-5 Has Been Filled

10-10

Color

Overview .o
Words You Need to Know

Working with Different Screen Bit Depths

Reducing the Number of Colors in an Image
Using rgb2ind .

Using imapprox

Dithering .

Converting to Other Color Spaces
NTSC Color Space

YCbCr Color Space .

HSV Color Space .

. 11-2
. 11-2

.11-4

. 11-6
. 11-7
11-12
11-13

11-15
11-15
11-16
11-16

11 Color

Overview
This chapter describes the toolbox functions that help you work with color
image data. Note that “color” includes shades of gray; therefore much of the
discussion in this chapter applies to grayscale images as well as color images.
The following topics are discussed:
= “Working with Different Screen Bit Depths” on page 11-4
= “Reducing the Number of Colors in an Image” on page 11-6
=« “Converting to Other Color Spaces” on page 11-15
For additional information about how MATLAB handles color, see the
MATLAB graphics documentation.
Words You Need to Know
An understanding of the following terms will help you to use this chapter. For
more explanation of this table and others like it, see “Words You Need to Know”
in the Preface.

Words Definitions

Approximation

Indexed image

Intensity image

The method by which the software chooses replacement colors in the
event that direct matches cannot be found. The methods of
approximation discussed in this chapter are colormap mapping,
uniform quantization, and minimum variance quantization.

An image whose pixel values are direct indices into an RGB
colormap. In MATLAB, an indexed image is represented by an array
of class uint8, uinti6, or double. The colormap is always an m-by-3
array of class double. We often use the variable name X to represent
an indexed image in memory, and map to represent the colormap.

An image consisting of intensity (grayscale) values. In MATLAB,
intensity images are represented by an array of class uint8, uint16,
or double. While intensity images are not stored with colormaps,
MATLAB uses a system colormap to display them. We often use the
variable name 1 to represent an intensity image in memory. This
term is synonymous with the term “grayscale”.

11-2

Overview

Words

Definitions

RGB image

Screen bit depth

Screen color resolution

An image in which each pixel is specified by three values — one
each for the red, blue, and green components of the pixel’s color. In
MATLAB, an RGB image is represented by an m-by-n-by-3 array of
class uint8, uintl6, or double. We often use the variable name RGB
to represent an RGB image in memory.

The number of bits per screen pixel.

The number of distinct colors that can be produced by the screen.

11-3

11 Color

Working with Different Screen Bit Depths

Most computer displays use 8, 16, or 24 bits per screen pixel. The number of
bits per screen pixel determines the display’s screen bit depth. The screen bit
depth determines the screen color resolution, which is how many distinct colors
the display can produce. Regardless of the number of colors your system can

display, MATLAB can store and process images with very high bit depths: 224

colors for uint8 RGB images, 2*8 colors for uint16 RGB images, and 2199 for
double RGB images. These images display best on systems with 24-bit color,
but usually look fine on 16-bit systems as well. This section describes the
different screen bit depths and how to determine the screen bit depth of your
display.

To determine your system'’s screen bit depth, enter this command at the
MATLAB prompt.

get(0, "ScreenDepth™)
MATLAB returns an integer representing the number of bits per screen pixel.

A 24-bit display provides optimal color resolution. It uses 8 bits for each of the
three color components, resulting in 256 (i.e., 28) levels each of red, green, and
blue. This supports 16,777,216 (i.e., 22%) different colors. (Of these colors, 256
are shades of gray. Shades of gray occur where R=G=B.) The 16 million possible
colors supported by 24-bit display can render a life-like image.

16-bit displays also support a large number of colors. They usually use 5 bits

for each color component, resulting in 32 (i.e., 2°) levels each of red, green, and
blue. This supports 32,768 (i.e., 21°) distinct colors (of which 32 are shades of

gray). Alternatively, the extra bit can be used to increase the number of levels
of green displayed. In this case, the number of different colors supported by a
16-bit display is actually 64,536 (i.e. 216).

8-bit displays support a more limited number of colors. An 8-bit display can
produce any of the colors available on a 24-bit display, but only 256 distinct
colors can appear at one time. (There are 256 shades of gray available, but if all
256 shades of gray are used, they take up all of the available color slots.)

11-4

Working with Different Screen Bit Depths

Note It is possible that your system’s screen bit depth is 32 bits per pixel.
Normally, 32-bit displays use 24 bits for color information and 8 bits for
transparency data (alpha channel). So, although the command,

get(0, "ScreenDepth™)returns the value 32, MATLAB does not currently
support transparency data.

Depending on your system, you may be able to choose the screen bit depth you
want to use. (There may be trade-offs between screen bit depth and screen color
resolution.) In general, 24-bit display mode produces the best results. If you
need to use a lower screen bit depth, 16-bit is generally preferable to 8-bit.
However, keep in mind that a 16-bit display has certain limitations, such as:

= An image may have finer gradations of color than a 16-bit display can
represent. If a color is unavailable, MATLAB uses the closest approximation.

= There are only 32 shades of gray available. If you are working primarily with
grayscale images, you may get better display results using 8-bit display
mode, which provides up to 256 shades of gray.

The next section shows how to reduce the number of colors used by an image.

11-5

11 Color

Reducing the Number of Colors in an Image

This section describes how to reduce the number of colors in an indexed or RGB
image. A discussion is also included about dithering, which is used by the
toolbox’s color-reduction functions (see below.) Dithering is used to increase the
apparent number of colors in an image.

The table below summarizes the Image Processing Toolbox functions for color

reduction.

Function Purpose

imapprox Reduces the number of colors used by an indexed image,
enabling you specify the number of colors in the new
colormap.

rgb2ind Converts an RGB image to an indexed image, enabling you
to specify the number of colors to store in the new
colormap.

.On systems with 24-bit color displays, RGB (truecolor) images can display up
to 16,777,216 (i.e., 224) colors. On systems with lower screen bit depths, RGB
images still displays reasonably well, because MATLAB automatically uses
color approximation and dithering if needed.

Indexed images, however, may cause problems if they have a large number of
colors. In general, you should limit indexed images to 256 colors for the
following reasons.

= On systems with 8-bit display, indexed images with more than 256 colors will
need to be dithered or mapped and, therefore, may not display well.

= On some platforms, colormaps cannot exceed 256 entries.
= If an indexed image has more than 256 colors, MATLAB cannot store the
image data in a uint8 array, but generally uses an array of class double

instead, making the storage size of the image much larger (each pixel uses
64 bits).

= Most image file formats limit indexed images to 256 colors. If you write an
indexed image with more than 256 colors (using imwrite) to a format that
does not support more than 256 colors, you will receive an error.

11-6

Reducing the Number of Colors in an Image

Using rgb2ind
rgb2ind converts an RGB image to an indexed image, reducing the number of

colors in the process. This function provides the following methods for
approximating the colors in the original image:

< Quantization

- Uniform quantization

- Minimum variance quantization
= Colormap mapping

The quality of the resulting image depends on the approximation method you
use, the range of colors in the input image, and whether or not you use
dithering. Note that different methods work better for different images. See
“Dithering” on page 11-13 for a description of dithering and how to enable or
disable it.

Quantization

Reducing the number of colors in an image involves quantization. The function
rgb2ind uses quantization as part of its color reduction algorithm. rgb2ind
supports two quantization methods: uniform quantization and minimum
variance quantization.

An important term in discussions of image quantization is RGB color cube,
which is used frequently throughout this section. The RGB color cube is a
three-dimensional array of all of the colors that are defined for a particular
data type. Since RGB images in MATLAB can be of type uint8, uintis, or
double, three possible color cube definitions exist. For example, if an RGB
image is of class uint8, 256 values are defined for each color plane (red, blue,
and green), and, in total, there will be 224 (or 16,777,216) colors defined by the
color cube. This color cube is the same for all uint8 RGB images, regardless of
which colors they actually use.

The uint8, uintl6, and double color cubes all have the same range of colors.
In other words, the brightest red in an uint8 RGB image displays the same as
the brightest red in a double RGB image. The difference is that the double
RGB color cube has many more shades of red (and many more shades of all
colors). Figure 11-1, below, shows an RGB color cube for a uint8 image.

11-7

11 Color

11-8

White
(255,255,255)

255

Figure 11-1: RGB Color Cube for uint8 Images

Quantization involves dividing the RGB color cube into a number of smaller
boxes, and then mapping all colors that fall within each box to the color value
at the center of that box.

Uniform quantization and minimum variance quantization differ in the
approach used to divide up the RGB color cube. With uniform quantization, the
color cube is cut up into equal-sized boxes (smaller cubes). With minimum
variance quantization, the color cube is cut up into boxes (not necessarily
cubes) of different sizes; the sizes of the boxes depend on how the colors are
distributed in the image.

Uniform Quantization. To perform uniform quantization, call rgb2ind and specify
a tolerance. The tolerance determines the size of the cube-shaped boxes into
which the RGB color cube is divided. The allowable range for a tolerance
setting is [0,1]. For example, if you specify a tolerance of 0.1, the edges of the
boxes are one-tenth the length of the RGB color cube and the maximum total
number of boxes is

n = (floor(1/to)+1)"3

Reducing the Number of Colors in an Image

The commands below perform uniform quantization with a tolerance of 0.1.

RGB = imread("flowers.tif");
[x,map] = rgb2ind(RGB, 0.1);

Figure 11-2 illustrates uniform quantization of a uint8 image. For clarity, the
figure shows a two-dimensional slice (or color plane) from the color cube where
Red=0, and Green and Blue range from 0 to 255. The actual pixel values are
denoted by the centers of the x’s.

G
center pixel value 255

Figure 11-2: Uniform Quantization on a Slice of the RGB Color Cube

After the color cube has been divided, all empty boxes are thrown out.
Therefore, only one of the boxes in Figure 11-2 is used to produce a color for the
colormap. As shown earlier, the maximum length of a colormap created by
uniform quantization can be predicted, but the colormap can be smaller than
the prediction because rgb2ind removes any colors that do not appear in the
input image.

Minimum Variance Quantization. To perform minimum variance quantization, call
rgb2ind and specify the maximum number of colors in the output image’s
colormap. The number you specify determines the number of boxes into which
the RGB color cube is divided. These commands use minimum variance
gquantization to create an indexed image with 185 colors.

RGB = imread("flowers._tif");

11-9

11 Color

11-10

[X,map] = rgb2ind(RGB,185);

Minimum variance quantization works by associating pixels into groups based
on the variance between their pixel values. For example, a set of blue pixel
values may be grouped together because none of their values is greater than 5
from the center pixel of the group.

In minimum variance quantization, the boxes that divide the color cube vary
in size, and do not necessarily fill the color cube. If some areas of the color cube
do not have pixels, there are no boxes in these areas.

While you set the number of boxes, n, to be used by rgb2ind, the placement is
determined by the algorithm as it analyzes the color data in your image. Once
the image is divided into n optimally located boxes, the pixels within each box
are mapped to the pixel value at the center of the box, as in uniform
guantization.

The resulting colormap usually has the number of entries you specify. This is
because the color cube is divided so that each region contains at least one color
that appears in the input image. If the input image uses fewer colors than the
number you specify, the output colormap will have fewer than n colors, and the
output image will contain all of the colors of the input image.

Figure 11-3 shows the same two-dimensional slice of the color cube as was used
in Figure 11-2 (for demonstrating uniform quantization). Eleven boxes have
been created using minimum variance quantization.

Reducing the Number of Colors in an Image

center pixel value 255

Figure 11-3: Minimum Variance Quantization on a Slice of the RGB Color
Cube

For a given number of colors, minimum variance quantization produces better
results than uniform quantization, because it takes into account the actual
data. Minimum variance quantization allocates more of the colormap entries to
colors that appear frequently in the input image. It allocates fewer entries to
colors that appear infrequently. As a result, the accuracy of the colors is higher
than with uniform quantization. For example, if the input image has many
shades of green and few shades of red, there will be more greens than reds in
the output colormap. Note that the computation for minimum variance
quantization takes longer than that for uniform quantization.

Colormap Mapping

If you specify an actual colormap to use, rgb2ind uses colormap mapping
(instead of quantization) to find the colors in the specified colormap that best
match the colors in the RGB image. This method is useful if you need to create
images that use a fixed colormap. For example, if you want to display multiple
indexed images on an 8-bit display, you can avoid color problems by mapping
them all to the same colormap. Colormap mapping produces a good
approximation if the specified colormap has similar colors to those in the RGB
image. If the colormap does not have similar colors to those in the RGB image,
this method produces poor results.

11-11

11 Color

11-12

This example illustrates mapping two images to the same colormap. The
colormap used for the two images is created on the fly using the MATLAB
function colorcube, which creates an RGB colormap containing the number of
colors that you specify. (colorcube always creates the same colormap for a
given number of colors.) Because the colormap includes colors all throughout
the RGB color cube, the output images can reasonably approximate the input
images.

RGB1 imread("autumn.tif");
RGB2 imread("flowers.tif");
X1 = rgb2ind(RGB1,colorcube(128));
X2 = rgb2ind(RGB2,colorcube(128));

Note The function subimage is also helpful for displaying multiple indexed
images. For more information see “Displaying Multiple Images in the Same
Figure” on page 3-22 or the reference page for subimage.

Using imapprox

Use imapprox when you need to reduce the number of colors in an indexed
image. imapprox is based on rgb2ind and uses the same approximation
methods. Essentially, imapprox first calls ind2rgb to convert the image to RGB
format, and then calls rgb2ind to return a new indexed image with fewer
colors.

For example, these commands create a version of the trees image with 64
colors, rather than the original 128.

load trees
[Y,newmap] = imapprox(X,map,64);
imshow(Y, newmap);

The quality of the resulting image depends on the approximation method you
use, the range of colors in the input image, and whether or not you use
dithering. Note that different methods work better for different images. See
“Dithering” on page 11-13 for a description of dithering and how to enable or
disable it.

Reducing the Number of Colors in an Image

Dithering

When you use rgb2ind or imapprox to reduce the number of colors in an image,
the resulting image may look inferior to the original, because some of the colors
are lost. rgb2ind and imapprox both perform dithering to increase the
apparent number of colors in the output image. Dithering changes the colors of
pixels in a neighborhood so that the average color in each neighborhood
approximates the original RGB color.

For an example of how dithering works, consider an image that contains a
number of dark pink pixels for which there is no exact match in the colormap.
To create the appearance of this shade of pink, the Image Processing Toolbox
selects a combination of colors from the colormap, that, taken together as a
six-pixel group, approximate the desired shade of pink. From a distance, the
pixels appear to be correct shade, but if you look up close at the image, you can
see a blend of other shades, perhaps red and pale pink pixels. The commands
below load a 24-bit image, and then use rgb2ind to create two indexed images
with just eight colors each.

rgb=imread("lily.tif");

imshow(rgb);
[X_no_dither,map]=rgb2ind(rgb,8, "nodither");
[X_dither,map]=rgb2ind(rgb,8, "dither");
figure, imshow(X_no_dither,map);

figure, imshow(X_dither,map);

Without Dithering With Dithering

Original Image
Figure 11-4: Examples of Color Reduction with and Without Dithering

Notice that the dithered image has a larger number of apparent colors but is
somewhat fuzzy-looking. The image produced without dithering has fewer
apparent colors, but an improved spatial resolution when compared to the

11-13

j_]_ Color

dithered image. One risk in doing color reduction without dithering is that the
new image my contain false contours (see the rose in the upper-right corner).

11-14

Converting to Other Color Spaces

Converting to Other Color Spaces

The Image Processing Toolbox represents colors as RGB values, either directly
(in an RGB image) or indirectly (in an indexed image, where the colormap is
stored in RGB format). However, there are other models besides RGB for
representing colors numerically. For example, a color can be represented by its
hue, saturation, and value components (HSV) instead. The various models for
color data are called color spaces.

The functions in the Image Processing Toolbox that work with color assume
that images use the RGB color space. However, the toolbox provides support for
other color spaces though a set of conversion functions. You can use these
functions to convert between RGB and the following color spaces:

= National Television Systems Committee (NTSC)

< YCbCr

= Hue, saturation, value (HSV)

These section describes these color spaces and the conversion routines for
working with them

< “NTSC Color Space”

= “YCbCr Color Space”
= “HSV Color Space”

NTSC Color Space

The NTSC color space is used in televisions in the United States. One of the
main advantages of this format is that grayscale information is separated from
color data, so the same signal can be used for both color and black and white
sets. In the NTSC format, image data consists of three components: luminance
(Y), hue (1), and saturation (Q). The first component, luminance, represents
grayscale information, while the last two components make up chrominance
(color information).

The function rgb2ntsc converts colormaps or RGB images to the NTSC color
space. ntsc2rgb performs the reverse operation.

For example, these commands convert the flowers image to NTSC format.

RGB
YIQ

imread("flowers.tif");
rgbh2ntsc(RGB);

11-15

11 Color

11-16

Because luminance is one of the components of the NTSC format, the RGB to
NTSC conversion is also useful for isolating the gray level information in an
image. In fact, the toolbox functions rgb2gray and ind2gray use the rgb2ntsc
function to extract the grayscale information from a color image.

For example, these commands are equivalent to calling rgb2gray.

YI1Q = rgb2ntsc(RGB);
I = YIQ(:z,:,1);

Note In YIQ color space, I is one of the two color components, not the
grayscale component.

YCbCr Color Space

The YCDbCr color space is widely used for digital video. In this format,
luminance information is stored as a single component (Y), and chrominance
information is stored as two color-difference components (Cb and Cr). Cb
represents the difference between the blue component and a reference value.
Cr represents the difference between the red component and a reference value.

YCbCr data can be double precision, but the color space is particularly well
suited to uint8 data. For uint8 images, the data range for Y is [16, 235], and
the range for Cb and Cr is [16, 240]. YCbCr leaves room at the top and bottom
of the full uint8 range so that additional (nonimage) information can be
included in a video stream.

The function rgb2ycbcr converts colormaps or RGB images to the YCbCr color
space. ycbcr2rgb performs the reverse operation.

For example, these commands convert the flowers image to YCbCr format.

RGB

= imread("flowers.tif");
YCBCR =

rgb2ycbcr(RGB) ;

HSV Color Space

The HSV color space (hue, saturation, value) is often used by people who are
selecting colors (e.g., of paints or inks) from a color wheel or palette, because it
corresponds better to how people experience color than the RGB color space

Converting to Other Color Spaces

does. The functions rgb2hsv and hsv2rgb convert images between the RGB and
HSV color spaces.

As hue varies from 0 to 1.0, the corresponding colors vary from red, through
yellow, green, cyan, blue, and magenta, back to red, so that there are actually
red values both at 0 and 1.0. As saturation varies from 0 to 1.0, the
corresponding colors (hues) vary from unsaturated (shades of gray) to fully
saturated (no white component). As value, or brightness, varies from 0 to 1.0,
the corresponding colors become increasingly brighter.

Figure 11-5 illustrates the HSV color space.

\/ahie

Figure 11-5: lllustration of the HSV Color Space

The function rgb2hsv converts colormaps or RGB images to the HSV color
space. hsv2rgb performs the reverse operation. These commands convert an
RGB image to HSV color space.

RGB
HSV

imread("flowers.tif");
rgbh2hsv(RGB) ;

11-17

‘11 Color

For closer inspection of the HSV color space, the next block of code displays the
separate color planes (hue, saturation, and value) of an HSV image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
HSV=rgb2hsv(RGB) ;

H=HSV(:,:,1);

S=HSV(:,:,2);

V=HSV(:,:,3);

imshow(H)

figure, imshow(S);

figure, imshow(V);

figure, imshow(RGB);

Hue Plane Saturation Plane

Value Plane Original Image

Figure 11-6: The Separated Color Planes of an HSV Image

The images in Figure 11-6 can be scrutinized for a better understanding of how
the HSV color space works. As you can see by looking at the hue plane image,
hue values make a nice linear transition from high to low. If you compare the
hue plane image against the original image, you can see that shades of deep

11-18

Converting to Other Color Spaces

blue have the highest values, and shades of deep red have the lowest values.
(In actuality, there are values of red on both ends of the hue scale, which you
can see if you look back at the model of the HSV color space in Figure 11-5. To
avoid confusion, our sample image uses only the red values from the beginning
of the hue range.) Saturation can be thought of as the purity of a color. As the
saturation plane image shows, the colors with the highest saturation have the
highest values and are represented as white. In the center of the saturation
image, notice the various shades of gray. These correspond to a mixture of
colors; the cyans, greens, and yellow shades are mixtures of true colors. Value
is roughly equivalent to brightness, and you will notice that the brightest areas
of the value plane image correspond to the brightest colors in the original
image.

11-19

11 Color

11-20

Function Reference

1 2 Function Reference

12-2

This chapter provides detailed descriptions of the functions in the Image
Processing Toolbox. It begins with a list of functions grouped by subject area
and continues with the reference entries in alphabetical order.

Functions by Category

The tables below list all functions in the Image Processing Toolbox, plus a few
functions in MATLAB that are especially useful for image processing. All of the
functions listed have reference entries in this User’s Guide, with the following
exceptions:

< Most MATLAB functions. To see the reference entries for most of the
MATLAB functions listed here, see the MATLAB Function Reference. The
MATLAB functions imread, imfinfo, and imwrite have entries in this
reference because they are essential to image file 1/0.

< The Image Processing Toolbox demo functions and slideshow functions. For
information about any of these functions, see “Image Processing Demos” in
the Preface.

Image Display

colorbar Display colorbar. (This is a MATLAB function. See the
online MATLAB Function Reference for its reference page.)

getimage Get image data from axes

image Create and display image object. (This is a MATLAB

function. See the online MATLAB Function Reference for
its reference page.)

imagesc Scale data and display as image. (This is a MATLAB
function. See the online MATLAB Function Reference for
its reference page.)

immovie Make movie from multiframe indexed image

imshow Display image

Image Display (Continued)

montage

subimage

truesize

warp

Z0oom

Display multiple image frames as rectangular montage

Display multiple images in single figure

Adjust display size of image

Display image as texture-mapped surface

Zoom in and out of image or 2-D plot. (This is a MATLAB
function. See the online MATLAB Function Reference for
its reference page.)

Image File 170

imFinfo

imread

imwrite

Return information about image file. (This is a MATLAB
function. See the online MATLAB Function Reference for
its reference page.)

Read image file. (This is a MATLAB function. See the
online MATLAB Function Reference for its reference page.)

Write image file. (This is a MATLAB function. See the
online MATLAB Function Reference for its reference page.)

Geometric Operations

imcrop

imresize

Crop image

Resize image

12-3

1 2 Function Reference

Geometric Operations (Continued)

imrotate

interp2

Rotate image

2-D data interpolation. (This is a MATLAB function. See
the online MATLAB Function Reference for its reference

page.)

Pixel Values and Statistics

corr2

imcontour

imfeature

imhist

impixel

improfile

mean2

pixval

std2

Compute 2-D correlation coefficient

Create contour plot of image data

Compute feature measurements for image regions

Display histogram of image data

Determine pixel color values

Compute pixel-value cross-sections along line segments

Compute mean of matrix elements

Display information about image pixels

Compute standard deviation of matrix elements

12-4

Image Analysis

edge Find edges in intensity image

gtdecomp Perform quadtree decomposition

gtgetblk Get block values in quadtree decomposition
gtsetblk Set block values in quadtree decomposition

Image Enhancement

histeq Enhance contrast using histogram equalization
imadjust Adjust image intensity values or colormap
imnoise Add noise to an image

medfilt2 Perform 2-D median filtering

ordfilt2 Perform 2-D order-statistic filtering

wiener2 Perform 2-D adaptive noise-removal filtering

12-5

1 2 Function Reference

Linear Filtering

conv2 Perform 2-D convolution. (This is a MATLAB function. See
the online MATLAB Function Reference for its reference
page.)

convmtx2 Compute 2-D convolution matrix

convn Perform N-D convolution. (This is a MATLAB function. See
the online MATLAB Function Reference for its reference
page.)

filter2 Perform 2-D filtering. (This is a MATLAB function. See the

online MATLAB Function Reference for its reference page.)

fspecial Create predefined filters

Linear 2-D Filter Design

freqgspace Determine 2-D frequency response spacing. (This is a
MATLAB function. See the online MATLAB Function
Reference for its reference page.)

freqz2 Compute 2-D frequency response

fsamp2 Design 2-D FIR filter using frequency sampling
ftrans2 Design 2-D FIR filter using frequency transformation
fwindl Design 2-D FIR filter using 1-D window method
fwind2 Design 2-D FIR filter using 2-D window method

12-6

Image Transforms

dct2

dctmtx

2

fftn

fftshift

idct2

iffe2

ifftn

iradon

phantom

radon

Compute 2-D discrete cosine transform

Compute discrete cosine transform matrix

Compute 2-D fast Fourier transform. (This is a MATLAB
function. See the online MATLAB Function Reference for
its reference page.)

Compute N-D fast Fourier transform. (This is a MATLAB
function. See the online MATLAB Function Reference for
its reference page.)

Reverse quadrants of output of FFT. (This is a MATLAB
function. See the online MATLAB Function Reference for
its reference page.)

Compute 2-D inverse discrete cosine transform
Compute 2-D inverse fast Fourier transform. (This is a

MATLAB function. See the online MATLAB Function
Reference for its reference page.)

Compute N-D inverse fast Fourier transform. (This is a
MATLAB function. See the online MATLAB Function
Reference for its reference page.)

Compute inverse Radon transform

Generate a head phantom image

Compute Radon transform

12-7

1 2 Function Reference

12-8

Neighborhood and Block Processing

bestblk

blkproc

col2im

colfilt

im2col

nifilter

Choose block size for block processing

Implement distinct block processing for image

Rearrange matrix columns into blocks

Perform neighborhood operations using columnwise
functions

Rearrange image blocks into columns

Perform general sliding-neighborhood operations

Binary Image Operations

applylut

bwarea

bweuler

bwfill

bwlabel

bwmorph

Perform neighborhood operations using lookup tables

Compute area of objects in binary image

Compute Euler number of binary image

Fill background regions in binary image

Label connected components in binary image

Perform morphological operations on binary image

Binary Image Operations (Continued)

bwperim Determine perimeter of objects in binary image
bwselect Select objects in binary image

dilate Perform dilation on binary image

erode Perform erosion on binary image

makelut Construct lookup table for use with applylut

Region-Based Processing

roicolor Select region of interest, based on color
roifill Smoothly interpolate within arbitrary region
roifilt2 Filter a region of interest

roipoly Select polygonal region of interest

Colormap Manipulation

brighten Brighten or darken colormap. (This is a MATLAB function.
See the online MATLAB Function Reference for its
reference page.)

cmpermute Rearrange colors in colormap

12-9

1 2 Function Reference

Colormap Manipulation (Continued)

cmunique Find unique colormap colors and corresponding image

colormap Set or get color lookup table. (This is a MATLAB function.
See the online MATLAB Function Reference for its
reference page.)

imapprox Approximate indexed image by one with fewer colors
rgbplot Plot RGB colormap components. (This is a MATLAB

function. See the online MATLAB Function Reference for
its reference page.)

Color Space Conversions

hsv2rgb Convert HSV values to RGB color space. (This is a
MATLAB function. See the online MATLAB Function
Reference for its reference page.)

ntsc2rgb Convert NTSC values to RGB color space

rgb2hsv Convert RGB values to HSV color space. (This is a
MATLAB function. See the online MATLAB Function
Reference for its reference page.)

rgb2ntsc Convert RGB values to NTSC color space

rgb2ycbcr Convert RGB values to YChCr color space

ycber2rgb Convert YCbCr values to RGB color space

12-10

Image Types and Type Conversions

dither

double

gray2ind

grayslice

im2bw

im2double

im2uintl6

im2uint8

ind2gray

ind2rgb

isbw

isgray

isind

isrgb

Convert image using dithering

Convert data to double precision. (This isa MATLAB
function. See the online MATLAB Function Reference for
its reference page.)

Convert intensity image to indexed image
Create indexed image from intensity image by thresholding
Convert image to binary image by thresholding
Convert image array to double precision
Convert image array to 16-bit unsigned integers
Convert image array to 8-bit unsigned integers
Convert indexed image to intensity image
Convert indexed image to RGB image

Return true for binary image

Return true for intensity image

Return true for indexed image

Return true for RGB image

12-11

1 2 Function Reference

12-12

Image Types and Type Conversions (Continued)

mat2gray

rgh2gray

rgb2ind

uintl6

uints

Convert matrix to intensity image

Convert RGB image or colormap to grayscale

Convert RGB image to indexed image

Convert data to unsigned 16-bit integers. (This is a
MATLAB function. See the online MATLAB Function
Reference for its reference page.)

Convert data to unsigned 8-bit integers. (This is a
MATLAB function. See the online MATLAB Function
Reference for its reference page.)

Toolbox Preferences

iptgetpref Get value of Image Processing Toolbox preference
iptsetpref Set value of Image Processing Toolbox preference
Demos

dctdemo 2-D DCT image compression demo

edgedemo Edge detection demo

firdemo 2-D FIR filtering and filter design demo

imadjdemo Intensity adjustment and histogram equalization demo

Demos (Continued)

nrfiltdemo

Noise reduction filtering demo

gtdemo Quadtree decomposition demo
roidemo Region-of-interest processing demo
Slide Shows

ipss001 Region labeling of steel grains
ipss002 Feature-based logic

ipss003 Correction of nonuniform illumination

12-13

12

Alphabetical List of Functions

12-14

applylut .. 12-17
bestblk e 12-19
DIKPIOC . .. 12-20
brighten 12-22
bwarea 12-23
bwWeUler 12-25
bWl . 12-27
bwlabel e 12-30
bwmorph ... 12-32
bwperim 12-36
bwselect 12-37
CIMPEIMNULE . .o e 12-39
CMUNIGUE . ot e et e e e e e e e e e e e 12-40
COl2im e 12-41
Colfilt . . o 12-42
colorbar 12-44
(000} 0 1Y 7 12-46
CONVIMEXZ . . e e 12-48
(000} 0 1/ 0 12-49
010 12-50
ACt2 . 12-51
ACtmMEX o e 12-54
dilate e 12-55
dither e 12-57
double e 12-58
BAgE 12-59
BrOOE . oo e 12-64
172 12-66
11 12-68
EShift . e 12-69
filter 2 . 12-70
fregspace 12-72
freqz2 12-73
fSaMP . 12-75
fspecial 12-78

Alphabetical List of Fun

ctions

FIraANS 2 . . 12-82
WINdL .. 12-85
WINA2 . . 12-89
0etiMAgE 12-93
gray2ind 12-95
grayslice 12-96
RiSteg ... 12-97
RSV2rgb . . 12-100
o o1 72 12-101
0 12-102
N . 12-103
MW . o 12-104
IM2C0l . . 12-105
im2double e 12-106
IM2UINT8 e 12-107
IM2UINtLl e 12-108
IMadjust 12-109
0 =T 0] 00D 12-111
IMCONTOUL . .. e e 12-112
3 0]] o 12-114
IMfeature e 12-117
IMfiNfo ... e 12-123
IMNISt . e 12-126
IMMOVIE . 12-128
IMN0ISE . .o 12-129
IMPIXEl o e 12-131
improfile 12-134
IMread e 12-137
IMIESIZE .o e 12-143
IMrotate 12-145
IMShOW . .. 12-147
IWEITE . L 12-149
INA2GKaYo 12-156
IN2rgh . .. 12-157
ptgetpref 12-158
ptsetpref e 12-159
IFAdON . . 12-161

12-15

12

12-16

IS DWW L 12-164
S Y . e e e 12-165
ISINA .. 12-166
SIOD 12-167
makelut e 12-168
MaAt2graY . ..ottt 12-170
MNBANZ . . 12-171
medfilt2 ... 12-172
MONEAgE . . . oo e 12-174
NIfilter . 12-176
NESC2rgD e 12-177
ordfilt2 12-178
phantom e 12-180
PIXVal e 12-183
QEECOMIP . .o 12-184
gtgetblk 12-187
gtsetblk 12-189
FAOON . 12-190
FOD2gray ... 12-192
FgD2NSY . . 12-193
rgb2ind 12-194
FOD2NTSC . . . o 12-196
rgb2ycCher . . 12-197
rgbplot .. 12-198
FOICOIOr . . 12-199
0 1T 12-200
FOIfIl2 . . 12-202
FOIPOIY . . 12-204
SEO2 L o e 12-206
SUDIMAgE ..o e 12-207
BrUESIZE . o o 12-209
UINE Lo 12-210
UINELG . . 12-212
WA o e e 12-214
WIBNEEZ L . 12-216
YCbCr2rgh . 12-218
ZOOM oottt et 12-219

applylut

Purpose
Syntax

Description

Class Support

Algorithm

Perform neighborhood operations on binary images, using lookup tables
A = applylut(BW, lut)

A = applylut(BW, lut) performs a 2-by-2 or 3-by-3 neighborhood operation on
binary image BW by using a lookup table (lut). lut is either a 16-element or
512-element vector returned by makelut. The vector consists of the output
values for all possible 2-by-2 or 3-by-3 neighborhoods.

The values returned in A depend on the values in lut. For example, if lut
consists of all 1's and 0's, A will be a binary image.

BW and Iut can be of class uint8 or double. If the elements of lut are all
integers between 0 and 255 (regardless of the class of 1ut), then the class of A
is uint8; otherwise, the class of A is double.

applylut performs a neighborhood operation on a binary image by producing
a matrix of indices into lut, and then replacing the indices with the actual
values in lut. The specific algorithm used depends on whether you use 2-by-2
or 3-by-3 neighborhoods.

2-by-2 Neighborhoods

For 2-by-2 neighborhoods, Iength(lut) is 16. There are four pixels in each
neighborhood, and two possible states for each pixel, so the total number of
permutations is 2% = 16.

To produce the matrix of indices, applylut convolves the binary image BW with
this matrix.

8 2
4 1

The resulting convolution contains integer values in the range [0,15]. applylut
uses the central part of the convolution, of the same size as BW, and adds 1 to
each value to shift the range to [1,16]. It then constructs A by replacing the
values in the cells of the index matrix with the values in lut that the indices
point to.

12-17

applylut

Example

See Also

12-18

3-by-3 Neighborhoods

For 3-by-3 neighborhoods, Iength(lut) is 512. There are nine pixels in each
neighborhood, and 2 possible states for each pixel, so the total number of
permutations is 2° = 512.

To produce the matrix of indices, applylut convolves the binary image BW with
this matrix.

256 32 4
128 16 2
64 8 1

The resulting convolution contains integer values in the range [0,511].
applylut uses the central part of the convolution, of the same size as BW, and
adds 1 to each value to shift the range to [1,512]. It then constructs A by
replacing the values in the cells of the index matrix with the values in 1ut that
the indices point to.

In this example, you perform erosion using a 2-by-2 neighborhood. An output
pixel is on only if all four of the input pixel’'s neighborhood pixels are on.

lut = makelut("sum(x(:)) == 47,2);
BW1 imread("text.tif");

BW2 = applylut(BW1, lut);
imshow(BW1)

figure, imshow(BW2)

Cross-Correlation Used
To Locate A Known
Target in an Image

[=11]
g
L
g L4 o
53 &
SR~
- &)
=
i) =
=SS0

makelut

bestblk

Purpose

Syntax

Description

Algorithm

Example

See Also

Determine block size for block processing

siz = bestblk([m n],k)
[mb,nb] = bestblk([m n],k)

siz = bestblk([m n],k) returns, for an m-by-n image, the optimal block size
for block processing. k is a scalar specifying the maximum row and column
dimensions for the block; if the argument is omitted, it defaults to 100. sizisa
1-by-2 vector containing the row and column dimensions for the block.

[mb,nb] = bestblk([m n],k) returns the row and column dimensions for the
block in mb and nb, respectively.

bestblk returns the optimal block size given m, n, and k. The algorithm for
determining siz is:

= |f mis less than or equal to k, return m.

= If m is greater than k, consider all values between min(m/10,k/2) and k.
Return the value that minimizes the padding required.

The same algorithm is then repeated for n.

siz = bestblk([640 800],72)

"
N
1

64 50

blkproc

12-19

blkproc

Purpose

Syntax

Description

Class Support

12-20

Implement distinct block processing for an image

blkproc(A,[m n],fun)

blkproc(A,[m n],fun,P1,P2,...)
blkproc(A,[m n],[mborder nborder],fun,...)
blkproc(A, "indexed®,...)

W 0 W @
I

B = blkproc(A, [m n], fun) processes the image A by applying the function fun
to each distinct m-by-n block of A, padding A with zeros if necessary. fun is a
function that accepts an m-by-n matrix, x, and return a matrix, vector, or scalar
y.

y = fun(x)

blkproc does not require that y be the same size as x. However, B is the same
size as A only if y is the same size as x.

B = blkproc(A,[m n],fun,P1,P2,...) passes the additional parameters
P1,P2,..., to fun.

B = blkproc(A,[m n],[mborder nborder],fun,...) defines an overlapping
border around the blocks. blkproc extends the original m-by-n blocks by

mborder on the top and bottom, and nborder on the left and right, resulting in
blocks of size (m+2*mborder)-by-(n+2*nborder). blkproc pads the border with
zeros, if necessary, on the edges of A. fun should operate on the extended block.

The line below processes an image matrix as 4-by-6 blocks, each having a row
border of 2 and a column border of 3. Because each 4-by-6 block has this 2-by-3
border, fun actually operates on blocks of size 8-by-12.

B = blkproc(A,[4 6].[2 3],fun,...)
B = blkproc(A, "indexed",...) processes A as an indexed image, padding
with zeros if the class of A is uint8 or uint16, or ones if the class of A is double.

The input image A can be of any class supported by fun. The class of B depends
on the class of the output from fun.

blkproc
|

Example fun can be a function_handle created using @. This example uses blkproc to
compute the 2-D DCT of each 8-by-8 block to the standard deviation of the

elements in that block.

I = imread("cameraman.tif");
fun = @dct2;

J = blkproc(l,[8 8],fun);
imagesc(J), colormap(hot)

fun can also be an inline object. This example uses blkproc to set the pixels in
each 8-by-8 block to the standard deviation of the elements in that block.

I = imread("alumgrns._tif");
fun = inline("std2(s)*ones(size(X))");
12 = blkproc(l,[8 8], "std2(x)*ones(size(x))");

imshow(l)
figure, imshow(12,[1);

See Also colFilt, nlfilter, inline

12-21

brighten

Purpose

Syntax

Description

Remarks

See Also

12-22

Brighten or darken a colormap

brighten(beta)

newmap = brighten(beta)
newmap = brighten(map,beta)
brighten(fig,beta)

brighten(beta) replaces the current colormap with a brighter or darker map
that has essentially the same colors. The map is brighter if 0 < beta < 1 and
darker if =1 <beta<0.

brighten(beta) followed by brighten(-beta) restores the original map.

newmap = brighten(beta) returns a brighter or darker version of the current
colormap without changing the display.

newmap = brighten(map,beta) returns a brighter or darker version of the
specified colormap without changing the display.

brighten(fig,beta) brightens all of the objects in the figure fig.
brighten is a function in MATLAB.

imadjust, rgbplot

colormap in the MATLAB Function Reference

bwarea

Purpose
Syntax

Description

Class Support

Algorithm

Example

Compute the area of the objects in a binary image
total = bwarea(BW)

total = bwarea(BW) estimates the area of the objects in binary image BW.
total is a scalar whose value corresponds roughly to the total number of on
pixels in the image, but may not be exactly the same because different patterns
of pixels are weighted differently.

BW can be of class uint8 or double. total is of class double.

bwarea estimates the area of all of the on pixels in an image by summing the
areas of each pixel in the image. The area of an individual pixel is determined
by looking at its 2-by-2 neighborhood. There are six different patterns
distinguished, each representing a different area:

= Patterns with zero on pixels (area = 0)

=« Patterns with one on pixel (area = 1/4)

= Patterns with two adjacent on pixels (area = 1/2)

=« Patterns with two diagonal on pixels (area = 3/4)

= Patterns with three on pixels (area = 7/8)

= Patterns with all four on pixels (area = 1)

Keep in mind that each pixel is part of four different 2-by-2 neighborhoods.

This means, for example, that a single on pixel surrounded by off pixels has a
total area of 1.

This example computes the area in the objects of a 256-by-256 binary image.

BW = imread("circles._tif");
imshow(BW) ;

12-23

bwarea

bwarea(BW)
ans =
15799
See Also bweuler, bwperim
References [1] Pratt, William K. Digital Image Processing. New York: John Wiley & Sons,

Inc., 1991. p. 634.

12-24

bweuler

Purpose
Syntax

Description

Class Support

Example

Algorithm

See Also

Compute the Euler number of a binary image
eul = bweuler(BW,n)

eul = bweuler(BW,n) returns the Euler number for the binary image BW. eul
is a scalar whose value is the total number of objects in the image minus the
total number of holes in those objects. n can have a value of either 4 or 8, where
4 specifies 4-connected objects and 8 specifies 8-connected objects; if the
argument is omitted, it defaults to 8.

BW can be of class uint8 or double. eul is of class double.

BW = imread("circles.tif");
imshow(BW) ;

bweuler(BW)

ans =
-2
bweuler computes the Euler number by considering patterns of convexity and
concavity in local 2-by-2 neighborhoods. See [2] for a discussion of the

algorithm used.

bwmorph, bwperim

12-25

bweuler

References [1] Horn, Berthold P. K., Robot Vision. New York: McGraw-Hill, 1986. pp.
73-77.

[2] Pratt, William K. Digital Image Processing. New York: John Wiley & Sons,
Inc., 1991. p. 633.

12-26

bwfill

Purpose

Syntax

Description

Fill background regions in a binary image

BW2 = bwfill(BW1,c,r,n)
BW2 = bwfill(BW1,n)
[BW2,idx] = bwfill(...)

BW2 = bwfill(x,y,BWl,xi,yi,n)
[x,y,BW2,idx,xi,yi] = bwfill(...)

BW2 = bwfill(BW1, "holes”,n)
[BW2,idx] = bwFfill(BW1, "holes*",n)

BW2 = bwfill(BW1,c,r,n) performs a flood-fill operation on the input binary
image BW1, starting from the pixel (r,c). If r and c are equal-length vectors, the
fill is performed in parallel from the starting pixels (r(k),c(k)). n can have a
value of either 4 or 8 (the default), where 4 specifies 4-connected foreground
and 8 specifies 8-connected foreground. The foreground of BW1 comprises the on
pixels (i.e., having value of 1).

BW2 = bwfill(BW1,n) displays the image BW1 on the screen and lets you select
the starting points using the mouse. If you omit BW1, bwfill operates on the
image in the current axes. Use normal button clicks to add points. Press
Backspace or Delete to remove the previously selected point. A shift-click,
right-click, or double-click selects a final point and then starts the fill; pressing
Return finishes the selection without adding a point.

[BwW2, idx] = bwfill(...) returns the linear indices of all pixels filled by
bwFill.

BW2 = bwFill(x,y,BW1,xi,yi,n) uses the vectors x and y to establish a
nondefault spatial coordinate system for BW1. xi and yi are scalars or
equal-length vectors that specify locations in this coordinate system.

[x,y,BW2,idx,xi,yi] = bwFill(...) returns the XData and YData in x and y;
the output image in BW2; linear indices of all filled pixels in idx; and the fill
starting points in xi and yi.

BW2 = bwFill(BW1, "holes",n) fills the holes in the binary image BW1. bwFfill
automatically determines which pixels are in object holes, and then changes
the value of those pixels from 0 to 1. n defaults to 8 if you omit the argument.

12-27

bwfill

[BW2, idx] = bwFill(BW1,"holes",n) returns the linear indices of all pixels
filled in by bwFill.

If bwFill is used with no output arguments, the resulting image is displayed
in a new figure.

Remarks bwfi 11 differs from many other binary image operations in that it operates on
background pixels, rather than foreground pixels. If the foreground is
8-connected, the background is 4-connected, and vice versa. Note, however,
that you specify the connectedness of the foreground when you call bwFill.

Class Support The input image BW1 can be of class double or uint8. The output image BW2 is
of class uints.

Example BW1 = [1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0
1 0 0] 0 1 0 1 0
1 0] 0] 0 1 1 1 0
1 1 1 1 0 1 1 1
1 0] 0] 1 1 0] 1 0
1 0] 0] 0 1 0] 1 0
1 0] 0] 0 1 1 1 (0] |
BW2 = bwfill(BW1,3,3,8)
BW2 =
1 0 0 0] 0] 0 0 0]
1 1 1 1 1 0 0 0]
1 1 1 1 1 0 1 0]
1 1 1 1 1 1 1 0]
1 1 1 1 0 1 1 1
1 0] 0 1 1 0 1 0]
1 0] 0 0 1 0 1 0
1 0] 0 0 1 1 1 0]
I = imread("bloodl._tif");
BW3 = ~im2bw(l);
BW4 = bwfill(BW3,"holes™);
imshow(BW3)

12-28

bwfill
|

figure, imshow(BW4)

See Also bwselect, roifill

12-29

bwlabel

Purpose

Syntax

Description

Class Support

Remarks

Example

12-30

Label connected components in a binary image

L = bwlabel (BW,n)
[L,num] = bwlabel(BW,n)

L = bwlabel (BW,n) returns a matrix L, of the same size as BW, containing labels
for the connected objects in BW. n can have a value of either 4 or 8, where 4
specifies 4-connected objects and 8 specifies 8-connected objects; if the
argument is omitted, it defaults to 8.

The elements of L are integer values greater than or equal to 0. The pixels
labeled 0 are the background. The pixels labeled 1 make up one object, the
pixels labeled 2 make up a second object, and so on.

[L,num] = bwlabel (BW,n) returns in num the number of connected objects
found in BW.

The input image BW can be of class double or uint8. The output matrix L is of
class double.

You can use the MATLAB find function in conjunction with bwlabel to return
vectors of indices for the pixels that make up a specific object. For example, to
return the coordinates for the pixels in object 2

[r.c] = Ffind(bwlabel (BW)==2)

You can display the output matrix as a pseudocolor indexed image. Each object
appears in a different color, so the objects are easier to distinguish than in the
original image. To do this, you must first add 1 to each element in the output
matrix, so that the data is in the proper range. Also, it is good idea to use a
colormap in which the first few colors are very distinct.

This example illustrates using 4-connected objects. Notice objects 2 and 3; with
8-connected labeling, bwlabel would consider these a single object rather than
two separate objects.

BW = [1 1 1 0 0 0 0 0
1 1 1 0 1 1 0 0
1 1 1 0 1 1 0 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0

bwlabel

1 1 1 0 0 0 1 0
1 1 1 0 0 1 1 0
1 1 1 0 0 0 0 0]

L = bwlabel (BW,4)

L =
1 1 1 0 0 0 0 0
1 1 1 0 2 2 0 0
1 1 1 0 2 2 0 0
1 1 1 0 0 0 3 0
1 1 1 0 0 0 3 0
1 1 1 0 0 0 3 0
1 1 1 0 0 3 3 0
1 1 1 0 0 0 0 0

[r,c] = Ffind(L==2);
rc = [r c]

rc =

2 5
3 5
2 6
3 6
See Also bweuler, bwselect
Reference [1] Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision,

Volume I. Addison-Wesley, 1992. pp. 28-48.

12-31

bwmorph

Purpose

Syntax

Description

12-32

Perform morphological operations on binary images

BW2 = bwmorph(BW1,operation)
BW2 = bwmorph(BW1,operation,n)

BW2 = bwmorph(BW1,operation) applies a specific morphological operation to
the binary image BW1.

BW2 = bwmorph(BW1,operation,n) applies the operation n times. n can be Inf,
in which case the operation is repeated until the image no longer changes.

operation is a string that can have one of the values listed below.

"bothat* "erode* "shrink®
"bridge” “fill- "skel*
“"clean” "hbreak® "spur”
"close” "majority” "thicken*
"diag" "open* "thin*
“dilate” "remove” "tophat”

"bothat” (“bottom hat”) performs binary closure (dilation followed by erosion)
and subtracts the original image.

"bridge” bridges previously unconnected pixels. For example,

1 0 O 1 0 O
1 0 1 becomes 1 1 1
0O 0 1 0O 0 1

"clean” removes isolated pixels (individual 1's that are surrounded by 0’s),
such as the center pixel in this pattern.

0O 0 O
0 1 0
0O 0 O

"close" performs binary closure (dilation followed by erosion).

bwmorph

"diag" uses diagonal fill to eliminate 8-connectivity of the background. For
example,

0O 1 O
0 O becomes
0 O

oOr O
o R R
o O O

1

0
“dilate" performs dilation using the structuring element ones(3).
"erode” performs erosion using the structuring element ones(3).

“fill" fills isolated interior pixels (individual O’'s that are surrounded by 1's),
such as the center pixel in this pattern.

1 1 1
1 0 1
1 1 1

"hbreak” removes H-connected pixels. For example,
1 1 1 1 1 1

0 1 0 becomes 0 0 O

1 1 1 1 1 1

"majority" sets apixel to 1 if five or more pixels in its 3-by-3 neighborhood are

1's; otherwise, it sets the pixel to O.

"open” implements binary opening (erosion followed by dilation).

"remove” removes interior pixels. This option sets a pixel to 0 if all of its
4-connected neighbors are 1, thus leaving only the boundary pixels on.

"shrink", with n = Inf, shrinks objects to points. It removes pixels so that
objects without holes shrink to a point, and objects with holes shrink to a
connected ring halfway between each hole and the outer boundary. This option
preserves the Euler number.

"skel ", with n = Inf, removes pixels on the boundaries of objects but does not
allow objects to break apart. The pixels remaining make up the image skeleton.
This option preserves the Euler number.

"spur” removes spur pixels. For example,

0O 0 0 O 0O 0 0 O
0O 0 0 O 0O 0 0 O

12-33

bwmorph

Class Support

Example

12-34

becomes

N eNe)
)

1 0 0O O
0 O 0 1
0 O 1 1

o O o
O oo

“thicken™, with n = Inf, thickens objects by adding pixels to the exterior of
objects until doing so would result in previously unconnected objects being
8-connected. This option preserves the Euler number.

“thin=, with n = Inf, thins objects to lines. It removes pixels so that an object
without holes shrinks to a minimally connected stroke, and an object with holes
shrinks to a connected ring halfway between each hole and the outer boundary.
This option preserves the Euler number.

"tophat” (“top hat”) returns the image minus the binary opening of the image.

The input image BW1 can be of class double or uint8. The output image BW2 is
of class uints8.

BW1 = imread("circles._tif");
imshow(BW1);

BW2 bwmorph(BW1, "remove®);
BW3 bwmorph(BW1, "skel*, Inf);
imshow(BW2)

figure, imshow(BW3)

bwmorph

See Also bweuler, bwperim, dilate, erode

References [1] Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision,
Volume I. Addison-Wesley, 1992.

[2] Pratt, William K. Digital Image Processing. John Wiley & Sons, Inc., 1991.

12-35

bwperim

Purpose
Syntax

Description

Class Support

Example

See Also

12-36

Determine the perimeter of the objects in a binary image
BW2 = bwperim(BW1,n)

BW2 = bwperim(BW1,n) returns a binary image containing only the perimeter
pixels of objects in the input image BW1. A pixel is part of the perimeter if its
value is 1 and there is at least one zero-valued pixel in its neighborhood. n can
have a value of either 4 or 8, where 4 specifies 4-connected neighborhoods and
8 specifies 8-connected neighborhoods; if the argument is omitted, it defaults
to 4.

The input image BW1 can be of class double or uint8. The output image BW2 is
of class uints.

BW1 = imread("circbw.tif");
BW2 = bwperim(BW1,8);
imshow(BW1)

figure, imshow(BW2)

bwarea, bweuler, bwfill

bwselect

Purpose

Syntax

Description

Example

Select objects in a binary image

BW2 = bwselect(BW1,c,r,n)
BW2 = bwselect(BW1,n)
[BW2,idx] = bwselect(...)

BW2 = bwselect(x,y,BW1,xi,yi,n)
[x,y,BW2,idx,xi,yi] = bwselect(...)

BW2 = bwselect(BW1,c,r,n) returns a binary image containing the objects
that overlap the pixel (r,c). r and c can be scalars or equal-length vectors. If r
and c are vectors, BW2 contains the sets of objects overlapping with any of the
pixels (r(k),c(k)). n can have a value of either 4 or 8 (the default), where 4
specifies 4-connected objects and 8 specifies 8-connected objects. Objects are
connected sets of on pixels (i.e., pixels having a value of 1).

BW2 = bwselect(BW1,n) displays the image BW1 on the screen and lets you
select the (r,c) coordinates using the mouse. If you omit BW1, bwselect
operates on the image in the current axes. Use normal button clicks to add
points. Pressing Backspace or Delete removes the previously selected point. A
shift-click, right-click, or double-click selects the final point; pressing Return
finishes the selection without adding a point.

[BW2, idx] = bwselect(...) returns the linear indices of the pixels belonging
to the selected objects.

BW2 = bwselect(x,y,BW1,xi,yi,n) uses the vectors x and y to establish a
nondefault spatial coordinate system for BW1. xi and yi are scalars or
equal-length vectors that specify locations in this coordinate system.

[x,y,BW2,idx,xi,yi] = bwselect(...) returns the XData and YData in x and
y; the output image in BW2; linear indices of all the pixels belonging to the
selected objects in idx; and the specified spatial coordinates in xi and yi.

If bwselect is called with no output arguments, the resulting image is
displayed in a new figure.

BW1 = imread("text.tif");
c = [16 90 144];
r = [85 197 247];

12-37

bwselect

BW2 = bwselect(BW1l,c,r,4);
imshow(BW1)
figure, imshow(BW2)

Cross-Correlation Used
To Locate A Known
Target in an Image

[=11]
g
L
g L4 o
53 &
SR~
- &)
=
i) =
=SS0

Class Support The input image BW1 can be of class double or uint8. The output image BW2 is
of class uints.

See Also bwFill, bwlabel, impixel, roipoly, roifill

12-38

cmpermute

Purpose

Syntax

Description

Class Support

Example

See Also

Rearrange the colors in a colormap

[Y,newmap] = cmpermute(X,map)
[Y,newmap] = cmpermute(X,map, index)

[Y,newmap] = cmpermute(X,map) randomly reorders the colors in map to
produce a new colormap newmap. cmpermute also modifies the values in X to
maintain correspondence between the indices and the colormap, and returns
the resultin Y. The image Y and associated colormap newmap produce the same
image as X and map.

LY ,newmap] = cmpermute(X,map, index) uses an ordering matrix (such as the
second output of sort) to define the order of colors in the new colormap.

The input image X can be of class uint8 or double. Y is returned as an array of
the same class as X.

To order a colormap by luminance, use

ntsc = rgb2ntsc(map);
[dum, index] = sort(ntsc(:,1));
[Y,newmap] = cmpermute(X,map, index);

randperm, sort in the MATLAB Function Reference

12-39

cmunique

Purpose

Syntax

Description

Class Support

See Also

12-40

Find unique colormap colors and the corresponding image

[Y,newmap] = cmunique(X,map)
[Y,newmap] = cmunique(RGB)
[Y,newmap] = cmunique(l)

[Y,newmap] = cmunique(X,map) returns the indexed image Y and associated
colormap newmap that produce the same image as (X,map) but with the
smallest possible colormap. cmunique removes duplicate rows from the
colormap and adjusts the indices in the image matrix accordingly.

[Y,newmap] = cmunique(RGB) converts the truecolor image RGB to the indexed
image Y and its associated colormap newmap. newmap is the smallest possible
colormap for the image, containing one entry for each unique color in RGB. (Note
that newmap may be very large, because the number of entries can be as many
as the number of pixels in RGB.)

LY,newmap] = cmunique(l) converts the intensity image 1 to an indexed image
Y and its associated colormap newmap. newmap is the smallest possible colormap
for the image, containing one entry for each unique intensity level in 1.

The input image can be of class uint8, uint16, or double. The class of the
output image Y is uint8 if the length of newmap is less than or equal to 256. If

the length of newmap is greater than 256, Y is of class double.

gray2ind, rgb2ind

col2im

Purpose

Syntax

Description

Class Support

See Also

Rearrange matrix columns into blocks

A = col2im(B,[m n],[mm nn],block_type)
A = col2im(B,[m n],[mm nn])

col2im rearranges matrix columns into blocks. block_type is a string with one
of these values:

< "distinct” for m-by-n distinct blocks
<« "sliding" for m-by-n sliding blocks (default)

A = col2im(B,[m n],[mm nn],"distinct™) rearranges each column of B
into a distinct m-by-n block to create the matrix A of size mm-by-nn. If

B = [A11(:) A12(:) A21(:) A22(:)], where each column has length m*n,
then A = [A11 A12;A21 A22] where each Aij is m-by-n.

A = col2im(B,[m n],[mm nn],"sliding™) rearranges the row vector B

into a matrix of size (mm-m+1)-by-(nn—n+1). B must be a vector of size
1-by-(mm-m+1)*(nn—-n+1). B is usually the result of processing the output of
im2col (..., "sliding") using a column compression function (such as sum).

A = col2im(B,[m n],[mm nn]) uses the default block_type of "sliding".
B can be of class double or of any integer class. A is of the same class as B.

blkproc, colfilt, im2col, nlfilter

12-41

colfilt

Purpose

Syntax

Description

12-42

Perform neighborhood operations using columnwise functions

= colfilt(A,[m n],block_type,fun)

= colfilt(A,[m n],block_type,fun,P1,P2,...)

= colfilt(A,[m n],[mblock nblock],block_type,fun,...)
= colfilt(A, "indexed",...)

W 0 W @

col filt processes distinct or sliding blocks as columns. colfilt can perform
similar operations to blkproc and nlfilter, but often executes much faster.

B = colfilt(A,[m n],block_type,fun) processes the image A by rearranging
each m-by-n block of A into a column of a temporary matrix, and then applying
the function fun to this matrix. fun can be a function_handle, created using
@, or an inline object. col Filt zero pads A, if necessary.

Before calling fun, col filt calls im2col to create the temporary matrix. After
calling fun, col filt rearranges the columns of the matrix back into m-by-n
blocks using col2im.

block_type is a string with one of these values:

= "distinct" for m-by-n distinct blocks
<« "sliding" for m-by-n sliding neighborhoods

B = colfilt(A,[m n], "distinct",fun) rearranges each m-by-n distinct block
of A into a column in a temporary matrix, and then applies the function fun to
this matrix. fun must return a matrix of the same size as the temporary
matrix. col filt then rearranges the columns of the matrix returned by fun
into m-by-n distinct blocks.

B = colfilt(A,[m n],"sliding",fun) rearranges each m-by-n sliding
neighborhood of A into a column in a temporary matrix, and then applies the
function fun to this matrix. fun must return a row vector containing a single
value for each column in the temporary matrix. (Column compression functions
such as sum return the appropriate type of output.) colfilt then rearranges
the vector returned by fun into a matrix of the same size as A.

B = colfilt(A,[m n],block_type,fun,P1,P2,...) passes the additional
parameters P1,P2, ..., to fun. colfilt calls fun using,

y = fun(x,P1,P2,...)

colfilt

Class Support

Example

See Also

where x is the temporary matrix before processing, and y is the temporary
matrix after processing.

B = colfilt(A,[m n],[mblock nblock],block_type,fun, ...) processes the
matrix A as above, but in blocks of size mblock-by-nblock to save memory. Note
that using the [mblock nblock] argument does not change the result of the
operation.

B = colfilt(A, indexed",...) processes A as an indexed image, padding
with zeros if the class of A isuint8 or uinti6, or ones if the class of A is double.

The input image A can be of any class supported by fun. The class of B depends
on the class of the output from fun.

This example sets each output pixel to the mean value of the input pixel's
5-by-5 neighborhood.

I = imread(Ctire.tif”)

imshow(l)

12 = uint8(colfilt(l,[5 5], sliding”,@mean));
figure, imshow(12)

blkproc, col2im, im2col, nlfilter

12-43

colorbar

Purpose

Syntax

Description

Remarks

Example

12-44

Display a colorbar

colorbar("vert"®)
colorbar("horiz®)
colorbar(h)
colorbar

h = colorbar(...)

colorbar("vert") appends a vertical colorbar to the current axes, resizing the
axes to make room for the colorbar. colorbar works with both two-dimensional
and three-dimensional plots.

colorbar(~horiz") appends a horizontal colorbar to the current axes.

colorbar(h) places the colorbar in the axes h. The colorbar is horizontal if the
width of the axes is greater than its height.

colorbar with no arguments adds a new vertical colorbar or updates an
existing one.

h = colorbar(...) returns a handle to the colorbar axes.
colorbar is a function in MATLAB.

Display a colorbar to view values for a filtered image.
I = imread("bloodl.tif");
h = fspecial("log”);
12 = filter2(h,1);

colorbar

See Also

imshow(12,[], "notruesize”), colormap(jet(64)), colorbar

imagesc

300

200

100

-100

-200

-300

-400

-500

-600

12-45

conv2

Purpose

Syntax

Description

Class Support

Remarks

Example

12-46

Perform two-dimensional convolution

C = conv2(A,B)

C = conv2(hcol ,hrow,A)
C = conv2(...,shape)
C = conv2(A,B) performs the two-dimensional convolution of matrices A and

B, returning the result in the output matrix C. The size in each dimension of C
is equal to the sum of the corresponding dimensions of the input matrices
minus one. That is, if the size of A is [ma,mb] and the size of B is [mb,nb], then
the size of C is [ma+mb—1,na+nb-1].

C = conv2(hcol ,hrow,A) convolves A separably with hcol in the column
direction and hrow in the row direction. hcol and hrow are both vectors.

C = conv2(...,shape) returns a subsection of the two-dimensional
convolution, as specified by the shape parameter. shape is a string with one of
these values:

< “full* (the default) returns the full two-dimensional convolution.

= "same" returns the central part of the convolution of the same size as A.

< "valid" returns only those parts of the convolution that are computed
without the zero-padded edges. Using this option, size(C) = [ma-mb+1,
na—nb+1] when size(A) > size(B).

For image filtering, A should be the image matrix and B should be the filter
(convolution kernel) if the shape parameter is 'same” or 'valid". If the shape
parameter is ‘ful I ", the order does not matter, because full convolution is
commutative.

All vector and matrix inputs to conv2 can be of class double or of any integer
class. The output matrix C is of class double.

conv2 is a function in MATLAB.

A = magic(b)

A =

conv2

See Also

17 24 1
23 5 7
4 6 13

10 12 19
11 18 25

B=1[121;020;3

B =
1 2 1
0 2 0
3 1 3

C = conv2(A,B)

17 58 66
23 85 88
55 149 117
79 78 160
23 82 153
30 68 135
33 65 126

xcorr, xcorr2 in the Signal Processing Toolbox User’'s Guide

conv, deconv in the MATLAB Function Reference

14
20
21

1 3]

34
35
163
161
199
168
85

15
16
22

32
67
159
187
205
91
104

38
76
135
129
108
84
15

15
16
67
51
75

9
27

12-47

convmtx?2

Purpose Compute two-dimensional convolution matrix

Syntax T = convmtx2(H,m,n)
T = convmtx2(H, [m n])

Description T = convmtx2(H,m,n) or T = convmtx2(H, [m n]) returns the
convolution matrix T for the matrix H. If X is an m-by-n matrix, then
reshape(T*X(:),size(H)+[m n]-1) is the same as conv2(X,H).

Class Support The inputs are all of class double. The output matrix T is of class sparse. The
number of nonzero elements in T is no larger than prod(size(H))*m*n.

See Also conv2

convmtx in the Signal Processing Toolbox User's Guide

12-48

convn

Purpose

Syntax

Description

Class Support

Remarks

See Also

Perform N-dimensional convolution

C = convn(A,B)
C convn(A,B,shape)

C = convn(A,B) computes the N-dimensional convolution of matrices A and B.

C = convn(A,B,shape) returns a subsection of the N-dimensional convolution,
as specified by the shape parameter. shape is a string with one of these values:

< "full* (the default) returns the full convolution.
= "same" returns the central part of the convolution of the same size as A.

« "valid" returns only those parts of the convolution that are computed
without zero-padded edges.

The input matrices A and B can be of class double or of any integer class. The
output matrix C is of class double.

convn is a function in MATLAB.

conv2

12-49

corr2

Purpose
Syntax

Description

Class Support

Algorithm

See Also

12-50

Compute the two-dimensional correlation coefficient between two matrices
r = corr2(A,B)

r = corr2(A,B) computes the correlation coefficient between A and B, where A
and B are matrices or vectors of the same size.

A and B can be of class double or of any integer class. r is a scalar of class
double.

corr2 computes the correlation coefficient using

Zz(Amn _,&)(an_ﬁ)

— m n

T

m n m

where A =mean2(A), and B = mean2(B).

std2
corrcoef in the MATLAB Function Reference

dct2

Purpose

Syntax

Description

Class Support

Algorithm

Compute two-dimensional discrete cosine transform

B = dct2(A)

B = dct2(A,m,n)

B = dct2(A,[m n])

B = dct2(A) returns the two-dimensional discrete cosine transform of A. The

matrix B is the same size as A and contains the discrete cosine transform
coefficients B(k;,ky).

B = dct2(A,m,n) or B = dct2(A,[m n]) pads the matrix A with zeros to size
m-by-n before transforming. If m or n is smaller than the corresponding
dimension of A, dct2 truncates A.

A can be of class double or of any integer class. The returned matrix B is of class
double.

The discrete cosine transform (DCT) is closely related to the discrete Fourier
transform. It is a separable, linear transformation; that is, the
two-dimensional transform is equivalent to a one-dimensional DCT performed
along a single dimension followed by a one-dimensional DCT in the other
dimension. The definition of the two-dimensional DCT for an input image A and
output image B is

M-1 N-1
- n2m+1)p mn(2n+1)q OspsM-1
Bpg = 0plq D, X AmnCOS =5 C0s =5 ' 0<qsN-1
m=0n=0
a_{l/N,p:O 0(_{1/Jﬁ,q:o
P lV2/M, 1spsM-1 4 l/2/N, 12qsN-1

where M and N are the row and column size of A, respectively. If you apply the
DCT to real data, the result is also real. The DCT tends to concentrate
information, making it useful for image compression applications.

This transform can be inverted using idct2.

12-51

dct2

Example The commands below compute the discrete cosine transform for the autumn
image. Notice that most of the energy is in the upper-left corner.

RGB = imread("autumn._tif");

I = rgb2gray(RGB);

J = dct2(l);

imshow(log(abs(J)),[1)., colormap(jet(64)), colorbar

10

-5

Now set values less than magnitude 10 in the DCT matrix to zero, and then
reconstruct the image using the inverse DCT function idct2.

J(abs(d) < 10) = 0;
K = idct2(J)/255;
imshow(K)

12-52

dct2

See Also fft2, idct2, ifft2

References [1] Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice Hall, 1989. pp. 150-153.

[2] Pennebaker, William B., and Joan L. Mitchell. JPEG: Still Image Data
Compression Standard. Van Nostrand Reinhold, 1993.

12-53

dctmtx

Purpose
Syntax

Description

Class Support

Remarks

See Also

12-54

Compute discrete cosine transform matrix
D = dctmtx(n)

D = dctmtx(n) returns the n-by-n DCT (discrete cosine transform) matrix. D*A
is the DCT of the columns of A and D**A is the inverse DCT of the columns of A
(when A is n-by-n).

n is a scalar of class double. D is returned as a matrix of class double.

If A is square, the two-dimensional DCT of A can be computed as D*A*D". This
computation is sometimes faster than using dct2, especially if you are
computing a large number of small DCTSs, because D needs to be determined
only once.

For example, in JPEG compression, the DCT of each 8-by-8 block is computed.
To perform this computation, use dctmtx to determine D, and then calculate
each DCT using D*A*D" (where A is each 8-by-8 block). This is faster than
calling dct2 for each individual block.

dct2

dilate

Purpose

Syntax

Description

Class Support

Remarks

Example

Perform dilation on a binary image

BW2 = dilate(BW1,SE)
BW2 = dilate(BW1,SE,alQ)
BW2 dilate(BW1,SE,...,n)

BW2 = dilate(BW1,SE) performs dilation on the binary image BW1, using the
binary structuring element SE. SE is a matrix containing only 1's and 0's.

BW2 = dilate(BW1,SE,alg) performs dilation using the specified algorithm.
alg is a string that can have one of these values:

= "spatial " (default) — processes the image in the spatial domain.
< "frequency” — processes the image in the frequency domain.

Both algorithms produce the same result, but they make different trade-offs
between speed and memory use. The frequency algorithm is faster for large
images and structuring elements than the spatial algorithm, but uses much
more memory.

BW2 = dilate(BW1,SE, - ..,n) performs the dilation operation n times.

The input image BW1 can be of class double or uint8. The output image BW2 is
of class uints8.

You should use the frequency algorithm only if you have a large amount of
memory on your system. If you use this algorithm with insufficient memory, it
may actually be slower than the spatial algorithm, due to virtual memory
paging. If the frequency algorithm slows down your system excessively, or if
you receive “out of memory” messages, use the spatial algorithm instead.

BW1 = imread("text.tif");
SE = ones(6,2);

BW2 = dilate(BW1,SE);
imshow(BW1)

12-55

dilate

figure, imshow(BW2)

Cron-Correlation Used
To Looats A Xaowa
Target i aa Image

Cross-Correlation Used
To Locate A Known
Target in an Image

%.!'J
= \
gﬁq

2.8 '
%38

:-q‘-'ﬂ?;' 'H
L o |
=SA =

See Also bwmorph, erode

References [1] Gonzalez, Rafael C., and Richard E. Woods. Digital Image Processing.
Addison-Wesley, 1992. p. 518.

[2] Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision,
Volume I. Addison-Wesley, 1992. p. 158.

12-56

dither

Purpose

Syntax

Description

Class Support

Algorithm

References

See Also

Convert an image, increasing apparent color resolution by dithering

X = dither(RGB,map)
BW = dither(l)

X = dither(RGB,map) creates an indexed image approximation of the RGB
image in the array RGB by dithering the colors in colormap map.

X = dither(RGB,map,Qm,Qe) creates an indexed image from RGB, specifying the
parameters Qm and Qe. Qm specifies the number of quantization bits to use along
each color axis for the inverse color map, and Qe specifies the number of
gquantization bits to use for the color space error calculations. If Qe < Qm,
dithering cannot be performed and an undithered indexed image is returned in
X. If you omit these parameters, dither uses the default values Qm =5, Qe = 8.

BW = dither(1l) converts the intensity image in the matrix 1 to the binary
(black and white) image BW by dithering.

The input image (RGB or 1) can be of class uint8, uintl6, or double. All other
input arguments must be of class double. The output image (X or BW) is of class
uint8 ifitisabinary image or if itis an indexed image with 256 or fewer colors;
otherwise its class is double.

dither increases the apparent color resolution of an image by applying
Floyd-Steinberg’s error diffusion dither algorithm.

[1] Floyd, R. W. and L. Steinberg. “An Adaptive Algorithm for Spatial Gray
Scale,” International Symposium Digest of Technical Papers. Society for
Information Displays, 1975. p. 36.

[2] Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood
Cliffs, NJ: Prentice Hall, 1990. pp. 469-476.

rgb2ind

12-57

double

Purpose Convert data to double precision
Syntax B = double(A)
Description B = double(A) creates a double-precision array B from the array A. IfAis a

double array, B is identical to A.

double is useful if you have a uint8 image array that you want to perform
arithmetic operations on, because MATLAB does not support these operations
on uint8 data.

Remarks double is a MATLAB built-in function.
Example A = imread("saturn.tif");

B = sqrt(double(A));
See Also im2double, im2uint8, im2uintl6, uint8

12-58

edge

Purpose

Syntax

Description

Find edges in an intensity image

BW = edge(l, "sobel ™)

BW = edge(l, "sobel " ,thresh)

BW = edge(l, "sobel " ,thresh,direction)
[BW,thresh] = edge(l,"sobel”,...)

BW = edge(l, "prewitt")
BW = edge(l, "prewitt”,thresh)
BW = edge(l, "prewitt”,thresh,direction)

[BW,thresh] = edge(l, "prewitt®,...)

BW = edge(l, "roberts")
BW = edge(l, "roberts”,thresh)
[BW,thresh] = edge(l, "roberts®,...)

BW = edge(l,"log")
BW = edge(l,"log”,thresh)
BW = edge(l,"log”,thresh,sigma)

[BW, threshold] = edge(l,"log",-..)

BW = edge(l, "zerocross”,thresh,h)
[BW,thresh] = edge(l, "zerocross”®,...)

BW = edge(l,"canny®)
BW = edge(l, "canny”,thresh)
BW = edge(l, "canny” ,thresh,sigma)

[BW, threshold] = edge(l,“canny®,...)

edge takes an intensity image 1 as its input, and returns a binary image BW of
the same size as I, with 1's where the function finds edges in 1 and 0's
elsewhere.

edge supports six different edge-finding methods:

= The Sobel method finds edges using the Sobel approximation to the
derivative. It returns edges at those points where the gradient of 1 is
maximum.

12-59

edge

12-60

= The Prewitt method finds edges using the Prewitt approximation to the
derivative. It returns edges at those points where the gradient of 1 is
maximum.

= The Roberts method finds edges using the Roberts approximation to the
derivative. It returns edges at those points where the gradient of 1 is
maximum.

« The Laplacian of Gaussian method finds edges by looking for zero crossings
after filtering 1 with a Laplacian of Gaussian filter.

= The zero-cross method finds edges by looking for zero crossings after filtering
I with a filter you specify.

= The Canny method finds edges by looking for local maxima of the gradient of
1. The gradient is calculated using the derivative of a Gaussian filter. The
method uses two thresholds, to detect strong and weak edges, and includes
the weak edges in the output only if they are connected to strong edges. This
method is therefore less likely than the others to be “fooled” by noise, and
more likely to detect true weak edges.

The parameters you can supply differ depending on the method you specify. If
you do not specify a method, edge uses the Sobel method.

Sobel Method

BW = edge(l, "sobel ") specifies the Sobel method.

BW = edge(1l, "sobel ", thresh) specifies the sensitivity threshold for the Sobel
method. edge ignores all edges that are not stronger than thresh. If you do not

specify thresh, or if thresh is empty ([1), edge chooses the value
automatically.

BW = edge(l, "sobel",thresh,direction) specifies direction of detection for
the Sobel method. direction is a string specifying whether to look for
"horizontal " or "vertical " edges, or "both" (the default).

[BW,thresh] = edge(l,"sobel™,...) returns the threshold value.
Prewitt Method
BW = edge(l, "prewitt") specifies the Prewitt method.

BW = edge(l, "prewitt",thresh) specifies the sensitivity threshold for the
Prewitt method. edge ignores all edges that are not stronger than thresh. If

edge

you do not specify thresh, or if thresh is empty ([1), edge chooses the value
automatically.

BW = edge(l, "prewitt",thresh,direction) specifies direction of detection
for the Prewitt method. direction is a string specifying whether to look for
"horizontal " or "vertical " edges, or "both" (the default).

[BW,thresh] = edge(l, prewitt”,...) returns the threshold value.

Roberts Method
BW = edge(l,method) specifies the Roberts method.

BW = edge(l,method, thresh) specifies the sensitivity threshold for the
Roberts method. edge ignores all edges that are not stronger than thresh. If
you do not specify thresh, or if thresh is empty ([1), edge chooses the value
automatically.

[BW, thresh] = edge(l,method, ...) returns the threshold value.

Laplacian of Gaussian Method
BW = edge(l, "log") specifies the Laplacian of Gaussian method.

BW = edge(l,"log",thresh) specifies the sensitivity threshold for the
Laplacian of Gaussian method. edge ignores all edges that are not stronger
than thresh. If you do not specify thresh, or if thresh is empty ([]), edge
chooses the value automatically.

BW = edge(l,"log",thresh,sigma) specifies the Laplacian of Gaussian
method, using sigma as the standard deviation of the LoG filter. The default
sigma is 2; the size of the filter is n-by-n, where n = ceil (sigma*3)*2+1.

[BW,thresh] = edge(l,"log", ...) returns the threshold value.

Zero-cross Method

BW = edge(l, "zerocross",thresh,h) specifies the zero-cross method, using
the filter h. thresh is the sensitivity threshold; if the argument is empty ([1),
edge chooses the sensitivity threshold automatically.

[BW,thresh] = edge(l,"zerocross",...) returns the threshold value.

12-61

edge

Class Support

Remarks

Example

12-62

Canny Method
BW = edge(l, "canny") specifies the Canny method.

BW = edge(l, "canny",thresh) specifies sensitivity thresholds for the Canny
method. thresh is a two-element vector in which the first element is the low
threshold, and the second element is the high threshold. If you specify a scalar
for thresh, this value is used for the high threshold and 0.4*thresh is used for
the low threshold. If you do not specify thresh, or if thresh is empty ([]), edge
chooses low and high values automatically.

BW = edge(l,"canny",thresh,sigma) specifies the Canny method, using
sigma as the standard deviation of the Gaussian filter. The default sigma is 1,
the size of the filter is chosen automatically, based on sigma.

[BW,thresh] = edge(l,"canny",...) returns the threshold values as a
two-element vector.

1 can be of class uint8, uinti6, or double. BW is of class uints.

For the "log™ and "zerocross”™ methods, if you specify a threshold of 0, the
output image has closed contours, because it includes all of the zero crossings
in the input image.

Find the edges of the rice.tif image using the Prewitt and Canny methods.

I = imread("rice.tif");
BW1 = edge(l, "prewitt");
BW2 = edge(l,"canny®);
imshow(BW1);

figure, imshow(BW2)

References

[3] Canny, John. “A Computational Approach to Edge Detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1986. VVol. PAMI-8,
No. 6, pp. 679-698.

[4] Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood
Cliffs, NJ: Prentice Hall, 1990. pp. 478-488.

[5] Parker, James R. Algorithms for Image Processing and Computer Vision.
New York: John Wiley & Sons, Inc., 1997. pp. 23-29.

12-63

erode

Purpose

Syntax

Description

Class Support

Remarks

Example

12-64

Perform erosion on a binary image

BW2 = erode(BW1,SE)
BW2 = erode(BW1,SE,alg)
BW2 erode(BW1,SE,...,n)

BW2 = erode(BW1,SE) performs erosion on the binary image BW1, using the
binary structuring element SE. SE is a matrix containing only 1's and 0's.

BW2 = erode(BW1,SE,alg) performs erosion using the specified algorithm. alg
is a string that can have one of these values:

= "spatial” (default) — processes the image in the spatial domain
= "frequency” — processes the image in the frequency domain

Both algorithms produce the same result, but they make different tradeoffs
between speed and memory use. The frequency algorithm is faster for large
images and structuring elements than the spatial algorithm, but uses much
more memory.

BW2 = erode(BW1,SE, .- .,n) performs the erosion operation n times.

The input image BW1 can be of class double or uint8. The output image BW2 is
of class uints8.

You should use the frequency algorithm only if you have a large amount of
memory on your system. If you use this algorithm with insufficient memory, it
may actually be slower than the spatial algorithm, due to virtual memory
paging. If the frequency algorithm slows down your system excessively, or if
you receive “out of memory” messages, use the spatial algorithm instead.

BW1 = imread("text.tif");
SE = ones(3,1);

BW2 = erode(BW1,SE);
imshow(BW1)

figure, imshow(BW2)

erode

See Also

References

Cross-Correlation Used Clross Correlaton D lsed
To Locate A Known

Target in an Image

Tov Laweate N Fonvawn

Tareet tnoan Lo

5

S g
— o
SR
g 0
a @
¢ g
—
— 0O

ep
g
=
=
(=4
d—
el
3
F

bwmorph, dilate

[1] Gonzalez, Rafael C., and Richard E. Woods. Digital Image Processing.
Addison-Wesley, 1992. p. 518.

[2] Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision,
Volume I. Addison-Wesley, 1992. p. 158.

12-65

fft2

Purpose Compute two-dimensional fast Fourier transform
Syntax B = FFt2(A)
B = fft2(A,m,n)
Description B = Fft2(A) performs a two-dimensional fast Fourier transform (FFT),

returning the result in B. B is the same size as A, if A is a vector, B has the same
orientation as A.

B = fft2(A,m,n) truncates or zero pads A, if necessary, to create an m-by-n
matrix before performing the FFT. The result B is also m-by-n.

Class Support The input matrix A can be of class double or of any integer class. The output
matrix B is of class double.

Remarks fft2 is a function in MATLAB.
Example load imdemos saturn2
imshow(saturn2)

B = fftshift(fft2(saturn2));
imshow(log(abs(B)),[]1, "notruesize"), colormap(jet(64)), colorbar

12-66

fft2

Algorithm

See Also

fFt2(A) is simply
FFe(FFE(A) . 7). "

This computes the one-dimensional fft of each column A, then of each row of
the result. The time required to compute fft2(A) depends on the number of
prime factors of m and n. £Ft2 is fastest when m and n are powers of 2.

dct2, fftshift, idct2, iffe2
fft, ifft in the MATLAB Function Reference

12-67

fftn

Purpose

Syntax

Description

Class Support

Remarks

Algorithm

See Also

12-68

Compute N-dimensional fast Fourier transform

B = fftn(A)
B = fftn(A,siz)

B = Fftn(A) performs the N-dimensional fast Fourier transform. The result B
is the same size as A.

B = fftn(A,siz) pads A with zeros (or truncates A) to create an N-dimensional
array of size siz before doing the transform. The size of the result is siz.

The input matrix A can be of class double or of any integer class. The output
matrix B is of class double.

fftn is a function in MATLAB.

fftn(A) is equivalent to:

B = A;

for p = 1:length(size(A))
B = fft(B.[1.p);

end

This code computes the one-dimensional fast Fourier transform along each
dimension of A. The time required to compute fftn(A) depends strongly on the
number of prime factors of the dimensions of A. It is fastest when all of the
dimensions are powers of 2.

L2, ifftn
fft in the MATLAB Function Reference

fftshift

Purpose
Syntax

Description

Class Support

Remarks

Example

See Also

Shift zero-frequency component of fast Fourier transform to center of spectrum
B = fftshift(A)
B = fftshift(A) rearranges the outputs of fft, fft2, and fftn by moving the

zero frequency component to the center of the array.

For vectors, fftshift(A) swaps the left and right halves of A. For matrices,
fftshift(A) swaps quadrants one and three of A with quadrants two and four.
For higher-dimensional arrays, fftshift(A) swaps “half-spaces” of A along
each dimension.

The input matrix A can be of class double or of any integer class. The output
matrix B is of the same class as A.

fftshift is a function in MATLAB.

B
C

fftn(A);
fftshift(B);

fft2, fftn, ifftshift
fft in the MATLAB Function Reference

12-69

filter2

Purpose

Syntax

Description

Class Support

Remarks

Example

12-70

Perform two-dimensional linear filtering

B = filter2(h,A)
B = filter2(h,A,shape)

B = Ffilter2(h,A) filters the data in A with the two-dimensional FIR filter in
the matrix h. It computes the result, B, using two-dimensional correlation, and
returns the central part of the correlation that is the same size as A.

B = filter2(h,A,shape) returns the part of B specified by the shape
parameter. shape is a string with one of these values:

= “full " returns the full two-dimensional correlation. In this case, B is larger
than A.

=« "same” (the default) returns the central part of the correlation. In this case,
B is the same size as A.

< "valid" returns only those parts of the correlation that are computed
without zero-padded edges. In this case, B is smaller than A.

The matrix inputs to filter2 can be of class double or of any integer class. The
output matrix B is of class double.

Two-dimensional correlation is equivalent to two-dimensional convolution
with the filter matrix rotated 180 degrees. See the Algorithm section for more
information about how filter2 performs linear filtering.

filter2 is a function in MATLAB.

A = magic(6)

A =
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20

30 5 34 12 14 16
4 36 29 13 18 11

filter2

Algorithm

See Also

h = fspecial ("sobel*)

[

B = filter2(h,A, "valid")

-8
-23
-23

-8

Given an image A and a two-dimensional FIR filter h, filter2 rotates your
filter matrix (the computational molecule) 180 degrees to create a convolution
kernel. It then calls conv2, the two-dimensional convolution function, to
implement the filtering operation.

filter2 uses conv2 to compute the full two-dimensional convolution of the FIR
filter with the input matrix. By default, filter2 then extracts the central part
of the convolution that is the same size as the input matrix, and returns this as
the result. If the shape parameter specifies an alternate part of the convolution
for the result, filter2 returns the appropriate part.

conv2, roifilt2

-8
40
40
-8

12-71

fregspace

Purpose

Syntax

Description

Remarks

See Also

12-72

Determine frequency spacing for two-dimensional frequency response

[f1,f2] = fregspace(n)

[f1,f2] freqspace([m n])

[x1,y1] freqgspace(. .., "meshgrid®)
T = fregspace(N)

f = freqspace(N, "whole™)

freqgspace returns the implied frequency range for equally spaced frequency
responses. fregspace is useful when creating desired frequency responses for
fsamp2, fwindl, and fwind2, as well as for various one-dimensional
applications.

[f1,f2] = fregspace(n) returns the two-dimensional frequency vectors f1
and f2 for an n-by-n matrix.

For n odd, both f1 and f2 are [-n+1:2:n-1]/n.
For n even, both 1 and f2 are [-n:2:n-2]/n.

[f1,f2] = fregspace([m n]) returns the two-dimensional frequency vectors
f1 and 2 for an m-by-n matrix.

[x1,y1] = fregspace(..., "meshgrid") is equivalent to

[f1,f2] = fregspace(--.);
[x1,y1l] = meshgrid(fl,f2);

f = freqgspace(N) returns the one-dimensional frequency vector £ assuming N
evenly spaced points around the unit circle. For N even or odd, fis (0:2/N:1).
For N even, fregspace therefore returns (N+2)/2 points. For N odd, it returns
(N+1)/2 points.

f = freqgspace(N, "whole™) returns N evenly spaced points around the whole
unit circle. In this case, fis 0:2/N:2*(N-1)/N.

fregspace is a function in MATLAB.

fsamp2, fwindl, fwind2
meshgrid in the MATLAB Function Reference

freqz2

Purpose

Syntax

Description

Class Support

Compute two-dimensional frequency response

[H,f1,f2] = freqz2(h,nl,n2)

[H,f1,f2] = freqz2(h,[n2 n1])
[H,f1,¥2] = freqz2(h,f1,¥2)
[H,f1,¥2] = freqz2(h)

[---1 = freqz2(h,...,[dx dy])
[---1 = freqz2(h,...,dx)
freqz2(...)

[H,f1,f2] = freqz2(h,nl1,n2) returns H, the n2-by-n1 frequency response of
h, and the frequency vectors f1 (of length n1) and f2 (of length n2). his a
two-dimensional FIR filter, in the form of a computational molecule. f1 and f2
are returned as normalized frequencies in the range -1.0 to 1.0, where 1.0
corresponds to half the sampling frequency, or Tt radians.

[H,f1,f2] = freqz2(h,[n2 nl]) returns the same result returned by
[H,f1,f2] = freqz2(h,nl,n2).
[H,f1,¥2] = freqz2(h) uses [n2 n1l] = [64 64].

[H,f1,f2] = freqz2(h,f1l,¥2) returns the frequency response for the FIR
filter h at frequency values in f1 and 2. These frequency values must be in the
range -1.0 to 1.0, where 1.0 corresponds to half the sampling frequency, or 1t
radians.

[---1 = freqz2(h, - -.,[dx dy]) uses [dx dy] to override the intersample
spacing in h. dx determines the spacing for the x-dimension and dy determines
the spacing for the y-dimension. The default spacing is 0.5, which corresponds
to a sampling frequency of 2.0.

[-..] = freqz2(h, ...,dx) uses dx to determine the intersample spacing in
both dimensions.

With no output arguments, freqz2(...) produces a mesh plot of the
two-dimensional magnitude frequency response.

The input matrix h can be of class double or of any integer class. All other
inputs to freqz2 must be of class double. All outputs are of class double.

12-73

freqz2

Example Use the window method to create a 16-by-16 filter, then view its frequency
response using freqz2.

Hd = zeros(16,16);

Hd(5:12,5:12) = 1;

Hd(7:10,7:10) = O;

h = fwindl(Hd,bartlett(16));
colormap(jet(64))

freqz2(h,[32 32]); axis ([-1 1 -1 1 0 1])

[

0.8
()
g 06
s
O 0.4
15
=
0.2
0)
/ A
0.5 T 1
-05 ..::’.,..: ".’ 5 0
-1 -1
Frequency Frequency
See Also fregz in the Signal Processing Toolbox User’'s Guide

12-74

fsamp?2

Purpose

Syntax

Description

Class Support

Example

Design two-dimensional FIR filter using frequency sampling

h = fsamp2(Hd)
h fsamp2(fl,f2,Hd,[m n])

fsamp2 designs two-dimensional FIR filters based on a desired
two-dimensional frequency response sampled at points on the Cartesian plane.

h = fsamp2(Hd) designs a two-dimensional FIR filter with frequency response
Hd, and returns the filter coefficients in matrix h. (fsamp2 returns h as a
computational molecule, which is the appropriate form to use with filter2.)
The filter h has a frequency response that passes through points in Hd. If Hd is
m-by-n, then h is also m-by-n.

Hd is a matrix containing the desired frequency response sampled at equally
spaced points between -1.0 and 1.0 along the x and y frequency axes, where 1.0
corresponds to half the sampling frequency, or Ttradians.
H,(f,,f,) = Hy(w,, w
a(fy. fp) = Hy(oo 2)\(»1:“&’&)2:”f2
For accurate results, use frequency points returned by freqgspace to create Hd.
(See the entry for freqgspace for more information.)

h = fsamp2(f1,f2,Hd,[m n]) produces an m-by-n FIR filter by matching the

filter response at the points in the vectors f1 and 2. The frequency vectors f1
and 2 are in normalized frequency, where 1.0 corresponds to half the sampling
frequency, or rtradians. The resulting filter fits the desired response as closely
as possible in the least squares sense. For best results, there must be at least
m*n desired frequency points. fsamp2 issues a warning if you specify fewer than
m*n points.

The input matrix Hd can be of class double or of any integer class. All other
inputs to fsamp2 must be of class double. All outputs are of class double.

Use fsamp2 to design an approximately symmetric two-dimensional bandpass
filter with passband between 0.1 and 0.5 (normalized frequency, where 1.0
corresponds to half the sampling frequency, or Ttradians):

1 Create a matrix Hd that contains the desired bandpass response. Use
freqgspace to create the frequency range vectors 1 and f2.

12-75

fsamp?2

D)

[f1,f2] = fregspace(21, "meshgri

Hd = ones(21)

r = sqre(fi1.~2 + f2.72)

Hd((r<0.1)|(r>0.5)) = 0
colormap(jet(64))

mesh(f1,f2,Hd)

2 Design the filter that passes through this response.

h = fsamp2(Hd)

freqz2(h)

12-76

fsamp?2

Algorithm

See Also

Reference

Magnitude

7
\\'fig‘?fi‘(h
| \‘;l‘\"
) \‘ l"’l»:
MRS
A

————
=
——
———
=————
e

j ’ l

‘J ‘,‘\é‘\‘«*« AT
IO
S

-0.5

Frequency h Frequency

0.5

fsamp2 computes the filter h by taking the inverse discrete Fourier transform
of the desired frequency response. If the desired frequency response is real and
symmetric (zero phase), the resulting filter is also zero phase.

conv2, filter2, freqspace, ftrans2, fwindl, fwind2

[1] Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood
Cliffs, NJ: Prentice Hall, 1990. pp. 213-217.

12-77

fspecial

Purpose

Syntax

Description

12-78

Create predefined filters

h = fspecial (type)
h = fspecial (type,parameters)

h = fspecial (type) creates a two-dimensional filter h of the specified type.
(Fspecial returns h as a computational molecule, which is the appropriate
form to use with filter2.) type is a string having one of these values:

=« "gaussian” for a Gaussian lowpass filter
= "sobel " for a Sobel horizontal edge-emphasizing filter
= "prewitt" for a Prewitt horizontal edge-emphasizing filter

=« "laplacian*” for a filter approximating the two-dimensional Laplacian
operator

= "log" for a Laplacian of Gaussian filter
< "average" for an averaging filter
= “unsharp" for an unsharp contrast enhancement filter

h = fspecial (type,parameters) accepts a filter type plus additional
modifying parameters particular to the type of filter chosen. If you omit these
arguments, fspecial uses default values for the parameters.

The following list shows the syntax for each filter type. Where applicable,
additional parameters are also shown.

< h = fspecial ("gaussian”,n,sigma) returns a rotationally symmetric
Gaussian lowpass filter with standard deviation sigma (in pixels). nis a
1-by-2 vector specifying the number of rows and columns in h. (n can also be
a scalar, in which case h is n-by-n.) If you do not specify the parameters,
fspecial uses the default values of [3 3] for n and 0.5 for sigma.

< h = fspecial ("sobel") returns this 3-by-3 horizontal edge-finding and
y-derivative approximation filter:

[121
000
-1-2-1]
To find vertical edges, or for x-derivatives, use h*.

fspecial

Example

< h = fspecial ("prewitt") returns this 3-by-3 horizontal edge-finding and
y-derivative approximation filter:
[111
000
-1-1-1]
To find vertical edges, or for x-derivatives, use h*.
< h = fspecial ("laplacian”,alpha) returns a 3-by-3 filter approximating
the two-dimensional Laplacian operator. The parameter alpha controls the

shape of the Laplacian and must be in the range 0 to 1.0. fspecial uses the
default value of 0.2 if you do not specify alpha.

< h = fspecial("log",n,sigma) returns a rotationally symmetric Laplacian
of Gaussian filter with standard deviation sigma (in pixels). n is a 1-by-2
vector specifying the number of rows and columns in h. (n can also be a
scalar, in which case h is n-by-n.) If you do not specify the parameters,
fspecial uses the default values of [5 5] for n and 0.5 for sigma.

= h = fspecial("average-”,n) returns an averaging filter. nis a 1-by-2 vector
specifying the number of rows and columns in h. (n can also be a scalar, in
which case h is n-by-n.) If you do not specify n, fspecial uses the default
value of [3 3].

= h = fspecial ("unsharp”,alpha) returns a 3-by-3 unsharp contrast
enhancement filter. fspecial creates the unsharp filter from the negative of
the Laplacian filter with parameter alpha. alpha controls the shape of the
Laplacian and must be in the range 0 to 1.0. fspecial uses the default value
of 0.2 if you do not specify alpha.

I = imread("saturn.tif");

h fspecial ("unsharp®,0.5);
12 = filter2(h,1)/255;
imshow(l)

figure, imshow(12)

12-79

fspecial

Algorithms fspecial creates Gaussian filters using

~(ni+n3)/(20%)
hg(nl, n,) =e

hg(nl, n,)

2.2.Ng

n; Ny

h(ny,n,) =

fspecial creates Laplacian filters using

2 2
|:|2:a_2+a_2
ox~ oy

_ ¢ 1 9_

4 4 4

2 4 |1-a 1-a

7 = e — -

(a+1)| 24 1 4

o l-a a

4 4 4 |

12-80

fspecial

See Also

fspecial creates Laplacian of Gaussian (LoG) filters using

hg(n].’ n2) = e_(n1+n2)/(20)

2 2 52
(ny"+n,"-20)hg(nl, n,)

ZHGGZZhg

n; Ny

h(n;, ny) =

fspecial creates averaging filters using
ones(n(1),n(2))/(n(1)*n(2))
fspecial creates unsharp filters using
1 -a a-1 -«
m a-1 a+5 a-1
-a a-1 -
conv2, edge, Filter2, fsamp2, fwindl, fwind2
del2 in the MATLAB Function Reference

12-81

ftrans2

Purpose

Syntax

Description

Remarks

12-82

Design two-dimensional FIR filter using frequency transformation

h = ftrans2(b,t)
h = ftrans2(b)

h = ftrans2(b,t) produces the two-dimensional FIR filter h that corresponds
to the one-dimensional FIR filter b using the transform t. (ftrans2 returns h
as a computational molecule, which is the appropriate form to use with
filter2.) b must be a one-dimensional, odd-length (Type I) FIR filter such

as can be returned by fir1, fir2, or remez in the Signal Processing Toolbox.
The transform matrix t contains coefficients that define the frequency
transformation to use. If t is m-by-n and b has length Q, then h is size

((m-1)*(Q-1)/2+1)-by-((n-1)*(Q-1)/2+1).
h = ftrans2(b) uses the McClellan transform matrix t.
t=[121; 2 -42; 12 1]/8;

The transformation below defines the frequency response of the
two-dimensional filter returned by ftrans2,

H(wy, w,) = B((‘O)|cosm= T(0y, wyp)

where B(w) is the Fourier transform of the one-dimensional filter b,

N
Bw) = Y b(n)e "
n=-N

and T(wy,0,) is the Fourier transform of the transformation matrix t.

T(wy, ,) = ZZt(nl, nz)e—mele—sznz

Ny Ny

The returned filter h is the inverse Fourier transform of H(wy,w,).

h(ny,n,) = %Jﬂ r H(w;, u)z)ejMlejwznzdmldu)2
(2m)" "t

ftrans2

Example

Use ftrans2 to design an approximately circularly symmetric two-dimensional
bandpass filter with passband between 0.1 and 0.6 (normalized frequency,
where 1.0 corresponds to half the sampling frequency, or Tt radians):

1 Since ftrans2 transforms a one-dimensional FIR filter to create a
two-dimensional filter, first design a one-dimensional FIR bandpass filter
using the Signal Processing Toolbox function remez.

colormap(jJet(64))

b = remez(10,[0 0.05 0.15 0.55 0.65 1],[0 0 1 1 0 O]);
[H,w] = freqz(b,1,128, *whole");
plot(w/pi-1,fftshift(abs(H)))

14

2 Use ftrans2 with the default McClellan transformation to create the
desired approximately circularly symmetric filter.

h = ftrans2(b);
freqz2(h)

12-83

ftrans2

I,,'O»_

‘«“\\\

"m 2

m\ \\\\\\‘\‘\
”“‘:“‘\ IR
e

\
V!

u///;l% '/"'
%

i

Magnitude

| /"/'NWW‘\\‘\\\\ il \\m\“
l' ll' 0 'l A“Q ‘ ‘\‘\‘\\"»’,«[l/ﬁ

\\\\\\\\“\g\,’"'&'o m‘3 ‘ “:/ﬂf'ﬂf'lfllll/”
”IA .

S
R

0.5

0,
Frequency Frequency

See Also conv2, Filter2, fsamp2, fwind1l, fwind2

Reference [1] Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood
Cliffs, NJ: Prentice Hall, 1990. pp. 218-237.

12-84

fwindl

Purpose

Syntax

Description

Class Support

Design two-dimensional FIR filter using one-dimensional window method

h = fwind1(Hd,win)
h = fwind1l(Hd,winl,win2)
h = fwind1l(fl,f2,Hd,...)

fwind1 designs two-dimensional FIR filters using the window method. fwindl
uses a one-dimensional window specification to design a two-dimensional FIR
filter based on the desired frequency response Hd. fwind1 works with
one-dimensional windows only; use fwind2 to work with two-dimensional
windows.

h = fwind1(Hd,win) designs a two-dimensional FIR filter h with frequency
response Hd. (fwindl returns h as a computational molecule, which is the
appropriate form to use with filter2.) fwindl uses the one-dimensional
window win to form an approximately circularly symmetric two-dimensional
window using Huang's method. You can specify win using windows from the
Signal Processing Toolbox, such as boxcar, hamming, hanning, bartlett,
blackman, kaiser, or chebwin. If length(win) is n, then h is n-by-n.

Hd is a matrix containing the desired frequency response sampled at equally
spaced points between -1.0 and 1.0 (in normalized frequency, where 1.0
corresponds to half the sampling frequency, or tradians) along the x and y
frequency axes. For accurate results, use frequency points returned by
fregspace to create Hd. (See the entry for freqspace for more information.)

h = fwind1(Hd,winl,win2) uses the two one-dimensional windows winl and
win2 to create a separable two-dimensional window. If 1ength(winl) is n and
length(win2) is m, then h is m-by-n.

h = fwind1(f1,¥2,Hd, - . .) lets you specify the desired frequency response Hd
at arbitrary frequencies (f1 and f2) along the x and y axes. The frequency
vectors f1 and 2 should be in the range -1.0 to 1.0, where 1.0 corresponds to
half the sampling frequency, or rtradians. The length of the window(s) controls
the size of the resulting filter, as above.

The input matrix Hd can be of class double or of any integer class. All other
inputs to fwind1l must be of class double. All outputs are of class double.

12-85

fwind1l

Example

12-86

Use fwind1 to design an approximately circularly symmetric two-dimensional
bandpass filter with passband between 0.1 and 0.5 (normalized frequency,
where 1.0 corresponds to half the sampling frequency, or T radians):

1 Create a matrix Hd that contains the desired bandpass response. Use
freqgspace to create the frequency range vectors f1 and f2.

[f1,f2] = fregspace(21, "meshgrid®);
Hd = ones(21);

r = sqre(f1.~2 + f2.72);
HAd((r<0.1)](r>0.5)) = 0;
colormap(Jet(64))

mesh(f1,¥f2,Hd)

2 Design the filter using a one-dimensional Hamming window.

h = fwind1l(Hd,hamming(21));
freqz2(h)

fwindl

Algorithm

Magnitude

Frequency Frequency

fwind1 takes a one-dimensional window specification and forms an
approximately circularly symmetric two-dimensional window using Huang'’s

method,

wOur) SO e
- 1 2

where w(t) is the one-dimensional window and w(n;,n,) is the resulting
two-dimensional window.

Given two windows, fwind1 forms a separable two-dimensional window.
w(ng, n,) = w, (N)w,(n,)

fwind1 calls fwind2 with Hd and the two-dimensional window. fwind2
computes h using an inverse Fourier transform and multiplication by the
two-dimensional window.

1 jo,n; jw,n
hg(ny, ny) = —ZJF r Hd(ool,coz)eJ Mg @2 *dw, dw,
(2m)" "—mt-n

h(n;,n,) = hy(ny, ny)w(ng, n,)

12-87

fwind1l

See Also conv2, Filter2, fsamp2, freqgspace, ftrans2, fwind2

Reference [1] Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood
Cliffs, NJ: Prentice Hall, 1990.

12-88

fwind2

Purpose

Syntax

Description

Class Support

Example

Design two-dimensional FIR filter using two-dimensional window method

h
h

fwind2(Hd,win)
fwind2(f1l,f2,Hd,win)

Use fwind2 to design two-dimensional FIR filters using the window method.
fwind2 uses a two-dimensional window specification to design a
two-dimensional FIR filter based on the desired frequency response Hd. fwind2
works with two-dimensional windows; use fwind1 to work with
one-dimensional windows.

h = fwind2(Hd,win) produces the two-dimensional FIR filter h using an
inverse Fourier transform of the desired frequency response Hd and
multiplication by the window win. Hd is a matrix containing the desired
frequency response at equally spaced points in the Cartesian plane. fwind2
returns h as a computational molecule, which is the appropriate form to use
with filter2. h is the same size as win.

For accurate results, use frequency points returned by freqspace to create Hd.
(See the entry for fregspace for more information.

h = fwind2(f1,¥2,Hd,win) lets you specify the desired frequency response Hd
at arbitrary frequencies (f1 and f2) along the x and y axes. The frequency
vectors f1 and 2 should be in the range -1.0 to 1.0, where 1.0 corresponds to
half the sampling frequency, or rtradians. h is the same size as win.

The input matrix Hd can be of class double or of any integer class. All other
inputs to fwind2 must be of class double. All outputs are of class double.

Use fwind2 to design an approximately circularly symmetric two-dimensional
bandpass filter with passband between 0.1 and 0.5 (normalized frequency,
where 1.0 corresponds to half the sampling frequency, or tradians):

1 Create a matrix Hd that contains the desired bandpass response. Use
freqgspace to create the frequency range vectors f1 and f2.

[f1,f2] = fregspace(21,"meshgrid®);
Hd = ones(21);

r = sqre(f1.~2 + f2.72);
HAd((r<0.1)](r>0.5)) = 0;

12-89

fwind2

colormap(jet(64))

mesh(f1,f2,Hd)

2 Create a two-dimensional Gaussian window using fspecial.

2)
% Make the max

",21

gaussian

ial(”

= fspec
= win

win
win

dow value be 1.

imum win

in(:));

-/ max(w

mesh(win)

12-90

fwind2

3 Design the filter using the window from step 2.

,win)

h = fwind2(Hd

freqz2(h)

12-91

fwind2

0.8 J
GOSN
006 CHONTITN - -
< TN
Soa
©
=
02 vl
‘.{/7 %
il RN
0. NN
: A TIN
05 ,{{//,fl',,':,{O,:o'b,%%:."“"o‘&“:“\:“:\\\g‘\g3 .
- ISR =

Frequency Frequency

fwind2 computes h using an inverse Fourier transform and multiplication by

Algorithm
the two-dimensional window win.
hy(ny,ny) = 1 ZJH r Hd(ml,ooz)ej('Jlnlelmznzdmld(;a2
(2m)” = -m
h(n;,n,) = hy(ny, ny)w(ng, n,)
See Also conv2, filter2, fsamp2, freqspace, ftrans2, fwindl
Reference [1] Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood

Cliffs, NJ: Prentice Hall, 1990. pp. 202-213.

12-92

getimage

Purpose

Syntax

Description

Class Support

Get image data from axes

A = getimage(h)

[x,y.,A]l = getimage(h)
[---,A,flag] = getimage(h)
[---1 = getimage

A = getimage(h) returns the first image data contained in the Handle
Graphics object h. h can be a figure, axes, image, or texture-mapped surface. A
is identical to the image CData; it contains the same values and is of the same
class (uint8 or double) as the image CData. If h is not an image or does not
contain an image or texture-mapped surface, A is empty.

[x,y.,A] = getimage(h) returns the image XData in x and the YData iny. XData
and YData are two-element vectors that indicate the range of the x-axis and
y-axis.

[---,A,flag] = getimage(h) returns an integer flag that indicates the type
of image h contains. This table summarizes the possible values for flag.

Flag Type of Image

0 Not an image; A is returned as an empty matrix

1 Intensity image with values in standard range ([0,1] for
double arrays, [0,255] for uint8 arrays, [0,65535] for uint16
arrays)

2 Indexed image

3 Intensity data, but not in standard range

4 RGB image

[---1 = getimage returns information for the current axes. It is equivalent to
[---1 = getimage(gca).

The output array A is of the same class as the image CData. All other inputs and
outputs are of class double.

12-93

getimage

Example This example illustrates obtaining the image data from an image displayed
directly from a file.

imshow rice.tif
I = getimage;

12-94

gray2ind

Purpose
Syntax

Description

Class Support

See Also

Convert an intensity image to an indexed image
[X,map] = gray2ind(l,n)

gray2ind scales, then rounds, an intensity image to produce an equivalent
indexed image.

[X,map] = gray2ind(l,n) converts the intensity image I to an indexed image
X with colormap gray(n). If n is omitted, it defaults to 64.

The input image 1 can be of class uint8, uintl6, or double. The class of the
output image X is uint8 if the colormap length is less than or equal to 256. If
the colormap length is greater than 256, X is of class double.

ind2gray

12-95

grayslice

Purpose

Syntax

Description

Class Support

Example

See Also

12-96

Create indexed image from intensity image, using multilevel thresholding

X = grayslice(l,n)

X = grayslice(l,v)

X = grayslice(l,n) thresholds the intensity image 1 using cutoff values
12 n-1 returningan indexed image in X.

nNn " n

X = grayslice(l,Vv), where v is a vector of values between 0 and 1, thresholds
I using the values of v, returning an indexed image in X.

You can view the thresholded image using imshow(X,map) with a colormap of
appropriate length.

The input image 1 can be of class uint8, uintl6, or double. Note that the
threshold values are always between 0 and 1, even if 1 is of class uint8 or
uintl6. In this case, each threshold value is multiplied by 255 or 65535 to
determine the actual threshold to use.

The class of the output image X depends on the number of threshold values, as
specified by n or length(v). If the number of threshold values is less than 256,
then X is of class uint8, and the values in X range from 0 to n or length(v). If
the number of threshold values is 256 or greater, X is of class double, and the
values in X range from 1 to n+1 or length(v)+1.

| imread("ngc4024m.tif");
X = grayslice(l,16);
imshow(l)

figure, imshow(X,jet(16))

gray2ind

histeq

Purpose

Syntax

Description

Enhance contrast using histogram equalization

J = histeq(l,hgram)
J = histeq(l,n)
[J.T] = histeq(l,...)

newmap histeq(X,map,hgram)
newmap = histeq(X,map)
[newmap,T] = histeq(X,--.)

histeq enhances the contrast of images by transforming the values in an
intensity image, or the values in the colormap of an indexed image, so that the
histogram of the output image approximately matches a specified histogram.

J = histeq(l,hgram) transforms the intensity image 1 so that the histogram
of the output intensity image J with length(hgram) bins approximately
matches hgram. The vector hgram should contain integer counts for equally
spaced bins with intensity values in the appropriate range: [0, 1] for images of
class double, [0, 255] for images of class uint8, and [0, 65535] for images of
class uint16. histeq automatically scales hgram so that sum(hgram) =
prod(size(l)). The histogram of J will better match hgram when
length(hgram) is much smaller than the number of discrete levels in 1.

J = histeq(l,n) transforms the intensity image I, returning in J an intensity
image with n discrete gray levels. A roughly equal number of pixels is mapped
to each of the n levels in J, so that the histogram of J is approximately flat. (The
histogram of J is flatter when n is much smaller than the number of discrete
levels in 1.) The default value for n is 64.

[J3,T] = histeq(l, - ..) returns the gray scale transformation that maps gray
levels in the intensity image I to gray levels in J.

newmap = histeq(X,map,hgram) transforms the colormap associated with the
indexed image X so that the histogram of the gray component of the indexed
image (X, newmap) approximately matches hgram. histeq returns the
transformed colormap in newmap. length(hgram) must be the same as
size(map,1).

12-97

histeq

Class Support

Example

12-98

newmap = histeq(X,map) transforms the values in the colormap so that the
histogram of the gray component of the indexed image X is approximately flat.
It returns the transformed colormap in newmap.

[newmap,T] = histeq(X, ...) returns the grayscale transformation T that
maps the gray component of map to the gray component of newmap.

For syntaxes that include an intensity image 1 as input, 1 can be of class uints,
uintl6, or double, and the output image J has the same class as I. For
syntaxes that include an indexed image X as input, X can be of class uint8 or
double; the output colormap is always of class double. Also, the optional output
T (the gray level transform) is always of class double.

Enhance the contrast of an intensity image using histogram equalization.

I = imread("tire.tif");
J = histeq(l);
imshow(l)

figure, imshow(J)

Display the resulting histograms.

imhist(1,64)
figure; imhist(J,64)

histeq

Algorithm

See Also

3000 2000

2500
1500
2000

1500 1000

1000
500
500
0 0
00 150

0 50 100 150 200 250 0 50 1

200 250

When you supply a desired histogram hgram, histeq chooses the grayscale
transformation T to minimize

164(T(K)) —co(K)|

where cg is the cumulative histogram of A, ¢, is the cumulative sum of hgram for
all intensities k. This minimization is subject to the constraints that T must be
monotonic and ¢;(T(a)) cannot overshoot cy(a) by more than half the distance
between the histogram counts at a. histeq uses this transformation to map the
gray levels in X (or the colormap) to their new values.

b=T(a)
If you do not specify hgram, histeq creates a flat hgram,
hgram = ones(1,n)*prod(size(A))/n;

and then applies the previous algorithm.

brighten, imadjust, imhist

12-99

hsv2rgb

Purpose

Syntax

Description

Class Support

Remarks

See Also

12-100

Convert hue-saturation-value (HSV) values to RGB color space

rgbmap = hsv2rgb(hsvmap)
RGB = hsv2rgb(HSV)

rgbmap = hsv2rgb(hsvmap) converts the HSV values in hsvmap to RGB color
space. hsvmap is an m-by-3 matrix that contains hue, saturation, and value
components as its three columns, and rgbmap is returned as an m-by-3 matrix
that represents the same set of colors as red, green, and blue values. Both
rgbmap and hsvmap contain values in the range 0 to 1.0.

RGB = hsv2rgb(HSV) converts the HSV image to the equivalent RGB image.
HSV is an m-by-n-by-3 image array whose three planes contain the hue,
saturation, and value components for the image. RGB is returned as an
m-by-n-by-3 image array whose three planes contain the red, green, and blue
components for the image.

The input array to hsv2rgb must be of class double. The output array is of class
double.

hsv2rgb is a function in MATLAB.

rgb2hsv, rgbplot
colormap in the MATLAB Function Reference

idct2

Purpose

Syntax

Description

Class Support

Algorithm

See Also

References

Compute two-dimensional inverse discrete cosine transform

B = idct2(Ah)
idct2(A,m,n)
B = idct2(A,[m n])

w
1

B = idct2(A) returns the two-dimensional inverse discrete cosine transform
(DCT) of A.

B = idct2(A,m,n) or B = idct2(A, [m n]) pads A with zeros to size m-by-n
before transforming. If [m n] < size(A), idct2 crops A before transforming.

For any A, idct2(dct2(A)) equals A to within roundoff error.

The input matrix A can be of class double or of any integer class. The output
matrix B is of class double.

idct2 computes the two-dimensional inverse DCT using

M-1 N-1
_ n2m+1)p m2n+1)g O0smsM-1
Ay = z Zapanpqcos v TN " o<neN-
pP=0q=0
u_{l/N,p=O O(_{1/Jﬁ,q=o
P l/2/M, 1<psM-1 4 |/2/N, 15qsN-1

dct2, dctmtx, £ft2, ifft2

[1] Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice Hall, 1989. pp. 150-153.

[2] Pennebaker, William B., and Joan L. Mitchell. JPEG: Still Image Data
Compression Standard. New York: Van Nostrand Reinhold, 1993.

12-101

ifft2

Purpose Compute two-dimensional inverse fast Fourier transform

Syntax B = ifft2(A)
B = ifft2(A,m,n)

Description B iFFt2(A) returns the two-dimensional inverse fast Fourier transform of
matrix A. If A is a vector, B has the same orientation as A.

B = ifft(A,m,n) pads matrix A with zeros to size m-by-n. If [m n] < size(A),
ifft2 crops A before transforming.

For any A, ifft2(Fft2(A)) equals A to within roundoff error. If A is real,
ifFL2(FFt2(A)) may have small imaginary parts.

Class Support The input matrix A can be of class double or of any integer class. The output
matrix B is of class double.

Remarks ifft2 is a function in MATLAB.

Algorithm The algorithm for ifft2(A) is the same as the algorithm for £fFt2(A), except
for a sign change and scale factors of [m,n] = size(A). Like fft2, the execution
time is fastest when m and n are powers of 2 and slowest when they are large
prime numbers.

See Also fft2, Fftshift, idct2

dftmtx, filter, freqz, specplot, spectrum in the Signal Processing Toolbox
User’s Guide

fft, ifft in the MATLAB Function Reference

12-102

ifftn

Purpose

Syntax

Description

Class Support

Remarks

Algorithm

See Also

Compute N-dimensional inverse fast Fourier transform

B = ifftn(A)
B = ifftn(A,siz)

B = ifftn(A) performs the N-dimensional inverse fast Fourier transform. The
result B is the same size as A.

B = ifftn(A,siz) pads A with zeros (or truncates A) to create an
N-dimensional array of size siz before doing the inverse transform.

For any A, iffen(Fftn(A)) equals A within roundoff error. If A is real,
ifftn(FFtn(A)) may have small imaginary parts.

The input matrix A can be of class double or of any integer class. The output
matrix B is of class double.

ifftn is a function in MATLAB.

ifftn(A) is equivalent to

B = A;

for p = 1l:length(size(A))
B = ifft(B,[1.p):

end

This code computes the one-dimensional inverse fast Fourier transform along
each dimension of A. The time required to compute ifftn(A) depends most on
the number of prime factors of the dimensions of A. It is fastest when all of the
dimensions are powers of 2.

ft2, fftn, ifft2

12-103

Im2bw

Purpose

Syntax

Description

Class Support

Example

See Also

12-104

Convert an image to a binary image, based on threshold

BW = im2bw(l, level)
BW im2bw(X,map, level)
BW im2bw(RGB, level)

im2bw produces binary images from indexed, intensity, or RGB images. To do
this, it converts the input image to grayscale format (if it is not already an
intensity image), and then converts this grayscale image to binary by
thresholding. The output binary image BW has values of 0 (black) for all pixels
in the input image with luminance less than level and 1 (white) for all other
pixels. (Note that you specify level in the range [0,1], regardless of the class of
the input image.)

BW

im2bw(1, level) converts the intensity image 1 to black and white.

BW = im2bw(X,map, level) converts the indexed image X with colormap map to
black and white.

BW = im2bw(RGB, level) converts the RGB image RGB to black and white.

The input image can be of class uint8, uint16, or double. The output image BW
is of class uints8.

load trees

BW = im2bw(X,map,0.4);
imshow(X,map)

figure, imshow(BW)

ind2gray, rgbh2gray

im2col

Purpose

Syntax

Description

Class Support

See Also

Rearrange image blocks into columns

w

B

im2col (A,[m n],block_type)
im2col (A,[m n])
im2col (A, "indexed”",...)

im2col (A, [m n],block_type) rearranges image blocks into columns.

block_type is a string that can have one of these values:

= "distinct" for m-by-n distinct blocks
<« "sliding" for m-by-n sliding blocks (default)

B = im2col (A, [m n], "distinct") rearranges each distinct m-by-n block in the
image A into a column of B. im2col pads A with zeros, if necessary, so its size is
an integer multiple of m-by-n. If A = [A11 A12;A21 A22], where each A;; is
m-by-n, then B = [A11(:) A12(:) A21(:) A22(:)].

B = im2col (A,[m n], "sliding") converts each sliding m-by-n block of A into a
column of B, with no zero padding. B has m*n rows and will contain as many
columns as there are m-by-n neighborhoods of A. If the size of A is [mm nn], then
the size of B is (m*n)-by-((mm-m+1)*(nn-n+1)).

B

im2col (A, [m n]) uses the default block_type of "sliding".

For the sliding block case, each column of B contains the neighborhoods of A
reshaped as nhood(:) where nhood is a matrix containing an m-by-n
neighborhood of A. im2col orders the columns of B so that they can be reshaped
to form a matrix in the normal way. For example, suppose you use a function,
such as sum(B), that returns a scalar for each column of B. You can directly
store the result in a matrix of size (nm-m+1)-by-(nn—n+1), using these calls.

B

= im2col(A,[m n],"sliding”);

C = reshape(sum(B),mm—-m+1,nn—n+1);

B = im2col (A, "indexed", ...) processes A as an indexed image, padding with
zeros if the class of A is uint8, or ones if the class of A is double.

The input image A can be of class double or of any integer class. The output
matrix B is of the same class as the input image.

blkproc, col2im, colFilt, nlfilter

12-105

iIm2double

Purpose

Syntax

Description

See Also

12-106

Convert image array to double precision

12 = im2double(l1l)

RGB2 = im2double(RGB1)

BW2 = im2double(BW1)

X2 = im2double(X1, "indexed")

im2double takes an image as input, and returns an image of class double. If
the input image is of class double, the output image is identical to it. If the
input image is of class uint8 or uint16, im2double returns the equivalent
image of class double, rescaling or offsetting the data as necessary.

12 = im2double(11) converts the intensity image 11 to double precision,
rescaling the data if necessary.

RGB2 = im2double(RGB1) converts the truecolor image RGB1 to double
precision, rescaling the data if necessary.

BW2 = im2double(BW1) converts the binary image BW1 to double precision.

X2 = im2double(X1, "indexed™) converts the indexed image X1 to double
precision, offsetting the data if necessary.

double, im2uint8, uint8

IMm2uint8

Purpose

Syntax

Description

See Also

Convert image array to eight-bit unsigned integers

12 = im2uint8(l11)
RGB2 = im2uint8(RGB1)
BW2 = im2uint8(BW1)

X2 = im2uint8(X1, "indexed™)

im2uint8 takes an image as input, and returns an image of class uint8. If the
input image is of class uint8, the output image is identical to it. If the input
image is of class uintl16 or double, im2uint8 returns the equivalent image of
class uint8, rescaling or offsetting the data as necessary.

12 = im2uint8(11) converts the intensity image 11 to uints, rescaling the
data if necessary.

RGB2 = im2uint8(RGB1) converts the truecolor image RGB1 to uints, rescaling
the data if necessary.

BW2 = im2uint8(BW1) converts the binary image BW1 to uints.

X2 = im2uint8(X1, "indexed™) converts the indexed image X1 to uints,
offsetting the data if necessary. Note that it is not always possible to convert
an indexed image to uint8. If X1 is of class double, max(X1(:)) must be 256 or
less; if X1 is of class uint16, max(X1(:)) must be 255 or less. To convert a
uintl6 indexed image to uint8 by reducing the number of colors, use imapprox.

im2uintl6, double, im2double, uint8, imapprox, uintl6

12-107

Im2uintl6

Purpose

Syntax

Description

See Also

12-108

Convert image array to sixteen-bit unsigned integers

12 = im2uintl6(ll)
RGB2 im2uintl6(RGB1)

X2 = im2uintl6(X1, "indexed")

im2uintl16 takes an image as input, and returns an image of class uint16. If
the input image is of class uint16, the output image is identical to it. If the
input image is of class double or uint8, im2uintl16 returns the equivalent
image of class uint16, rescaling or offsetting the data as necessary.

12 = im2uintl16(11) converts the intensity image 11 to uint16, rescaling the
data if necessary.

RGB2 = im2uintl6(RGB1) converts the truecolor image RGB1 to uintl6,
rescaling the data if necessary.

X2 = im2uintl6(X1, "indexed™) converts the indexed image X1 to uinti6,
offsetting the data if necessary. Note that it is not always possible to convert
an indexed image to uint16. If X1 is of class double, max(X1(:z)) must be 65536
or less.

Note im2uintl6 does not support binary images.

im2uint8, double, im2double, uint8, uintl6, imapprox

imadjust

Purpose

Syntax

Description

Class Support

Adjust image intensity values or colormap

J = imadjust(l,[low_in high_in],[low_out high_out],gamma)
newmap = imadjust(map,[low_in high_in], [low_out high_out],gamma)
RGB2 = imadjust(RGB1,...)

J = imadjust(l,[low_in high_in],[low_out high_out],gamma) maps the
values in intensity image 1 to new values in J such that values between low_in
and high_in map to values between low_out and high_out. Values below
low_in and above high_in are clipped; that is, values below low_in map to
low_out, and those above high_in map to high_out. You can use an empty
matrix ([]) for [low_in high_in] or for [low_out high_out] to specify the
default of [0 1]. gamma specifies the shape of the curve describing the
relationship between the values in I and J. If gamma is less than 1, the mapping
is weighted toward higher (brighter) output values. If gamma is greater than 1,
the mapping is weighted toward lower (darker) output values. If you omit the
argument, gamma defaults to 1 (linear mapping).

newmap = imadjust(map,[low_in; high_in],[low_out;high_out],gamma)
transforms the colormap associated with an indexed image. If low_in, high_in,
low_out, high_out, and gamma are scalars, then the same mapping applies to
red, green and blue components. Unique mappings for each color component
are possible when: low_in and high_in are both 1-by-3 vectors, low_out and
high_out are both 1-by-3 vectors, or gamma is a 1-by-3 vector. The rescaled
colormap, newmap, is the same size as map.

RGB2 = imadjust(RGB1,...) performs the adjustment on each image plane
(red, green, and blue) of the RGB image RGB1. As with the colormap
adjustment, you can apply unique mappings to each plane.

Note If high_out < low_out, the output image is reversed, as in a
photographic negative.

For syntax variations that include an input image (rather than a colormap), the
input image can be of class uint8, uint16, or double. The output image has the
same class as the input image. For syntax variations that include a colormap,
the input and output colormaps are of class double.

12-109

imadjust

Example

I = imread("pout.tif™);
J = imadjust(1,[0.3 0.71,[D);
imshow(1), figure, imshow(J)

RGB1 = imread("flowers.tif");
RGB2 = imadjust(RGB1,[-2 .3 0; .6 .7 11,I[D:
imshow(RGB1), figure, imshow(RGB2)

See Also brighten, histeq

12-110

iImapprox

Purpose

Syntax

Description

Class Support

Algorithm

See Also

Approximate indexed image by one with fewer colors

[Y,newmap] = imapprox(X,map,n)
[Y,newmap] = imapprox(X,map,tol)

Y = imapprox(X,map,newmap)

[---1 = imapprox(...,dither_option)

[Y,newmap] = imapprox(X,map,n) approximates the colors in the indexed
image X and associated colormap map by using minimum variance
gquantization. imapprox returns indexed image Y with colormap newmap, which
has at most n colors.

[Y,newmap] = imapprox(X,map,tol) approximates the colors in X and map
through uniform quantization. newmap contains at most (floor(1/tol)+1)"3
colors. tol must be between 0 and 1.0.

Y = imapprox(X,map,newmap) approximates the colors in map by using
colormap mapping to find the colors in newmap that best match the colors in map.

Y = imapprox(...,dither_option) enables or disables dithering.
dither_option is a string that can have one of these values:

= "dither" dithers, if necessary, to achieve better color resolution at the
expense of spatial resolution (default).

= "nodither” maps each color in the original image to the closest color in the
new map. No dithering is performed.

The input image X can be of class uint8, uintl6, or double. The output image
Y is of class uint8 if the length of newmap is less than or equal to 256. If the
length of newmap is greater than 256, X is of class double.

imapprox uses rgb2ind to create a new colormap that uses fewer colors.

cmunique, dither, rgb2ind

12-111

imcontour

Purpose

Syntax

Description

Class Support

Example

12-112

Create a contour plot of image data

imcontour(l,n)
imcontour(l,Vv)
imcontour(X,y,-..)
imcontour(...,LineSpec)
[C,h] = imcontour(...)

imcontour (1,n) draws a contour plot of the intensity image I, automatically
setting up the axes so their orientation and aspect ratio match the image. n is
the number of equally spaced contour levels in the plot; if you omit the
argument, the number of levels and the values of the levels are chosen
automatically.

imcontour (1,v) draws a contour plot of I with contour lines at the data values
specified in vector v. The number of contour levels is equal to length(v).

imcontour(X,y, - - -) uses the vectors x and y to specify the x- and y-axis limits.

imcontour (.. .,LineSpec) draws the contours using the line type and color
specified by LineSpec. Marker symbols are ignored.

[C.h] = imcontour(...) returns the contour matrix C and a vector of handles
to the objects in the plot. (The objects are actually patches, and the lines are
the edges of the patches.) You can use the clabel function with the contour
matrix C to add contour labels to the plot.

The input image can be of class uint8, uintl6, or double.

I = imread("ic.tif");
imcontour(l,3)

imcontour

See Also clabel, contour, LineSpec in the MATLAB Function Reference

12-113

iImcrop

Purpose

Syntax

Description

12-114

Crop an image

12 = imcrop(l)
X2 = imcrop(X,map)
RGB2 = imcrop(RGB)

12 imcrop(l,rect)
X2 = imcrop(X,map,rect)
RGB2 = imcrop(RGB,rect)

[---1 = imcrop(x,y,.-.)
[A,rect] = imcrop(...)
[x,y,A,rect] = imcrop(...)

imcrop crops an image to a specified rectangle. In the syntaxes below, imcrop
displays the input image and waits for you to specify the crop rectangle with
the mouse.

12 = imcrop(l)
X2 = imcrop(X,map)
RGB2 = imcrop(RGB)

If you omit the input arguments, imcrop operates on the image in the current
axes.

To specify the rectangle:

= For a single-button mouse, press the mouse button and drag to define the
crop rectangle. Finish by releasing the mouse button.

=« For a 2- or 3-button mouse, press the left mouse button and drag to define
the crop rectangle. Finish by releasing the mouse button.

If you hold down the Shift key while dragging, or if you press the right mouse
button on a 2- or 3-button mouse, imcrop constrains the bounding rectangle to
be a square.

When you release the mouse button, imcrop returns the cropped image in the
supplied output argument. If you do not supply an output argument, imcrop
displays the output image in a new figure.

imcrop

You can also specify the cropping rectangle noninteractively, using these
syntaxes:

12 = imcrop(l,rect)
X2 = imcrop(X,map,rect)
RGB2 = imcrop(RGB,rect)

rect is a four-element vector with the form [xmin ymin width height]; these
values are specified in spatial coordinates.

To specify a nondefault spatial coordinate system for the input image, precede
the other input arguments with two two-element vectors specifying the XData
and YData. For example,

[---1 = imcrop(x,y,.-.)

If you supply additional output arguments, imcrop returns information about
the selected rectangle and the coordinate system of the input image. For
example,

[A,rect] = imcrop(.-.)
[x,y,A,rect] = imcrop(--.)

A is the output image. x and y are the XData and YData of the input image.

Class Support The input image A can be of class uint8, uint16, or double. The output image
B is of the same class as A. rect is always of class double.

Remarks Because rect is specified in terms of spatial coordinates, the width and height
elements of rect do not always correspond exactly with the size of the output
image. For example, suppose rect is [20 20 40 30], using the default spatial
coordinate system. The upper-left corner of the specified rectangle is the center
of the pixel (20,20) and the lower-right corner is the center of the pixel (50,60).
The resulting output image is 31-by-41, not 30-by-40, because the output image
includes all pixels in the input image that are completely or partially enclosed
by the rectangle.

Example I = imread(Tic.tif");
12 = imcrop(l,[60 40 100 90]);
imshow(l)

figure, imshow(12)

12-115

iImcrop

See Also

12-116

Zoom

imfeature

Purpose

Syntax

Description

Compute feature measurements for image regions

stats = imfeature(L,measurements)
stats = imfeature(L,measurements,n)

stats = imfeature(L,measurements) computes a set of measurements for
each labeled region in the label matrix L. Positive integer elements of L
correspond to different regions. For example, the set of elements of L equal to
1 corresponds to region 1; the set of elements of L equal to 2 corresponds to
region 2; and so on. stats is a structure array of length max(L(:)). The fields
of the structure array denote different measurements for each region, as
specified by measurements.

measurements can be a comma-separated list of strings, a cell array containing
strings, the single string "al 1=, or the single string "basic". The set of valid
measurement strings includes the following.

"Area” "Image*” "EulerNumber*
"Centroid” "FilledImage* "Extrema*
"BoundingBox* "FilledArea* "EquivDiameter"”
"MajorAxisLength® "ConvexHull* "Solidity”
"MinorAxisLength® "ConvexlImage* "Extent”
"Eccentricity” "ConvexArea* "PixelList"
"Orientation”

Measurement strings are case insensitive and can be abbreviated.

If measurements is the string "all", then all of the above measurements are
computed. If measurements is not specified or if it is the string "basic”, then
these measurements are computed: "Area”, "Centroid”, and "BoundingBox".

stats = imfeature(L,measurements,n) specifies the type of connectivity used
in computing the "FilledImage”, "FilledArea”, and "EulerNumber"”
measurements. n can have a value of either 4 or 8, where 4 specifies

12-117

imfeature

Definitions

12-118

4-connected objects and 8 specifies 8-connected objects; if the argument is
omitted, it defaults to 8.

"Area” — Scalar; the actual number of pixels in the region. (This value may
differ slightly from the value returned by bwarea, which weights different
patterns of pixels differently.)

"Centroid” — 1-by-2 vector; the x- and y-coordinates of the center of mass of the
region.

"BoundingBox™ — 1-by-4 vector; the smallest rectangle that can contain the
region. The format of the vector is [x y width height], where x and y are the
x- and y-coordinates of the upper-left corner of the rectangle, and width and
height are the width and height of the rectangle. Note that x and y are always
noninteger values, because they are the spatial coordinates for the upper-left
corner of a pixel in the image; for example, if this pixel is the third pixel in the
fifth row of the image, then x =2.5andy = 4.5.

This figure illustrates the centroid and bounding box. The region consists of the
white pixels; the green box is the bounding box, and the red dot is the centroid.

"MajorAxisLength® — Scalar; the length (in pixels) of the major axis of the
ellipse that has the same second-moments as the region.

"MinorAxisLength® — Scalar; the length (in pixels) of the minor axis of the
ellipse that has the same second-moments as the region.

"Eccentricity” — Scalar; the eccentricity of the ellipse that has the same
second-moments as the region. The eccentricity is the ratio of the distance
between the foci of the ellipse and its major axis length. The value is between
0 and 1. (0 and 1 are degenerate cases; an ellipse whose eccentricity is O is
actually a circle, while an ellipse whose eccentricity is 1 is a line segment.)

"Orientation™ — Scalar; the angle (in degrees) between the x-axis and the
major axis of the ellipse that has the same second-moments as the region.

imfeature

This figure illustrates the axes and orientation of the ellipse. The left side of
the figure shows an image region and its corresponding ellipse. The right side
shows the same ellipse, with features indicated graphically; the solid blue lines
are the axes, the red dots are the foci, and the orientation is the angle between
the horizontal dotted line and the major axis.

"Image” — Binary image (uint8) of the same size as the bounding box of the
region; the on pixels correspond to the region, and all other pixels are off.

"Filledlmage™ — Binary image (uint8) of the same size as the bounding box of
the region; the on pixels correspond to the region, with all holes filled in.

"FilledArea” — Scalar; the number of on pixels in FilledImage.

This figure illustrates “ Image” and “FilledImage”.

MR S D B

Original image, containing a single " Image” "Filledlmage”
region

"ConvexHul I " — p-by-2 matrix; the smallest convex polygon that can contain
the region. Each row of the matrix contains the x- and y-coordinates of one
vertex of the polygon.

12-119

imfeature

12-120

"Convexlmage™ — Binary image (uint8); the convex hull, with all pixels within
the hull filled in (i.e., set to on). (For pixels that the boundary of the hull passes
through, imfeature uses the same logic as roipoly to determine whether the
pixel is inside or outside the hull.) The image is the size of the bounding box of
the region.

"ConvexArea” — Scalar; the number of pixels in "ConvexlImage-.

"EulerNumber™ — Scalar; equal to the number of objects in the region minus the
number of holes in those objects.

"Extrema” — 8-by-2 matrix; the extremal points in the region. Each row of the
matrix contains the x- and y-coordinates of one of the points; the format of the
vector is [top-left top-right right-top right-bottom bottom-right
bottom-left left-bottom left-top].

This figure illustrates the extrema of two different regions. In the region on the
left, each extremal point is distinct; in the region on the right, certain extremal
points (e.g., top-left and left-top) are identical.

top-left top-right top-lef top-right

left-top right-top left-top right-top
left-bottom right-bottom left-bottom right-bottom
bottom-lef hottom-right hottom-left bottom-right

"EquivDiameter" — Scalar; the diameter of a circle with the same area as the
region. Computed as sqrt(4*Area/pi).

"Solidity" — Scalar; the proportion of the pixels in the convex hull that are
also in the region. Computed as Area/ConvexArea.

"Extent” — Scalar; the proportion of the pixels in the bounding box that are
also in the region. Computed as the Area divided by area of the bounding box.

"PixelList" — p-by-2 matrix; the actual pixels in the region. Each row of the
matrix contains the x- and y-coordinates of one pixel in the region.

imfeature

Class Support

Remarks

The input label matrix L can be of class double or of any integer class.

The comma-separated list syntax for structure arrays is very useful when
working with the output of imfeature. For example, for a field that contains a
scalar, you can use a this syntax to create a vector containing the value of this
field for each region in the image.

For instance, if stats is a structure array with field Area, then these two
expressions are equivalent

stats(1l) -Area, stats(2).Area, ..., stats(end).Area

and

stats.Area

Therefore, you can use these calls to create a vector containing the area of each
region in the image.

stats = imfeature(L, "Area”);
allArea = [stats._Area];

allArea is a vector of the same length as the structure array stats.

The function ismember is useful in conjunction with imfeature for selecting
regions based on certain criteria. For example, these commands create a binary
image containing only the regions in text. tif whose area is greater than 80.

idx = find([stats.Area] > 80);
BW2 ismember(L, idx);

Most of the measurements take very little time to compute. The exceptions are
these, which may take significantly longer, depending on the number of regions
inL:

= "ConvexHull*

= "Convexlmage*

= "ConvexArea*

= "FilledIlmage*

Note that computing certain groups of measurements takes about the same
amount of time as computing just one of them, because imfeature takes
advantage of intermediate computations used in both computations. Therefore,

12-121

imfeature

it is fastest to compute all of the desired measurements in a single call to

imfeature

BW =
L = bwlabel (BW);
stats =
stats(23)

Example

ans =

Area:

Centroid:
BoundingBox:
MajorAxisLength:
MinorAxisLength:
Eccentricity:
Orientation:
ConvexHull:
Convexlmage:
ConvexArea:
Image:
Filledlmage:
FilledArea:
EulerNumber:
Extrema:
EquivDiameter:
Solidity:
Extent:
PixelList:

See Also bwlabel

ismember in the MATLAB Function Reference

12-122

imfeature(L, "

imread("text._tif");

all™);

89

[95.6742 192.9775]
[87.5000 184.5000 16 15]

19.9127
14.2953
0.6961

9.0845

[28x2 double]
[15x16 uint8]
205

[15%x16 uint8]
[15x16 uint8]
122

0

[8x2 double]
10.6451
0.4341

0.3708

[89%x2 double]

imfinfo

Purpose

Syntax

Description

Information about graphics file

info imFinfo(filename, fmt)
info = imFinfo(filename)

info = imFinfo(filename,fmt) returns a structure whose fields contain
information about an image in a graphics file. filename is a string that
specifies the name of the graphics file, and fmt is a string that specifies the
format of the file. The file must be in the current directory or in a directory on
the MATLAB path. If imFinfo cannot find a file named fi lename, it looks for a
file named filename. fimt.

This table lists the possible values for fmt.

Format File Type

“bmp" Windows Bitmap (BMP)

“cur” Windows Cursor resources (CUR)
"hdf" Hierarchical Data Format (HDF)
"ico" Windows Icon resources (ICO)

"jpg" or "jpeg" Joint Photographic Experts Group (JPEG)
pcx” Windows Paintbrush (PCX)

“png” Portable Network Graphics (PNG)
“tifTor "tiff" Tagged Image File Format (TIFF)

"xwd " X Windows Dump (XWD)

If filename is a TIFF or HDF file containing more than one image, info is a
structure array with one element (i.e., an individual structure) for each image
in the file. For example, info(3) would contain information about the third
image in the file.

12-123

iImfinfo

The set of fields in info depends on the individual file and its format. However,
the first nine fields are always the same. This table lists these fields and
describes their values.

Field Value

Filename A string containing the name of the file; if the file is
not in the current directory, the string contains the
full pathname of the file

FileModDate A string containing the date when the file was last
modified

FileSize An integer indicating the size of the file in bytes

Format A string containing the file format, as specified by fmt;
for JPEG and TIFF files, the three-letter variant is
returned

FormatVersion A string or number describing the version of the
format

width An integer indicating the width of the image in pixels

Height An integer indicating the height of the image in pixels

BitDepth An integer indicating the number of bits per pixel

ColorType A string indicating the type of image; either

"truecolor"” for a truecolor RGB image, "grayscale”
for a grayscale intensity image, or "indexed" for an
indexed image

info = imfinfo(Ffilename) attempts to infer the format of the file from its
contents.

Remarks imfinfo is a function in MATLAB.

12-124

imfinfo

Example

See Also

info = imfinfo("canoe.tif")

info

Filename

FileModDate:
FileSize:
Format:
FormatVersion:
Width:

Height:
BitDepth:
ColorType:
FormatSignature:
ByteOrder:
NewSubfileType:
BitsPerSample:
Compression:
Photometriclnterpretation:
StripOffsets:
SamplesPerPixel:
RowsPerStrip:
StripByteCounts:
XResolution:
YResolution:
ResolutionUnit:
Colormap:
PlanarConfiguration:
TileWidth:
TileLength:
TileOffsets:
TileByteCounts:
Orientation:
FillOrder:
GrayResponseUnit:
MaxSampleValue:
MinSampleValue:
Thresholding:

imread, imwrite

"canoe.tif"

"25-0ct-1996 22:10:39"
69708

“tif-

1

346

207

8

"indexed”

[73 73 42 0]
"little-endian”
0

8

"PackBits"

"RGB Palette”

[9x1 double]
1

23

[9x1 double]
72

72

"Inch*

[256x3 double]
"Chunky*

1

1

1

1
1

1
0.0100
255

12-125

imhist

Purpose

Syntax

Description

Class Support

Example

12-126

Display a histogram of image data

imhist(l,n)
imhist(X,map)
[counts,x] = imhist(...)

imhist(l,n) displays a histogram with n bins for the intensity image I above
a grayscale colorbar of length n. If you omit the argument, imhist uses a
default value of n = 256 if I is a grayscale image, or n = 2 if I is a binary image.

imhist(X,map) displays a histogram for the indexed image X. This histogram
shows the distribution of pixel values above a colorbar of the colormap map. The
colormap must be at least as long as the largest index in X. The histogram has
one bin for each entry in the colormap.

[counts,x] = imhist(...) returns the histogram counts in counts and the
bin locations in x so that stem(x, counts) shows the histogram. For indexed
images, it returns the histogram counts for each colormap entry; the length of
counts is the same as the length of the colormap.

Note For intensity images, the n bins of the histogram are each half-open
intervals of width A/(n—1). In particular, the p th bin is the half-open
interval

A(p-15)/(n-1)<x<A(p-0.5)/(n-1)
The scale factor A depends on the image class. A is 1 if the intensity image is

double; A is 255 if the intensity image is uint8; and A is 65535 if the
intensity image is uinti6.

The input image can be of class uint8, uintl6, or double.

I = imread("pout.tif™);
imhist(l)

imhist

1600

1400

1200

1000

800

600

400

200

2%0
See Also histeq
hist in the MATLAB Function Reference

12-127

Immovie

Purpose
Syntax

Description

Class Support

Example

See Also

Remarks

12-128

Make a movie of a multiframe indexed image

immovie(X,map)

mov

mov = immovie(X,map) returns the movie matrix mov from the images in the
multiframe indexed image X. As it creates the movie matrix, it displays the
movie frames on the screen. You can play the movie using the MATLAB movie
function.

X comprises multiple indexed images, all having the same size and all using the
colormap map. X is an m-by-n-by-1-by-k array, where k is the number of images.

X can be of class uint8, uintl6, or double. mov is of class double.

load mri
mov = immovie(D,map);

montage

avifile, getframe, movie, movie2avi in the MATLAB Function Reference

You can also make movies from images by using the MATLAB function
avifile, which creates AVI files. In addition, you can convert an existing
MATLAB movie into an AVI file by using the movie2avi function.

Imnoise

Purpose

Syntax

Description

Class Support

Example

Add noise to an image

J
J

J

imnoise(l,type)
imnoise(l,type,parameters)

imnoise(l,type) adds noise of type to the intensity image I. type is a

string that can have one of these values:

= "gaussian” for Gaussian white noise

= "salt & pepper" for “on and off” pixels

= "speckle*” for multiplicative noise

J = imnoise(l,type,parameters) accepts an algorithm type plus additional
modifying parameters particular to the type of algorithm chosen. If you omit
these arguments, imnoise uses default values for the parameters. Here are
examples of the different noise types and their parameters:

< J = imnoise(l, "gaussian”,m,v) adds Gaussian white noise of mean m and

variance v to the image 1. The default is zero mean noise with 0.01 variance.

< J = imnoise(l, "salt & pepper",d) adds salt and pepper noise to the image
I, where d is the noise density. This affects approximately d*prod(size(l))

-J

pixels. The default is 0.05 noise density.

= imnoise(l, "speckle”,v) adds multiplicative noise to the image I,
using the equation J = 1 + n*I, where n is uniformly distributed random
noise with mean 0 and variance v. The default for v is 0.04.

The input image 1 can be of class uint8, uintl6, or double. The output image
J is of the same class as 1.

|

J
imshow(1)
fi

imread("eight.tif");
imnoise(l, "salt & pepper®,0.02);

gure, imshow(J)

12-129

Imnoise

See Also rand, randn in the MATLAB Function Reference

12-130

impixel

Purpose

Syntax

Description

Determine pixel color values

P = impixel(l)
impixel (X,map)
P = impixel (RGB)

o
1

P = impixel(l,c,r)

P = impixel(X,map,c,r)
P = impixel(RGB,c,r)
[c,r,P] = impixel(...)

P = impixel(x,y,I,xi,yi)

P = impixel(x,y,X,map,xi,yi)
P = impixel(x,y,RGB,xi,yi)
[xi,yi,P] = impixel(X,y,.-.)

impixel returns the red, green, and blue color values of specified image pixels.
In the syntaxes below, impixel displays the input image and waits for you to
specify the pixels with the mouse.

P = impixel(l)
P = impixel (X,map)
P = impixel (RGB)

If you omit the input arguments, impixel operates on the image in the current
axes.

Use normal button clicks to select pixels. Press Backspace or Delete to remove
the previously selected pixel. A shift-click, right-click, or double-click adds a
final pixel and ends the selection; pressing Return finishes the selection
without adding a pixel.

When you finish selecting pixels, impixel returns an m-by-3 matrix of RGB
values in the supplied output argument. If you do not supply an output
argument, impixel returns the matrix in ans.

You can also specify the pixels noninteractively, using these syntaxes.

P = impixel(l,c,r)
P = impixel(X,map,c,r)
P = impixel(RGB,c,r)

12-131

impixel

Class Support

Remarks

Example

12-132

r and c are equal-length vectors specifying the coordinates of the pixels whose
RGB values are returned in P. The k™" row of P contains the RGB values for the

pixel (r(k),c(k)).

If you supply three output arguments, impixel returns the coordinates of the
selected pixels. For example,

[c,r,P] = impixel(...)

To specify a nondefault spatial coordinate system for the input image, use
these syntaxes.

P impixel(x,y,I,xi,yi)
P = impixel(x,y,X,map,Xi,yi)
P impixel(x,y,RGB,xi,yi)

x and y are two-element vectors specifying the image XData and YData. xi and
yi are equal-length vectors specifying the spatial coordinates of the pixels
whose RGB values are returned in P. If you supply three output arguments,
impixel returns the coordinates of the selected pixels.

[xi,yi,P] = impixel(X,y,---)

The input image can be of class uint8, uinti6, or double. All other inputs and
outputs are of class double.

impixel works with indexed, intensity, and RGB images. impixel always
returns pixel values as RGB triplets, regardless of the image type:

=« For an RGB image, impixel returns the actual data for the pixel. The values
are either uint8 integers or double floating-point numbers, depending on
the class of the image array.

=« For an indexed image, impixel returns the RGB triplet stored in the row of
the colormap that the pixel value points to. The values are double
floating-point numbers.

= For an intensity image, impixel returns the intensity value as an RGB
triplet, where R=G=B. The values are either uint8 integers or double
floating-point numbers, depending on the class of the image array.

RGB = imread("flowers.tif");
c = [12 146 410];

impixel

r = [104 156 129];
pixels = impixel(RGB,c,r)

pixels
61 59 101
253 240 0]
237 37 44

See Also improfile, pixval

12-133

improfile

Purpose

Syntax

Description

12-134

Compute pixel-value cross-sections along line segments

c = improfile
c = improfile(n)

c = improfile(l,xi,yi)
c = improfile(l,xi,yi,n)

[cx,cy,c]

= improfile(...)
[cx,cy,c,xi,yi]

= improfile(...)

[---1 = improfile(x,y,l,xi,yi)
[---1 = improfile(x,y,l,xi,yi,n)
[---1 = improfile(...,method)

improfile computes the intensity values along a line or a multiline path in an
image. improfile selects equally spaced points along the path you specify, and
then uses interpolation to find the intensity value for each point. improfile
works with grayscale intensity images and RGB images.

If you call improfile with one of these syntaxes, it operates interactively on
the image in the current axes.

C
C

improfile
improfile(n)

n specifies the number of points to compute the intensity value for. If you do not
provide this argument, improfile chooses a value for n, roughly equal to the
number of pixels the path traverses.

You specify the line or path using the mouse, by clicking on points in the image.
Press Backspace or Delete to remove the previously selected point. A
shift-click, right-click, or double-click adds a final point and ends the selection;
pressing Return finishes the selection without adding a point. When you finish
selecting points, improfile returns the interpolated data values in c. c is an
n-by-1 vector if the input is a grayscale intensity image, or an n-by-1-by-3 array
if the input is an RGB image.

improfile

Class Support

If you omit the output argument, improfile displays a plot of the computed
intensity values. If the specified path consists of a single line segment,
improfile creates a two-dimensional plot of intensity values versus the
distance along the line segment; if the path consists of two or more line
segments, improfile creates a three-dimensional plot of the intensity values
versus their x- and y-coordinates.

You can also specify the path noninteractively, using these syntaxes.

c improfile(l,xi,yi)
c = improfile(l,xi,yi,n)

xi and yi are equal-length vectors specifying the spatial coordinates of the
endpoints of the line segments.

You can use these syntaxes to return additional information.

[cx,cy,c] = improfile(...)
[cx,cy,c,xi,yi] = improfile(...)

cx and cy are vectors of length n, containing the spatial coordinates of the
points at which the intensity values are computed.

To specify a nondefault spatial coordinate system for the input image, use
these syntaxes.

[---1 = improfile(x,y,l,xi,yi)
[---1 = improfile(x,y,l,xi,yi,n)

x and y are two-element vectors specifying the image XData and YData.

[---1 = improfile(...,method) uses the specified interpolation method.
method is a string that can have one of these values:

=« "nearest” (default) uses nearest neighbor interpolation.
= "bilinear" uses bilinear interpolation.
< "bicubic” uses bicubic interpolation.

If you omit the method argument, improfile uses the default method of
"nearest”.

The input image can be of class uint8, uinti6, or double. All other inputs and
outputs are of class double.

12-135

improfile

Example I = imread("alumgrns.tif");
x = [35 338 346 103]:
y = [253 250 17 148];
improfile(l,x,y), grid on
See Also impixel, pixval

interp2 in the MATLAB Function Reference

12-136

imread

Purpose

Syntax

Description

Read image from graphics files

A = imread(filename, fmt)

[X,map] = imread(filename,fmt)

[---1 = imread(Filename)

[-..] = imread(...,idx) (CUR,ICO, and TIFF only)
[-..] = imread(...,ref) (HDF only)

[---1 = imread(---,”BackgroundColor”,BG) (PNG only)
[A,map,alpha] = imread(-...) (PNG only)

A = imread(filename, fmt) reads a grayscale or truecolor image named
filename into A. If the file contains a grayscale intensity image, A is a
two-dimensional array. If the file contains a truecolor (RGB) image, Ais a
three-dimensional (m-by-n-by-3) array.

[X,map] = imread(filename,fmt) reads the indexed image in filename into
X and its associated colormap into map. The colormap values are rescaled to the
range [0,1]. A and map are two-dimensional arrays.

[-..]1 = imread(Ffilename) attempts to infer the format of the file from its
content.

filename is a string that specifies the name of the graphics file, and fmt is a
string that specifies the format of the file. If the file is not in the current
directory or in a directory in the MATLAB path, specify the full pathname for
a location on your system. If imread cannot find a file named fi lename, it looks
for a file named filename . fmt. If you do not specify a string for fmt, the toolbox
will try to discern the format of the file by checking the file header.

This table lists the possible values for fmt.

Format File Type

"bmp*" Windows Bitmap (BMP)

“cur” Windows Cursor resources (CUR)
"hdf" Hierarchical Data Format (HDF)
"ico" Windows Icon resources (ICO)

12-137

imread

Special Case
Syntax:

12-138

Format File Type

"jpg” or "jpeg” Joint Photographic Experts Group (JPEG)
"pcx” Windows Paintbrush (PCX)

“‘png’ Portable Network Graphics (PNG)
“tifTor "tiff" Tagged Image File Format (TIFF)

"xwd " X Windows Dump (XWD)

TIFF-Specific Syntax

[-..] = imread(...,idx) reads in one image from a multi-image TIFF file.
idx is an integer value that specifies the order in which the image appears in
the file. For example, if idx is 3, imread reads the third image in the file. If you
omit this argument, imread reads the first image in the file.

PNG-Specific Syntax

The discussion in this section is only relevant to PNG files that contain
transparent pixels. A PNG file does not necessarily contain transparency data.
Transparent pixels, when they exist, will be identified by one of two
components: a transparency chunk or an alpha channel. (A PNG file can only
have one of these components, not both.)

The transparency chunk identifies which pixel values will be treated as
transparent, e.g., if the value in the transparency chunk of an 8-bit image is
0.5020, all pixels in the image with the color 0.5020 can be displayed as
transparent. An alpha channel is an array with the same number of pixels as
are in the image, which indicates the transparency status of each
corresponding pixel in the image (transparent or nontransparent).

Another potential PNG component related to transparency is the background
color chunk, which (if present) defines a color value that can be used behind all
transparent pixels. This section identifies the default behavior of the toolbox
for reading PNG images that contain either a transparency chunk or an alpha
channel, and describes how you can override it.

Case 1. You do not ask to output the alpha channel and do not specify a
background color to use. For example,

imread

[A,map] = imread(filename);
A = imread(filename);

If the PNG file contains a background color chunk, the transparent pixels will
be composited against the specified background color.

If the PNG file does not contain a background color chunk, the transparent
pixels will be composited against 0 for grayscale (black), 1 for indexed (first
color in map), or [0 0 0] for RGB (black).

Case 2. You do not ask to output the alpha channel but you specify the
background color parameter in your call. For example,

[---1 = imread(..., "BackgroundColor”,bg);

The transparent pixels will be composited against the specified color. The form
of bg depends on whether the file contains an indexed, intensity (grayscale), or
RGB image. If the input image is indexed, bg should be an integer in the range
[1,P] where P is the colormap length. If the input image is intensity, bg should
be an integer in the range [0,1]. If the input image is RGB, bg should be a
three-element vector whose values are in the range [0,1].

There is one exception to the toolbox’s behavior of using your background color.
If you set background to "none” no compositing will be performed. For
example,

[---1 = imread(...,"Back","none");

Note If you specify a background color, you cannot output the alpha channel.

Case 3. You ask to get the alpha channel as an output variable. For example,

[A,map,alpha] = imread(filename);

[A,map,alpha] = imread(filename,fmt);

No compositing is performed; the alpha channel will be stored separately from
the image (not merged into the image as in cases 1 and 2). This form of imread
returns the alpha channel if one is present, and also returns the image and any
associated colormap. If there is no alpha channel, alpha returns []. If there is
no colormap, or the image is grayscale or truecolor, map may be empty.

12-139

imread

12-140

HDF-Specific Syntax

[-..] = imread(...,ref) reads in one image from a multi-image HDF file.
ref is an integer value that specifies the reference number used to identify the
image. For example, if ref is 12, imread reads the image whose reference
number is 12. (Note that in an HDF file the reference numbers do not
necessarily correspond to the order of the images in the file. You can use
imfinfo to match up image order with reference number.) If you omit this
argument, imread reads the first image in the file.

CUR- and ICO-Specific Syntax

[-..] = imread(...,idx) reads in one image from a multi-image icon or
cursor file. idx is an integer value that specifies the order that the image
appears in the file. For example, if idx is 3, imread reads the third image in the
file. If you omit this argument, imread reads the first image in the file.

[A,map,alpha] = imread(...) returnsthe AND mask for the resource, which
can be used to determine the transparency information. For cursor files, this
mask may contain the only useful data.

Note By default, Microsoft Windows cursors are 32-by-32 pixels. MATLAB
pointers must be 16-by-16. You will probably need to scale your image. If you
have the Image Processing Toolbox, you can use the imresize function.

Format Support
This table summarizes the types of images that imread can read.

Format Variants

BMP 1-bit, 4-bit, 8-bit, and 24-bit uncompressed images; 4-bit
and 8-bit run-length encoded (RLE) images

CUR 1-bit, 4-bit, and 8-bit uncompressed images

HDF 8-bit raster image datasets, with or without associated

colormap; 24-bit raster image datasets

ICO 1-bit, 4-bit, and 8-bit uncompressed images

imread

Class Support

Remarks

Examples

Format Variants

JPEG Any baseline JPEG image (8 or 24-bit); JPEG images with
some commonly used extensions

PCX 1-bit, 8-bit, and 24-bit images

PNG Any PNG image, including 1-bit, 2-bit, 4-bit, 8-bit, and

16-bit grayscale images; 8-bit and 16-bit indexed images;
24-bit and 48-bit RGB images

TIFF Any baseline TIFF image, including 1-bit, 8-bit, and 24-bit
uncompressed images; 1-bit, 8-bit, 16-bit, and 24-bit images
with packbits compression; 1-bit images with CCITT
compression; also 16-bit grayscale, 16-bit indexed, and
48-bit RGB images.

XWD 1-bit and 8-bit ZPixmaps; XYBitmaps; 1-bit XYPixmaps

In most of the image file formats supported by imread, pixels are stored using
eight or fewer bits per color plane. When reading such a file, the class of the
output (A or X) is uint8. imread also supports reading 16-bit-per-pixel data
from TIFF and PNG files; for such image files, the class of the output (A or X) is
uintl16. Note that for indexed images, imread always reads the colormap into
an array of class double, even though the image array itself may be of class
uint8 or uintle6.

imread is a function in MATLAB.

This example reads the sixth image in a TIFF file.
[X,map] = imread("flowers.tif",6);
This example reads the fourth image in an HDF file.

info = imFinfo("skull_hdf");
[X,map] = imread("skull_hdf",info(4).Reference);

This example reads a 24-bit PNG image and sets any of its fully transparent
(alpha channel) pixels to red.

bg = [255 0 0];

12-141

imread

A = imread("image.png”, "BackgroundColor” ,bg);

This example returns the alpha channel (if any) of a PNG image.

[A,map,alpha] = imread("image.png”);
This example reads an 1CO image, applies a transparency mask, and then
displays the image.

[a,b,c] = imread("myicon.ico");

% Augment colormap for background color (white).
b2 = [b; 11 1];

% Create new image for display.

d = ones(size(a)) * (length(b2) - 1);

% Use the AND mask to mix the background and

% foreground data on the new image

d(c == 0) = a(c == 0);

% Display new image

imshow(uint8(d), b2)

See Also double, fread, imfinfo, imwrite, uint8, uintl6

12-142

imresize

Purpose

Syntax

Description

Resize an image

B = imresize(A,m,method)
B = imresize(A, [mrows ncols],method)

B = imresize(...,method,n)
B = imresize(...,method,h)

imresize resizes an image of any type using the specified interpolation
method. method is a string that can have one of these values:

= "nearest" (default) uses nearest neighbor interpolation.
<« "bilinear" uses bilinear interpolation.
= "bicubic” uses bicubic interpolation.

If you omit the method argument, imresize uses the default method of
"nearest”.

B = imresize(A,m,method) returns an image that is m times the size of A. If m
is between 0 and 1.0, B is smaller than A. If mis greater than 1.0, B is larger than
A.

B = imresize(A, [mrows ncols],method) returns an image of size
[mrows ncols]. If the specified size does not produce the same aspect ratio
as the input image has, the output image is distorted.

When the specified output size is smaller than the size of the input image, and
method is '‘bilinear™ or "bicubic”, imresize applies a lowpass filter before
interpolation to reduce aliasing. The default filter size is 11-by-11.

You can specify a different order for the default filter using
[---1 = imresize(...,method,n)

n is an integer scalar specifying the size of the filter, which is n-by-n. If n is 0
(zero), imresize omits the filtering step.

You can also specify your own filter h using

[---1 = imresize(...,method,h)

12-143

imresize

h is any two-dimensional FIR filter (such as those returned by ftrans2, fwind1,
fwind2, or fsamp?2).

Class Support The input image can be of class uint8, uintl6, or double. The output image is
of the same class as the input image.

See Also interp2 in the MATLAB Function Reference

12-144

imrotate

Purpose

Syntax

Description

Class Support

Remarks

Example

Rotate an image

B = imrotate(A,angle,method)
B = imrotate(A,angle,method, "crop®)

B = imrotate(A,angle,method) rotates the image A by angle degrees in a
counter-clockwise direction, using the specified interpolation method. method
is a string that can have one of these values:

= "nearest” (default) uses nearest neighbor interpolation.

=« "bilinear” uses bilinear interpolation.

= "bicubic" uses bicubic interpolation.

If you omit the method argument, imrotate uses the default method of
"nearest”.

The returned image matrix B is, in general, larger than A to include the whole
rotated image. imrotate sets invalid values on the periphery of B to 0.

B = imrotate(A,angle,method, "crop™) rotates the image A through angle
degrees and returns the central portion which is the same size as A.

The input image can be of class uint8, uintl6, or double. The output image is
of the same class as the input image.

To rotate the image clockwise, specify a negative angle.
I = imread("ic.tif");
J = imrotate(l,—4,"bilinear”,"crop”);
imshow(l)
figure, imshow(J)

12-145

iImrotate

See Also imcrop, imresize

12-146

iImshow

Purpose

Syntax

Description

Display an image

imshow(l,n)

imshow(l,[low high])
imshow(BW)

imshow(X,map)

imshow(RGB)
imshow(...,display_option)

imshow(x,y,A,...)
imshow filename
h = imshow(...)

imshow(1,n) displays the intensity image 1 with n discrete levels of gray. If you
omit n, imshow uses 256 gray levels on 24-bit displays, or 64 gray levels on other
systems.

imshow(l, [low high]) displays I as a grayscale intensity image, specifying
the data range for 1. The value low (and any value less than low) displays as
black, the value high (and any value greater than high) displays as white, and
values in between display as intermediate shades of gray. imshow uses the
default number of gray levels. If you use an empty matrix ([1) for [low high],
imshow uses [min(1(z)) max(1(:z))]; the minimum value in 1 displays as
black, and the maximum value displays as white.

imshow(BW) displays the binary image BW. Values of 0 display as black, and
values of 1 display as white.

imshow(X,map) displays the indexed image X with the colormap map.
imshow(RGB) displays the truecolor image RGB.

imshow(. .. ,display_option) displays the image, calling truesize if
display_option is "truesize”, or suppressing the call to truesize if
display_option is "notruesize”. Either option string can be abbreviated. If
you do not supply this argument, imshow determines whether to call truesize
based on the setting of the " ImshowTruesize" preference.

imshow(x,Y,A, ...) uses the two-element vectors x and y to establish a
nondefault spatial coordinate system, by specifying the image XData and
YData.

12-147

iImshow

Class Support

Remarks

See Also

12-148

imshow filename displays the image stored in the graphics file filename.
imshow calls imread to read the image from the file, but the image data is not
stored in the MATLAB workspace. The file must be in the current directory or
on the MATLAB path.

h = imshow(...) returns the handle to the image object created by imshow.
The input image can be of class uint8, uintl6, or double.

You can use the iptsetpref function to set several toolbox preferences that
modify the behavior of imshow. For example,

=« "ImshowBorder" controls whether imshow displays the image with a border
around it.

= "ImshowAxesVisible~ controls whether imshow displays the image with the
axes box and tick labels.

= "ImshowTruesize" controls whether imshow calls the truesize function.

Note that the display_option argument to imshow enables you to override the
" ImshowTruesize® preference

For more information about these preferences, see the reference entry for
iptsetpref.
getimage, imread, iptgetpref, iptsetpref, subimage, truesize, warp

image, imagesc in the MATLAB Function Reference

Imwrite

Purpose

Syntax

Description

Write image to graphics file

imwrite(A, filename, fmt)
imwrite(X,map,filename, fmt)
imvrite(...,Ffilename)
imwrite(...,Paraml,Vall,Param2,val2...)

imwvrite(A, filename, fmt) writes the image in A to filename in the format
specified by fmt. A can be either a grayscale image (M-by-N) or a truecolor
image (M-by-N-by-3). If A is of class uint8 or uintl6, imwrite writes the
actual values in the array to the file. If A is of class double, imwrite rescales
the values in the array before writing, using uint8(round(255*A)). This
operation converts the floating-point numbers in the range [0,1] to 8-bit
integers in the range [0,255].

imwvrite(X,map, filename, fmt) writes the indexed image in X and its
associated colormap map to filename in the format specified by fmt. If X is of
class uint8 or uintl6, imwrite writes the actual values in the array to the
file. If X is of class doubl e, imwrite offsets the values in the array before writing
using uint8(X-1). (See note below for an exception.) map must be a valid
MATLAB colormap of class double; imwrite rescales the values in map using
uint8(round(255*map)). Note that most image file formats do not support
colormaps with more than 256 entries.

Note If the image is double, and you specify PNG as the output format and a
bit depth of 16 bpp, the values in the array will be offset using uint16(X-1).

imwvrite(...,Filename) writes the image to filename, inferring the format to
use from the filename’s extension. The extension must be one of the legal
values for fmt.

imwvrite(...,Paraml,Vall,Param2,vVal2._.) specifies parameters that
control various characteristics of the output file. Parameter settings can
currently be made for HDF, PNG, JPEG, and TIFF files. For example, if you
are writing a JPEG file, you can set the “quality” of the IPEG compression. For
the lists of parameters available for each format, see the tables below.

12-149

Imwvrite

filename is a string that specifies the name of the output file, and fmt is a
string that specifies the format of the file.

This table lists the possible values for fmt.

Format File Type
“bmp*” Windows Bitmap (BMP)
“hdf~ Hierarchical Data Format (HDF)

"jpg” or "jpeg®™ Joint Photographic Experts Group (JPEG)
"pcx” Windows Paintbrush (PCX)

“png" Portable Network Graphics (PNG)
“tifTor "tiff" Tagged Image File Format (TIFF)

“xwd " X Windows Dump (XWD)

This table describes the available parameters for HDF files.

Parameter Values Default

"Compression” One of these strings: "none” (the default), "rle", “rle”
"jpeg”. "rle" isvalid only for grayscale and
indexed images. " jpeg" is valid only for grayscale
and RGB images.

"Quality” A number between 0 and 100; this parameter 75
applies only if "Compression” is "jpeg".
Higher numbers mean higher quality (less image
degradation due to compression), but the resulting
file size is larger.

"WriteMode” One of these strings: "overwrite" (the default), or “overwrite”
"append”.

12-150

Imwrite

This table describes the available parameters for JPEG files.

Parameter Values Default

"Quality" A number between 0 and 100; higher numbers 75
mean higher quality (less image degradation due to
compression), but the resulting file size is larger.

This table describes the available parameters for TIFF files.

Parameter Values Default

"Compression” One of these strings: "none”, "packbits”, "ccitt", “ccitt" for
"fax3", or "fax4". The "ccitt", "fax3", and binary images;
"fax4" compression schemes are valid for binary "packbits* for
images only. nonbinary images

"Description” Any string; fills in the ImageDescription field empty

returned by imfinfo.

"Resolution” A two-element vector containing the XResolution 72
and YResolution, or a scalar indicating both
resolutions.
"WriteMode” One of these strings: "overwrite” or "append” “overwrite®

This table describes the available parameters for PNG files.

Parameter Values Default
Author A string Empty
"Description” A string Empty
*Copyright” A string Empty
*CreationTime" A string Empty
*Software” A string Empty
"Disclaimer” A string Empty

12-151

Imwvrite

Parameter Values Default
"Warning” A string Empty
*Source” A string Empty
Comment A string Empty
"InterlaceType-~ Either "none* or "adam7* 'none’

"BitDepth*

"Transparency”

A scalar value indicating desired bit depth. For
grayscale images this can be 1, 2, 4, 8, or 16.

For grayscale images with an alpha channel this
can be 8 or 16. For indexed images this can be 1, 2,
4, or 8. For truecolor images with or without an
alpha channel this can be 8 or 16.

This value is used to indicate transparency
information only when no alpha channel is used. Set
to the value that indicates which pixels should be
considered transparent. (If the image uses a
colormap, this value will represent an index number
to the colormap.)

For indexed images: a Q-element vector in the range
[0,1] where Q is no larger than the colormap length
and each value indicates the transparency
associated with the corresponding colormap entry.
In most cases, Q=1.

For grayscale images: a scalar in the range [0,1].
The value indicates the grayscale color to be
considered transparent.

For truecolor images: a three-element vector in the
range [0,1]. The value indicates the truecolor color
to be considered transparent.

You cannot specify "Transparency® and "Alpha* at
the same time.

8 bits per pixel if
image is double or
uint8

16 bits per pixel if
image is uint16

1 bit per pixel if
image is logical

Empty

12-152

Imwrite

Parameter

Values

Default

"Background”

"Gamma*®

"Chromaticities”

"XResolution*

"YResolution*

"ResolutionUnit”

"Alpha*

"SignificantBits”

The value specifies background color to be used
when compositing transparent pixels. For indexed
images: an integer in the range [1,P], where P is the
colormap length. For grayscale images: a scalar in
the range [0,1]. For truecolor images: a
three-element vector in the range [0,1].

A nonnegative scalar indicating the file gamma

An eight-element vector [wx wy rx ry gx gy bx
by] that specifies the reference white point and the
primary chromaticities

A scalar indicating the number of pixels/unit in the
horizontal direction

A scalar indicating the number of pixels/unit in the
vertical direction

Either 'unknown' or 'meter"

A matrix specifying the transparency of each pixel
individually. The row and column dimensions must
be the same as the data array; they can be uints,
uintl6, or double, in which case the values should
be in the range [0,1].

A scalar or vector indicating how many bits in the
data array should be regarded as significant; values
must be in the range [1,BitDepth].

For indexed images: a three-element vector. For
grayscale images: a scalar. For grayscale images
with an alpha channel: a two-element vector. For
truecolor images: a three-element vector. For
truecolor images with an alpha channel: a
four-element vector

Empty

Empty

Empty

Empty

Empty

Empty
Empty

Empty

12-153

Imwvrite

In addition to these PNG parameters, you can use any parameter name that
satisfies the PNG specification for keywords, including only printable
characters, 80 characters or fewer, and no leading or trailing spaces. The value
corresponding to these user-specified parameters must be a string that
contains no control characters other than linefeed.

Format Support
This table summarizes the types of images that imwrite can write.

Format Variants
BMP 8-bit uncompressed images with associated colormap;
24-bit uncompressed images
HDF 8-bit raster image datasets, with or without associated colormap;
24-bit raster image datasets; uncompressed or with RLE or JPEG compression
JPEG Baseline JPEG images (8 or 24-bit)
Note: Indexed images are converted to RGB before writing out JPEG files,
because the JPEG format does not support indexed images.
PCX 8-bit images
PNG 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit grayscale images;
8-bit and 16-bit grayscale images with alpha channels;
1-bit, 2-bit, 4-bit, and 8-bit indexed images;
24-bit and 48-bit truecolor images with or without alpha channels
TIFF Baseline TIFF images, including 1-bit, 8-bit, and 24-bit uncompressed images;
1-bit, 8-bit, and 24-bit images with packbits compression;
1-bit images with CCITT 1D, Group 3, and Group 4 compression
XWD 8-bit ZPixmaps

Class Support

12-154

Most of the supported image file formats store uint8 data. PNG and TIFF
additionally support uint16 data. For grayscale and RGB images, if the data
array is double, the assumed dynamic range is [0,1]. The data array is
automatically scaled by 255 before being written out as uint8. If the data array
isuint8or uintl6 (PNG and TIFF only), then it is written out without scaling
as uint8 or uintl6, respectively.

Imwrite

Note If a logical double or uint8 is written to a PNG or TIFF file, it is
assumed to be a binary image and will be written with a bit depth of 1.

For indexed images, if the index array is double, then the indices are first
converted to zero-based indices by subtracting 1 from each element, and then
they are written out as uint8. If the index array is uint8 or uint16 (PNG and
TIFF only), then it is written out without modification as uint8 or uinti16,
respectively. When writing PNG files, you can override this behavior with the
"BitDepth" parameter; see the PNG table in this imwrite reference for details.

Remarks imwrite is a function in MATLAB.

Example This example appends an indexed image X and its colormap map to an existing
uncompressed multipage HDF file named flowers.hdf.

imwrite(X,map, "flowers.hdf", "Compression®, "none”, . ..
"WriteMode®, "append®)

See Also fwrite, imfinfo, imread

12-155

ind2gray

Purpose
Syntax

Description

Class Support

Example

Algorithm

See Also

12-156

Convert an indexed image to an intensity image

1 = ind2gray(X,map)

I = ind2gray(X,map) converts the image X with colormap map to an intensity
image 1. ind2gray removes the hue and saturation information from the input

image while retaining the luminance.

X can be of class uint8, uintl6, or double. 1 is of class double.

load trees

I = ind2gray(X,map);
imshow(X,map)
figure, imshow(l)

ind2gray converts the colormap to NTSC coordinates using rgb2ntsc, and sets
the hue and saturation components (I and Q) to zero, creating a gray colormap.
ind2gray then replaces the indices in the image X with the corresponding
grayscale intensity values in the gray colormap.

gray2ind, imshow, rgh2ntsc

ind2rgb

Purpose
Syntax

Description

Class Support

See Also

Convert an indexed image to an RGB image

RGB = ind2rgb(X,map)

RGB = ind2rgb(X,map) converts the matrix X and corresponding colormap map

to RGB (truecolor) format.

X can be of class uint8, uintl6, or double. RGB is an m-by-n-by-3 array of class

double.

ind2gray, rgb2ind

12-157

iptgetpref

Purpose
Syntax

Description

Example

See Also

12-158

Get Image Processing Toolbox preference
value = iptgetpref(prefname)

value = iptgetpref(prefname) returns the value of the Image Processing
Toolbox preference specified by the string prefname. Preference names are case
insensitive and can be abbreviated.

iptgetpref without an input argument displays the current setting of all
Image Processing Toolbox preferences.

value iptgetpref (" ImshowAxesVisible®)

value

off

imshow, iptsetpref

iptsetpref

Purpose Set Image Processing Toolbox preference
Syntax iptsetpref(prefname,value)
Description iptsetpref(prefname,value) sets the Image Processing Toolbox preference

specified by the string prefname to value. The setting persists until the end of
the current MATLAB session, or until you change the setting. (To make the
value persist between sessions, put the command in your startup.m file.)

This table describes the available preferences. Note that the preference names
are case insensitive and can be abbreviated.

Preference Name Values

" ImshowBorder™ "loose" (default) or "tight"

If ImshowBorder™ is "loose", imshow displays the image with a border between the image and
the edges of the figure window, thus leaving room for axes labels, titles, etc. If " ImshowBorder*" is
"tight", imshow adjusts the figure size so that the image entirely fills the figure. (However,
there may still be a border if the image is very small, or if there are other objects besides the
image and its axes in the figure.)

" ImshowAxesVisible” “on" or "off" (default)

If " ImshowAxesVisible” is "on~, imshow displays the image with the axes box and tick labels. If
" ImshowAxesVisible® is "off", imshow displays the image without the axes box and tick labels.

" ImshowTruesize* "auto” (default) or "manual”

If *ImshowTruesize" is "manual ", imshow does not call truesize. If "ImshowTruesize" is
"auto”, imshow automatically decides whether to call truesize. (imshow calls truesize if there
will be no other objects in the resulting figure besides the image and its axes.) You can override
this setting for an individual display by specifying the display_option argument to imshow, or
you can call truesize manually after displaying the image.

"TruesizeWarning~ "on” (default) or "off"

If "TruesizeWarning” is "on", the truesize function displays a warning if the image is too large
to fit on the screen. (The entire image is still displayed, but at less than true size.) If
"TruesizeWarning” is "off", truesize does not display the warning. Note that this preference
applies even when you call truesize indirectly, such as through imshow.

12-159

iptsetpref

iptsetpref(prefname) displays the valid values for prefname.
Example iptsetpref (" ImshowBorder®, "tight®)

See Also imshow, iptgetpref, truesize
axis in the MATLAB Function Reference

12-160

iradon

Purpose

Syntax

Description

Compute inverse Radon transform

1 = iradon(P,theta)
I = iradon(P,theta, interp,filter,d,n)
[1,h] = iradon(...)

I = iradon(P,theta) reconstructs the image 1 from projection data in the
two-dimensional array P. The columns of P are parallel beam projection data.
iradon assumes that the center of rotation is the center point of the projections,
which is defined as ceil(size(P,1)/2).

theta describes the angles (in degrees) at which the projections were taken. It
can be either a vector containing the angles or a scalar specifying D_theta, the
incremental angle between projections. If theta is a vector, it must contain
angles with equal spacing between them. If theta is a scalar specifying
D_theta, the projections are taken at angles theta = m*D_theta, where
m=0,1,2,...,size(P,2)-1. If the input is the empty matrix ([]), D_theta
defaults to 180/size(P,2).

I = iradon(P,theta, interp, filter,d,n) specifies parameters to use in the
inverse Radon transform. You can specify any combination of the last four
arguments. iradon uses default values for any of these arguments that you
omit.

interp specifies the type of interpolation to use in the backprojection. The
available options are listed in order of increasing accuracy and computational
complexity:

= "nearest” — nearest neighbor interpolation
=« "linear” — linear interpolation (default)
<« "spline” — spline interpolation

filter specifies the filter to use for frequency domain filtering. filter is a
string that specifies any of the following standard filters:

< "Ram-Lak" — The cropped Ram-Lak or ramp filter (default). The frequency
response of this filter is | £ |. Because this filter is sensitive to noise in the
projections, one of the filters listed below may be preferable. These filters
multiply the Ram-Lak filter by a window that de-emphasizes high
frequencies.

12-161

iradon

Class Support

Example

12-162

=« "Shepp-Logan” — The Shepp-Logan filter multiplies the Ram-Lak filter by a
sinc function.

= "Cosine” — The cosine filter multiplies the Ram-Lak filter by a cosine
function.

= "Hamming" — The Hamming filter multiplies the Ram-Lak filter by a
Hamming window.

< "Hann" — The Hann filter multiplies the Ram-Lak filter by a Hann window.

d is a scalar in the range (0,1] that modifies the filter by rescaling its frequency
axis. The default is 1. If d is less than 1, the filter is compressed to fit into the
frequency range [0,d], in normalized frequencies; all frequencies above d are set
to 0.

n is a scalar that specifies the number of rows and columns in the reconstructed
image. If n is not specified, the size is determined from the length of the
projections.

n = 2*floor(size(P,1)/(2*sqrt(2)))

If you specify n, iradon reconstructs a smaller or larger portion of the image,
but does not change the scaling of the data. If the projections were calculated
with the radon function, the reconstructed image may not be the same size as
the original image.

[1.h] = iradon(--.) returns the frequency response of the filter in the vector
h.

All input arguments must be of class double. The output arguments are of class
double.

phantom(128);

= radon(P,0:179);

= iradon(R,0:179, "nearest”,"Hann");
mshow(P)

igure, imshow(l)

= 0 O
|

i
T

iradon

Algorithm

See Also

References

iradon uses the filtered backprojection algorithm to perform the inverse Radon
transform. The filter is designed directly in the frequency domain and then
multiplied by the FFT of the projections. The projections are zero-padded to a
power of 2 before filtering to prevent spatial domain aliasing and to speed up
the FFT.

radon, phantom

[1] Kak, Avinash C., and Malcolm Slaney, Principles of Computerized
Tomographic Imaging. New York: IEEE Press.

12-163

iIsbw

Purpose
Syntax

Description

Class Support

See Also

12-164

Return true for a binary image

flag = isbw(A)

flag = isbw(A) returns 1 if Ais a binary image and 0 otherwise.

isbw uses these criteria to decide if A is a binary image:
= If Ais of class double, all values must be either 0 or 1, the logical flag must
be on, and the number of dimensions of A must be 2.

= If Ais of class uint8, the logical flag must be on, and the number of
dimensions of A must be 2.

=« If Ais of class uint16, it is not a binary image. (The toolbox does not support
uintl6 binary images.)

Note A four-dimensional array that contains multiple binary images returns
0, not 1.

A can be of class uint8, uint16, or double.

isind, isgray, isrgb

isgray

Purpose
Syntax

Description

Class Support

See Also

Return true for intensity image
flag = isgray(A)

flag = isgray(A) returns 1 if Ais a grayscale intensity image and 0 otherwise.

isgray uses these criteria to decide if A is an intensity image:

= If Ais of class double, all values must be in the range [0,1], and the number
of dimensions of A must be 2.

« If Ais of class uint16 or uint8, the number of dimensions of A must be 2.

Note A four-dimensional array that contains multiple intensity images
returns O, not 1.

A can be of class uint8, uint16, or double.

isbw, isind, isrgb

12-165

isind

Purpose
Syntax

Description

Class Support

See Also

12-166

Return true for an indexed image

isind(A)

flag

flag = isind(A) returns 1 if A is an indexed image and 0 otherwise.

isind uses these criteria to determine if A is an indexed image:

= If Ais of class double, all values in A must be integers greater than or equal
to 1, and the number of dimensions of A must be 2.

= If Ais of class uint8, its logical flag must be off, and the number of
dimensions of A must be 2.

« |f A is of class uint16, the number of dimensions of A must be 2.

Note A four-dimensional array that contains multiple indexed images
returns 0, not 1.

A can be of class uint8, uint16, or double.

isbw, isgray, isrgb

isrgb

Purpose
Syntax

Description

Class Support

See Also

Return true for an RGB image
flag = isrgh(A)

flag = isrgb(A) returns 1 if A is an RGB truecolor image and 0 otherwise.

isrgb uses these criteria to determine if A is an RGB image:

= If A is of class double, all values must be in the range [0,1], and A must be
m-by-n-by-3.

= If Ais of class uintl16 or uint8, A must be m-by-n-by-3.

Note A four-dimensional array that contains multiple RGB images returns 0,
not 1.

A can be of class uint8, uint16, or double.

isbw, isgray, isind

12-167

makelut

Purpose

Syntax

Description

Class Support

Example

12-168

Construct a lookup table for use with applylut

lut = makelut(fun,n)
lut = makelut(fun,n,P1,P2,_...)

lut = makelut(fun,n) returns a lookup table for use with applylut. fun is
either a string containing the name of a function or an inline function object.
The function should take a 2-by-2 or 3-by-3 matrix of 1's and 0's as input and
return ascalar. nis either 2 or 3, indicating the size of the input to fun. makelut
creates lut by passing all possible 2-by-2 or 3-by-3 neighborhoods to fun, one
at a time, and constructing either a 16-element vector (for 2-by-2
neighborhoods) or a 512-element vector (for 3-by-3 neighborhoods). The vector
consists of the output from fun for each possible neighborhood.

lut = makelut(fun,n,P1,P2,...) passes the additional parameters
P1,P2,..., to fun.

lut is returned as a vector of class double.

In this example, the function returns 1 (true) if the number of 1's in the
neighborhood is 2 or greater, and returns 0 (false) otherwise. makelut then uses
the function to construct a lookup table for 2-by-2 neighborhoods.

inline("sum(x(:)) >= 2");

f =
lut = makelut(f,2)

lut

PRPRRPRORRPRRPROROOO

makelut

e

See Also applylut

12-169

mat2gray

Purpose

Syntax

Description

Class Support

Example

See Also

12-170

Convert a matrix to a grayscale intensity image

mat2gray (A, [amin amax])
mat2gray (A)

I = mat2gray(A, [amin amax]) converts the matrix A to the intensity image 1.
The returned matrix I contains values in the range 0 (black) to 1.0 (full
intensity or white). amin and amax are the values in A that correspond to 0 and

1.0in 1.

I = mat2gray(A) sets the values of amin and amax to the minimum and
maximum values in A.

The input array A and the output image 1 are of class double.

| imread("rice.tif");

J filter2(fspecial("sobel"),1);
K = mat2gray(J);

imshow(l)

figure, imshow(K)

gray2ind

mean?2

Purpose
Syntax
Description
Class Support
Algorithm

See Also

Compute the mean of the elements of a matrix

b = mean2(A)

b = mean2(A) computes the mean of the values in A.
Alis an array of class double or of any integer class. b is a scalar of class double.

mean2 computes the mean of an array A using mean(A(:)).

std2
mean, std in the MATLAB Function Reference

12-171

medfilt2

Purpose

Syntax

Description

Class Support

Remarks

12-172

Perform two-dimensional median filtering

B = medfilt2(A,[m n])
B = medfilt2(A)
B medfilt2(A, "indexed®,...)

Median filtering is a nonlinear operation often used in image processing to
reduce “salt and pepper” noise. Median filtering is more effective than
convolution when the goal is to simultaneously reduce noise and preserve
edges.

B = medfilt2(A,[m n]) performs median filtering of the matrix A in two
dimensions. Each output pixel contains the median value in the m-by-n
neighborhood around the corresponding pixel in the input image. medfi 1t2
pads the image with zeros on the edges, so the median values for the points
within [m n]/2 of the edges may appear distorted.

B = medfilt2(A) performs median filtering of the matrix A using the default
3-by-3 neighborhood.

B = medfilt2(A, "indexed", ...) processes A as an indexed image, padding
with zeros if the class of A is uint8, or ones if the class of A is double.

The input image A can be of class uint8, uintl16, or double (unless the
" indexed” syntax is used, in which case A cannot be of class uint16). The
output image B is of the same class as A.

If the input image A is of class uint8, all of the output values are returned as
uint8 integers. If the number of pixels in the neighborhood (i.e., m*n) is even,
some of the median values may not be integers. In these cases, the fractional
parts are discarded.

For example, suppose you call medfilt2 using 2-by-2 neighborhoods, and the
input image is a uint8 array that includes this neighborhood.

15
4 8

medfi 1t2 returns an output value of 4 for this neighborhood, although the true
median is 4.5.

medfilt2

Example This example adds salt and pepper noise to an image, then restores the image
using medfilt2.

imread("eight._tif");

imnoise(l, "salt & pepper®,0.02);
medfilt2(J);

mshow(J)

igure, imshow(K)

1

J
K
i
T

Algorithm medfi 1t2 uses ordfilt2 to perform the filtering.
See Also filter2, ordfilt2, wiener?2
Reference [1] Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood

Cliffs, NJ: Prentice Hall, 1990. pp. 469-476.

12-173

montage

Purpose

Syntax

Description

Class Support

Example

12-174

Display multiple image frames as a rectangular montage

montage(l)
montage (BW)
montage(X,map)
montage(RGB)

h = montage(...)

montage displays all of the frames of a multiframe image array in a single
image object, arranging the frames so that they roughly form a square.

montage (1) displays the k frames of the intensity image array 1. I is
m-by-n-by-1-by-k.

montage (BW) displays the k frames of the binary image array BW. BW is
m-by-n-by-1-by-k.

montage (X,map) displays the k frames of the indexed image array X, using the
colormap map for all frames. X is m-by-n-by-1-by-k.

montage (RGB) displays the k frames of the truecolor image array RGB. RGB is
m-by-n-by-3-by-k.

h = montage(...) returns the handle to the image object.
The input image can be of class uint8, uintl6, or double.

load mri
montage(D,map)

montage

immovie

See Also

12-175

nifilter

Purpose

Syntax

Description

Class Support

Remarks

Example

See Also

12-176

Perform general sliding-neighborhood operations

B = nifilter(A,[m n],fun)

B = nifilter(A,[m n],fun,P1,P2,__.)

B = nifilter(A, "indexed®,...)

B = nifilter(A,[m n],fun) applies the function fun to each m-by-n sliding

block of A. fun is a function that accepts an m-by-n matrix as input, and returns
a scalar result.

c = fun(x)

c is the output value for the center pixel in the m-by-n block x. nlfilter calls
fun for each pixel in A. nIfilter zero pads the m-by-n block at the edges, if
necessary.

B = nifilter(A,[m n],fun,P1,P2,_._.) passes the additional parameters
P1,P2,..., to fun.

B = nifilter(A, "indexed", ...) processes A as an indexed image, padding
with ones if A is of class double and zeros if A is of class uints8.

The input image A can be of any class supported by fun. The class of B depends
on the class of the output from fun.

nlfilter can take a long time to process large images. In some cases, the
colfilt function can perform the same operation much faster.

fun can be a function_handle, created using @. This example produces the
same result as calling medfi 1t2 with a 3-by-3 neighborhood.

B = nifilter(A,[3 3],@myfun);
where myfun is an M-file containing

function scalar = myfun(x)
scalar = median(x(:));

fun can also be an inline object. The example above can be written as

fun = inline(C"median(x(:))");

blkproc, colfilt

ntsc2rgb

Purpose

Syntax

Description

Class Support

See Also

Convert NTSC values to RGB color space

rgbmap = ntsc2rgb(yigmap)
RGB = ntsc2rgb(Y1Q)

rgbmap = ntsc2rgb(yigmap) converts the m-by-3 NTSC (television) color
values in yigmap to RGB color space. If yigmap is m-by-3 and contains the NTSC
luminance (Y)and chrominance (I and Q) color components as columns, then
rgbmap is an m-by-3 matrix that contains the red, green, and blue values
equivalent to those colors. Both rgbmap and yigmap contain intensities in the
range 0 to 1.0. The intensity O corresponds to the absence of the component,
while the intensity 1.0 corresponds to full saturation of the component.

RGB = ntsc2rgb(Y1Q) converts the NTSC image YIQ to the equivalent truecolor
image RGB.

ntsc2rgb computes the RGB values from the NTSC components using

R 1.000 0.956 0.621||Y
G| = |1.000 -0.272 -0.647|| 1
B 1.000 -1.106 1.703]|Q

The input image or colormap must be of class double. The output is of class
double.

rgb2ntsc, rgb2ind, ind2rgb, ind2gray

12-177

ordfilt2

Purpose

Syntax

Description

Class Support

Remarks

See Also

12-178

Perform two-dimensional order-statistic filtering

B = ordfilt2(A,order,domain)
= ordfilt2(A,order,domain,S)
ordfilt2(...,padopt)

W w
Inmn 1

B = ordfilt2(A,order,domain) replaces each element in A by the order-th
element in the sorted set of neighbors specified by the nonzero elements in
domain.

B = ordfilt2(A,order,domain,S), where S is the same size as domain, uses
the values of S corresponding to the nonzero values of domain as additive
offsets.

B = ordfilt2(...,padopt) controls how the matrix boundaries are padded.
Set padopt to 'zeros' (the default), or 'symmetric'. If padopt is 'zeros', A is
padded with zeros at the boundaries. If padopt is 'symmetric', A is
symmetrically extended at the boundaries.

A can be of class uint8, uinti16, or double. The class of B is the same as the class
of A, unless the additive offset form of ordfilt2 is used, in which case the class
of B is double

domain is equivalent to the structuring element used for binary image
operations. It is a matrix containing only 1's and Q’s; the 1's define the
neighborhood for the filtering operation.

For example, B = ordfilt2(A,5,0nes(3,3)) implements a 3-by-3 median
filter; B = ordfilt2(A,1,0nes(3,3)) implements a 3-by-3 minimum filter;
and B = ordfilt2(A,9,0nes(3,3)) implements a 3-by-3 maximum filter.
B=ordfilt2(A,1,[0 1 0; 1 0 1; 0 1 0]) replaces each element in A by the
minimum of its north, east, south, and west neighbors.

The syntax that includes S (the matrix of additive offsets) can be used to
implement grayscale morphological operations, including grayscale dilation
and erosion.

medFilt2

ordfilt2

Reference [1] Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision,
Volume I. Addison-Wesley, 1992.

12-179

phantom

Purpose

Syntax

Description

12-180

Generate a head phantom image

P = phantom(def,n)
P phantom(E,n)
[P,E] = phantom(...)

P = phantom(def,n) generates an image of a head phantom that can be used
to test the numerical accuracy of radon and iradon or other two-dimensional
reconstruction algorithms. P is a grayscale intensity image that consists of one
large ellipse (representing the brain) containing several smaller ellipses
(representing features in the brain).

def is a string that specifies the type of head phantom to generate. Valid values
are:

= "Shepp-Logan® — a test image used widely by researchers in tomography.

= "Modified Shepp-Logan*® (default) — a variant of the Shepp-Logan phantom
in which the contrast is improved for better visual perception.

n is a scalar that specifies the number of rows and columns in P. If you omit the
argument, n defaults to 256.

P = phantom(E,n) generates a user-defined phantom, where each row of the
matrix E specifies an ellipse in the image. E has six columns, with each column
containing a different parameter for the ellipses. This table describes the
columns of the matrix.

Column Parameter Meaning

Column 1 A Additive intensity value of the
ellipse

Column 2 a Length of the horizontal semi-axis of
the ellipse

Column 3 b Length of the vertical semi-axis of
the ellipse

Column 4 x0 x-coordinate of the center of the
ellipse

phantom

Class Support

Remarks

Example

Column Parameter Meaning

Column 5 y0 y-coordinate of the center of the
ellipse

Column 6 phi Angle (in degrees) between the

horizontal semi-axis of the ellipse
and the x-axis of the image

For purposes of generating the phantom, the domains for the x- and y-axes
span [-1,1]. Columns 2 through 5 must be specified in terms of this range.

[P,E] = phantom(...) returns the matrix E used to generate the phantom.
All inputs must be of class double. All outputs are of class double.

For any given pixel in the output image, the pixel’s value is equal to the sum of
the additive intensity values of all ellipses that the pixel is a part of. If a pixel
is not part of any ellipse, its value is 0.

The additive intensity value A for an ellipse can be positive or negative; if it is
negative, the ellipse will be darker than the surrounding pixels. Note that,
depending on the values of A, some pixels may have values outside the range
[0,1].

P = phantom("Modified Shepp-Logan®,b200);
imshow(P)

12-181

phantom

Reference [1] Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice Hall, 1989. p. 439.

See Also radon, iradon

12-182

pixval

Purpose

Syntax

Purpose

See Also

Display information about image pixels

pixval on

pixval off

pixval

pixval (fig,option)

pixval on turnson interactive display of information about image pixels in the
current figure. pixval installs a black bar at the bottom of the figure, which
displays the (x,y) coordinates for whatever pixel the cursor is currently over,
and the color information for that pixel. If the image is binary or intensity, the
color information is a single intensity value. If the image is indexed or RGB,
the color information is an RGB triplet. The values displayed are the actual
data values, regardless of the class of the image array, or whether the data is
in normal image range.

If you click on the image and hold down the mouse button while you move the
cursor, pixval also displays the Euclidean distance between the point you
clicked on and the current cursor location. pixval draws a line between these
points to indicate the distance being measured. When you release the mouse
button, the line and the distance display disappear.

You can move the display bar by clicking on it and dragging it to another place
in the figure.

pixval offturnsinteractive display off in the current figure. You can also turn
off the display by clicking the button on the right side of the display bar.

pixval toggles interactive display on or off in the current figure.

pixval (Fig,option) applies the pixval command to the figure specified by
fig. option is string containing “"on" or "off".

impixel, improfile

12-183

gtdecomp

Purpose

Syntax

Description

12-184

Perform quadtree decomposition

= gtdecomp(l)

= gtdecomp(l,threshold)

= gtdecomp(l,threshold,mindim)

= gtdecomp(l,threshold, [mindim maxdim])

nu nu unon
|

S = qtdecomp(l,fun)
S = qtdecomp(l,fun,P1,P2,_..)

gtdecomp divides a square image into four equal-sized square blocks, and then
tests each block to see if it meets some criterion of homogeneity. If a block
meets the criterion, it is not divided any further. If it does not meet the
criterion, itis subdivided again into four blocks, and the test criterion is applied
to those blocks. This process is repeated iteratively until each block meets the
criterion. The result may have blocks of several different sizes.

S = gtdecomp(1) performs a quadtree decomposition on the intensity image 1,
and returns the quadtree structure in the sparse matrix S. If S(k,m) is honzero,
then (k,m) is the upper-left corner of a block in the decomposition, and the size
of the block is given by S(k,m). By default, gtdecomp splits a block unless all
elements in the block are equal.

S = gtdecomp(l,threshold) splits a block if the maximum value of the block
elements minus the minimum value of the block elements is greater than
threshold. threshold is specified as a value between 0 and 1, even if I is of
class uint8 or uintl6. If 1 is uint8, the threshold value you supply is
multiplied by 255 to determine the actual threshold to use; if I is uint16, the
threshold value you supply is multiplied by 65535.

S = gtdecomp(l,threshold,mindim) will not produce blocks smaller than
mindim, even if the resulting blocks do not meet the threshold condition.

S = gtdecomp(l,threshold, [mindim maxdim]) will not produce blocks
smaller than mindim or larger than maxdim. Blocks larger than maxdim are split
even if they meet the threshold condition. maxdim/mindim must be a power of 2.

S = gtdecomp(l,fun) uses the function fun to determine whether to split a
block. gtdecomp calls fun with all the current blocks of size m-by-m stacked into
an m-by-m-by-k array, where k is the number of m-by-m blocks. fun should return

gtdecomp

Class Support

Remarks

Example

a k-element vector, containing only 1's and 0's, where 1 indicates that the
corresponding block should be split, and 0 indicates it should not be split. (For
example, if k(3) is 0, the third m-by-m block should not be split.) fun can be a
function_handle, created using @, or an inline object.

S = gtdecomp(l,fun,P1,P2,...) passes P1,P2, ..., as additional arguments
to fun.

For the syntaxes that do not include a function, the input image can be of class
uint8, uintl6, or double. For the syntaxes that include a function, the input
image can be of any class supported by the function. The output matrix is
always of class sparse.

gtdecomp is appropriate primarily for square images whose dimensions are a
power of 2, such as 128-by-128 or 512-by-512. These images can be divided
until the blocks are as small as 1-by-1. If you use qtdecomp with an image
whose dimensions are not a power of 2, at some point the blocks cannot be
divided further. For example, if an image is 96-by-96, it can be divided into
blocks of size 48-by-48, then 24-by-24, 12-by-12, 6-by-6, and finally 3-by-3. No
further division beyond 3-by-3 is possible. To process this image, you must set
mindimto 3 (or to 3 times a power of 2); if you are using the syntax that includes
a function, the function must return 0 at the point when the block cannot be
divided further.

1 =11 1 1 1 2 3 6 6
1 1 2 1 4 5 6 8

1 1 1 1 10 15 7 7

1 1 1 1 20 25 7 7

20 22 20 22 1 2 3 4

20 22 22 20 5 6 7 8

20 22 20 20 9 10 11 12
22 22 20 20 13 14 15 16];

S = qtdecomp(l,5);

full(s)

12-185

gtdecomp

ans

qtgetblk, qtsetblk

See Also

12-186

gtgetblk

Purpose

Syntax

Description

Class Support

Remarks

Example

Get block values in quadtree decomposition

[vals,r,c] = gtgetblk(l,S,dim)
[vals, idx] = gtgetblk(l,S,dim)

[vals,r,c] = qtgetblk(l,S,dim) returns in vals an array containing the
dim-by-dim blocks in the quadtree decomposition of 1. S is the sparse matrix
returned by gtdecomp; it contains the quadtree structure. vals is a
dim-by-dim-by-k array, where k is the number of dim-by-dim blocks in the
quadtree decomposition; if there are no blocks of the specified size, all outputs
are returned as empty matrices. r and c are vectors containing the row and
column coordinates of the upper-left corners of the blocks.

[vals,idx] = qtgetblk(l,S,dim) returns in idx a vector containing the
linear indices of the upper-left corners of the blocks.

I can be of class uint8, uint16, or double. S is of class sparse.

The ordering of the blocks in vals matches the columnwise order of the blocks
in 1. For example, if vals is 4-by-4-by-2, vals(:, -, 1) contains the values from
the first 4-by-4 block in I, and vals(:, - ,2) contains the values from the second
4-by-4 block.

This example continues the gtdecomp example.

[vals,r,c] = gtgetblk(l,S,4)

vals(:,:,1) =

R R R R
e
PR NP
PR R R

12-187

gtgetblk

See Also

12-188

vals(:,:

20
20
20
22

=

qtdecomp, qtsetblk

.2)

22
22
22
22

20
22
20
20

22
20
20
20

gtsetblk

Purpose
Syntax

Description

Class Support

Remarks

Example

See Also

Set block values in quadtree decomposition
J = qtsetblk(l,S,dim,vals)

J = gtsetblk(l,S,dim,vals) replaces each dim-by-dim block in the quadtree
decomposition of 1 with the corresponding dim-by-dim block in vals. S is the
sparse matrix returned by gtdecomp; it contains the quadtree structure. vals
is a dim-by-dim-by-k array, where k is the number of dim-by-dim blocks in the
quadtree decomposition.

I can be of class uint8, uint16, or double. S is of class sparse.

The ordering of the blocks in vals must match the columnwise order of the
blocks in 1. For example, if vals is 4-by-4-by-2, vals(:, :,1) contains the
values used to replace the first 4-by-4 block in 1, and vals(:, - ,2) contains the
values for the second 4-by-4 block.

This example continues the gtgetblock example.

newvals = cat(3,zeros(4),ones(4));
J = qtsetblk(l,S,4,newvals)

J =
0 0 0] 0 2 3 6 6
0 0 0] 0 4 5 6 8
0 0 0] 0] 10 15 7 7
0 0 0 0 20 25 7 7
1 1 1 1 1 2 3 4
1 1 1 1 5 6 7 8
1 1 1 1 9 10 11 12
1 1 1 1 13 14 15 16

qtdecomp, qtgetblk

12-189

radon

Purpose

Syntax

Description

Class Support

Remarks

Example

12-190

Compute Radon transform

R = radon(l,theta)
R = radon(l,theta,n)
[R,xp] = radon(...)

The radon function computes the Radon transform, which is the projection of
the image intensity along a radial line oriented at a specified angle.

R = radon(l,theta) returns the Radon transform of the intensity image 1 for
the angle theta degrees. If theta is a scalar, the result R is a column vector
containing the Radon transform for theta degrees. If theta is a vector, then R
is a matrix in which each column is the Radon transform for one of the angles
in theta. If you omit theta, it defaults to 0:179.

R = radon(l,theta,n) returns a Radon transform with the projection
computed at n points. R has n rows. If you do not specify n, the number of points
at which the projection is computed is

2*ceil(norm(size(l)—Ffloor((size(1)-1)/2)-1))+3
This number is sufficient to compute the projection at unit intervals, even

along the diagonal.

[R,xp] = radon(...) returns a vector xp containing the radial coordinates
corresponding to each row of R.

I can be of class double or of any integer class. All other inputs and outputs are
of class double.

The radial coordinates returned in xp are the values along the x'-axis, which is
oriented at theta degrees counterclockwise from the x-axis. The origin of both
axes is the center pixel of the image, which is defined as

floor((size(1)+1)/2)
For example, in a 20-by-30 image, the center pixel is (10,15).

iptsetpref (" ImshowAxesVisible®,"on")
I = zeros(100,100);

1(25:75,25:75) = 1;

radon

theta = 0:180;
[R,xp] = radon(l,theta);
imshow(theta,xp,R,[], "notruesize®), colormap(hot), colorbar

See Also iradon, phantom

References Bracewell, Ronald N. Two-Dimensional Imaging. Englewood Cliffs, NJ:
Prentice Hall, 1995. pp. 505-537.

Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood Cliffs,
NJ: Prentice Hall, 1990. pp. 42-45.

12-191

rgb2gray

Purpose

Syntax

Description

Class Support

Algorithm

See Also

12-192

Convert an RGB image or colormap to grayscale

1 = rgb2gray(RGB)
newmap = rgb2gray(map)

rgb2gray converts RGB images to grayscale by eliminating the hue and
saturation information while retaining the luminance.

I = rgb2gray(RGB) converts the truecolor image RGB to the grayscale intensity
image 1.

newmap = rgb2gray(map) returns a grayscale colormap equivalent to map.
If the input is an RGB image, it can be of class uint8, uinti6, or double; the
output image 1 is of the same class as the input image. If the input is a

colormap, the input and output colormaps are both of class double.

rgb2gray converts the RGB values to NTSC coordinates, sets the hue and
saturation components to zero, and then converts back to RGB color space.

ind2gray, ntsc2rgb, rgbh2ind, rgb2ntsc

rgb2hsv

Purpose

Syntax

Description

Class Support

Remarks

See Also

Convert RGB values to hue-saturation-value (HSV) color space

hsvmap = rgb2hsv(rgbmap)
HSV = rgb2hsv(RGB)

hsvmap = rgb2hsv(rgbmap) converts the m-by-3 RGB values in RGB to HSV
color space. hsvmap is an m-by-3 matrix that contains the hue, saturation, and
value components as columns that are equivalent to the colors in the RGB
colormap. Both rgbmap and hsvmap are of class double and contain values in
the range 0 to 1.0.

HSV = rgb2hsv(RGB) converts the truecolor image RGB to the equivalent HSV
image HSV.

If the input is an RGB image, it can be of class uint8, uinti6, or double; the
output image is of class double. If the input is a colormap, the input and output
colormaps are both of class double.

rgb2hsv is a function in MATLAB.

hsv2rgb, rgbplot
colormap in the MATLAB Function Reference

12-193

rgb2ind

Purpose

Syntax

Description

Class Support

Remarks

12-194

Convert an RGB image to an indexed image

[X,map] = rgb2ind(RGB,tol)

[X,map] = rgb2ind(RGB,n)

X = rgb2ind(RGB,map)

[---1 = rgb2ind(...,dither_option)

rgb2ind converts RGB images to indexed images using one of three different
methods: uniform quantization, minimum variance quantization, and
colormap mapping. For all of these methods, rgb2ind also dithers the image
unless you specify "nodither* for dither_option.

[X,map] = rgb2ind(RGB,tol) converts the RGB image to an indexed image X
using uniform quantization. map contains at most (floor(1/tol)+1)"3 colors.
tol must be between 0 and 1.0.

[X,map] = rgb2ind(RGB,n) converts the RGB image to an indexed image X
using minimum variance quantization. map contains at most n colors.

X = rgb2ind(RGB,map) converts the RGB image to an indexed image X with
colormap map by matching colors in RGB with the nearest color in the colormap
map.

[-..] = rgb2ind(...,dither_option) enables or disables dithering.
dither_option is a string that can have one of these values:

< "dither" (default) dithers, if necessary, to achieve better color resolution at
the expense of spatial resolution.

= "nodither™ maps each color in the original image to the closest color in the
new map. No dithering is performed.

The input image can be of class uint8, uintl6, or double. The output image is
of class uint8 if the length of map is less than or equal to 256. It is double
otherwise.

If you specify tol, rgb2ind uses uniform quantization to convert the image.
This method involves cutting the RGB color cube into smaller cubes of length
tol. For example, if you specify a tol of 0.1, the edges of the cubes are
one-tenth the length of the RGB cube. The total number of small cubes is

n = (fFloor(1/tol)+1)"3

rgb2ind

Each cube represents a single color in the output image. Therefore, the
maximum length of the colormap is n. rgb2ind removes any colors that don't
appear in the input image, so the actual colormap may be much smaller than n.

If you specify n, rgb2ind uses minimum variance quantization. This method
involves cutting the RGB color cube into smaller boxes (not necessarily cubes)
of different sizes, depending on how the colors are distributed in the image. If
the input image actually uses fewer colors than the number you specify, the
output colormap is also smaller.

If you specify map, rgb2ind uses colormap mapping, which involves finding the
colors in map that best match the colors in the RGB image.

Example RGB = imread("flowers.tif");
[X,map] = rgb2ind(RGB,128);
imshow(X,map)

See Also cmunique, dither, imapprox, ind2rgb, rgb2gray

12-195

rgb2ntsc

Purpose

Syntax

Description

Class Support

Remarks

See Also

12-196

Convert RGB values to NTSC color space

yigmap = rgb2ntsc(rgbmap)
YIQ = rgb2ntsc(RGB)

yigmap = rgb2ntsc(rgbmap) converts the m-by-3 RGB values in rbgmap to
NTSC color space. yigmap is an m-by-3 matrix that contains the NTSC
luminance (Y) and chrominance (I and Q) color components as columns that are
equivalent to the colors in the RGB colormap.

Y1Q = rgb2ntsc(RGB) converts the truecolor image RGB to the equivalent NTSC
image Y1Q.

rgb2ntsc defines the NTSC components using

Y 0.299 0587 0.114| R

I| = 10596 -0.274 -0.322||G
Q 0.211 -0.523 0.312||B

If the input is an RGB image, it can be of class uint8, uinti6, or double; the
output image is of class double. If the input is a colormap, the input and output
colormaps are both of class double.

In the NTSC color space, the luminance is the grayscale signal used to display
pictures on monochrome (black and white) televisions. The other components

carry the hue and saturation information.

ntsc2rgb, rgb2ind, ind2rgb, ind2gray

rgb2ycbcr

Purpose

Syntax

Description

Class Support

See Also

Convert RGB values to YChCr color space

ycbecrmap = rgb2ycbcr(rgbmap)
YCBCR = rgb2ycbcr(RGB)

ycbcrmap = rgb2ycber(rgbmap) converts the RGB values in rbgmap to the
YCDbCr color space. ycbcrmap is an m-by-3 matrix that contains the YCbCr
luminance (Y) and chrominance (Cb and Cr) color components as columns.
Each row represents the equivalent color to the corresponding row in the RGB
colormap.

YCBCR = rgb2ycbcr(RGB) converts the truecolor image RGB to the equivalent
image in the YCbCr color space.

If the input is an RGB image, it can be of class uint8, uinti6, or double; the
output image is of the same class as the input image. If the input is a colormap,

the input and output colormaps are both of class double.

ntsc2rgb, rgb2ntsc, ycbcr2rgb

12-197

rgbplot

Purpose Plot colormap

Syntax rgbplot(map)

Description rgbplot(map) plots the three columns of map, where map is an m-by-3 colormap
matrix. rgbplot draws the first column in red, the second in green, and the
third in blue.

Example rgbplot(jet)

1
0.9 4
0.8 4
0.7 4
0.6 i
0.5 i
0.4 g
0.3 i
0.2 i
0.1 i

0 1 1 1 1 1 1

0 10 20 30 40 50 60 70
See Also colormap in the MATLAB Function Reference

12-198

roicolor

Purpose

Syntax

Description

Class Support

Example

See Also

Select region of interest, based on color

BW = roicolor(A, low,high)
BW = roicolor(A,v)

roicolor selects a region of interest within an indexed or intensity image and
returns a binary image. (You can use the returned image as a mask for masked
filtering using roifilt2.)

BW = roicolor(A, low,high) returns a region of interest selected as those
pixels that lie within the colormap range [low high].

BW = (A >= low) & (A <= high)
BW is a binary image with 0’s outside the region of interest and 1's inside.

BW = roicolor(A,v) returns a region of interest selected as those pixels in A
that match the values in vector v. BW is a binary image with 1's where the
values of A match the values of v.

The input array A can be of class double or of any integer class. The output
array BW is of class uint8.

I = imread("rice.tif");
BW = roicolor(1,128,255);
imshow(l);

figure, imshow(BW)

roifilt2, roipoly

12-199

roifill

Purpose

Syntax

Description

12-200

Smoothly interpolate within an arbitrary image region

J roifill(l,c,r)
J = roifill(l)

J = roifill(1,BW)
[J.BW] = roifill(...)

J = roifill(x,y,1,xi,yi)
[x,y,Jd,BW,xi,yi] = roifill(...)

roifill fills in a specified polygon in an intensity image. It smoothly
interpolates inward from the pixel values on the boundary of the polygon by
solving Laplace’s equation. roifill can be used, for example, to “erase” small
objects in an image.

J = roifill(l,c,r) fills in the polygon specified by c and r, which are
equal-length vectors containing the row-column coordinates of the pixels on
vertices of the polygon. The k-th vertex is the pixel (r(k),c(k)).

J = roifill (1) displays the image 1 on the screen and lets you specify the
polygon using the mouse. If you omit I, roifill operates on the image in the
current axes. Use normal button clicks to add vertices to the polygon. Pressing
Backspace or Delete removes the previously selected vertex. A shift-click,
right-click, or double-click adds a final vertex to the selection and then starts
the fill; pressing Return finishes the selection without adding a vertex.

J = roifill(1,BW) uses BW (a binary image the same size as 1) as a mask.
roifill fills in the regions in I corresponding to the nonzero pixels in BW. If
there are multiple regions, roifill performs the interpolation on each region
independently.

[J.,BW] = roifill(...) returns the binary mask used to determine which
pixels in 1 get filled. BW is a binary image the same size as I with 1's for pixels
corresponding to the interpolated region of I and O’s elsewhere.

J = roifill(x,y,,xi,yi) uses the vectors x and y to establish a nondefault
spatial coordinate system. xi and yi are equal-length vectors that specify
polygon vertices as locations in this coordinate system.

roifill

[x,y,J,BW,xi,yi] = roifill(...) returns the XData and YData in x and y;
the output image in J; the mask image in BW; and the polygon coordinates in xi
and yi. xi and yi are empty if the roifill(1,BW) form is used.

If roifill iscalled with no output arguments, the resulting image is displayed
in a new figure.

Class Support The input image I can of class uint8, uintl6, or double. The binary mask BwW
can be of class uint8 or double. The output image J is of the same class as 1.
All other inputs and outputs are of class double.

imread("eight_tif");

[222 272 300 270 221 194];
[21 21 75 121 121 75];
roifill(l,c,r);

mshow(1)

igure, imshow(J)

Example

1
c
r
J
i
T

See Also roifilt2, roipoly

12-201

roifilt2

Purpose

Syntax

Description

Class Support

Example

12-202

Filter a region of interest

J = roifilt2¢h,I1,BW)
J = roifilt2(l,BW,fun)
J = roifile2(1,BW,fun,P1,P2,...)

J = roifilt2(h,1,BW) filters the data in 1 with the two-dimensional linear
filter h. BW is a binary image the same size as I that is used as a mask for
filtering. roifilt2 returns an image that consists of filtered values for pixels
in locations where BW contains 1's, and unfiltered values for pixels in locations
where BW contains 0’s. For this syntax, roifilt2 calls filter2 to implement
the filter.

J = roifilt2(1,BW,fun) processes the data in 1 using the function fun. The
result J contains computed values for pixels in locations where BW contains 1's,
and the actual values in I for pixels in locations where BW contains 0's.

fun can be a function_handle, created using @, or an inline object. fun should
take a matrix as a single argument and return a matrix of the same size.

y = fun(X)
J = roifilt2(1,BW,fun,P1,P2,...) passes the additional parameters
P1,P2,..., to fun.

For the syntax that includes a filter h, the input image 1 can be of class uints,
uintl6, or double, and the output array J is of class double. For the syntax
that includes a function, 1 can be of any class supported by fun, and the class
of J depends on the class of the output from fun.

This example continues the roipoly example.

I = imread("eight_tif");

c [222 272 300 270 221 194];
= [21 21 75 121 121 75];

BW = roipoly(l,c,r);

h = fspecial(“unsharp®);

J = roifilt2(h,1,BW);
imshow(J), figure, imshow(J)

-
|

roifilt2

See Also filter2, roipoly

12-203

roipoly

Purpose

Syntax

Description

12-204

Select a polygonal region of interest

BW = roipoly(l,c,r)
BW = roipoly(l)

BW roipoly(x,y,l,xi,yi)
[BW,xi,yi] = roipoly(...)
[x,y,BW,xi,yi] = roipoly(...)

Use roipoly to select a polygonal region of interest within an image. roipoly
returns a binary image that you can use as a mask for masked filtering.

BW = roipoly(l,c,r) returns the region of interest selected by the polygon
described by vectors c and r. BW is a binary image the same size as 1 with 0's
outside the region of interest and 1's inside.

BW = roipoly(l) displays the image 1 on the screen and lets you specify the
polygon using the mouse. If you omit I, roipoly operates on the image in the
current axes. Use normal button clicks to add vertices to the polygon. Pressing
Backspace or Delete removes the previously selected vertex. A shift-click,
right-click, or double-click adds a final vertex to the selection and then starts
the fill; pressing Return finishes the selection without adding a vertex.

BW = roipoly(x,y,l,xi,yi) uses the vectors x and y to establish a nondefault
spatial coordinate system. xi and yi are equal-length vectors that specify
polygon vertices as locations in this coordinate system.

[BW,xi,yi] = roipoly(...) returns the polygon coordinates in xi and yi.
Note that roipoly always produces a closed polygon. If the points specified
describe a closed polygon (i.e., if the last pair of coordinates is identical to the
first pair), the length of xi and yi is equal to the number of points specified. If
the points specified do not describe a closed polygon, roipoly adds a final point
having the same coordinates as the first point. (In this case the length of xi and
yi is one greater than the number of points specified.)

[x,y.BW,xi,yi] = roipoly(...) returns the XData and YData in x and y; the
mask image in BW; and the polygon coordinates in xi and yi.

If roipoly is called with no output arguments, the resulting image is displayed
in a new figure.

roipoly

Class Support The input image 1 can be of class uint8, uint16, or double. The output image
BW is of class uint8. All other inputs and outputs are of class double.

Remarks For any of the roipoly syntaxes, you can replace the input image 1 with two
arguments, mand n, that specify the row and column dimensions of an arbitrary
image. For example, these commands create a 100-by-200 binary mask.

c = [112 112 79 79];
r = [37 66 66 37];
BW = roipoly(100,200,c,r);

If you specify m and n with an interactive form of roipoly, an m-by-n black
image is displayed, and you use the mouse to specify a polygon within this

image.
Example I = imread("eight.tif");
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];

BW = roipoly(l,c,r);
imshow(1)
figure, imshow(BW)

See Also roifilt2, roicolor, roifill

12-205

std2

Purpose
Syntax
Description
Class Support
Algorithm

See Also

12-206

Compute the standard deviation of the elements of a matrix

b = std2(A)

b = std2(A) computes the standard deviation of the values in A.
Ais an array of class double or of any integer class. b is a scalar of class double.

std2 computes the standard deviation of the array A using std(A(z)).

corr2, mean2

std, mean in the MATLAB Function Reference

subimage

Purpose

Syntax

Description

Class Support

Example

Display multiple images in the same figure

subimage (X, map)
subimage(l)
subimage (BW)
subimage(RGB)
subimage(X,y,---)
h = subimage(-...)

You can use subimage in conjunction with subplot to create figures with
multiple images, even if the images have different colormaps. subimage works
by converting images to truecolor for display purposes, thus avoiding colormap
conflicts.

subimage(X,map) displays the indexed image X with colormap map in the
current axes.

subimage (1) displays the intensity image 1 in the current axes.
subimage(BW) displays the binary image BW in the current axes.
subimage (RGB) displays the truecolor image RGB in the current axes.

subimage(x,y...) displays an image using a nondefault spatial coordinate
system.

h = subimage(--..) returns a handle to an image object.
The input image can be of class uint8, uintl6, or double.
load trees
[X2,map2] = imread("forest.tif");

subplot(1,2,1), subimage(X,map)
subplot(1,2,2), subimage(X2,map2)

12-207

subimage

100

200

300

100 200 300 100 200 300 400

See Also imshow
subplot in the MATLAB Function Reference

12-208

truesize

Purpose

Syntax

Description

Remarks

See Also

Adjust display size of an image

truesize(fig, [mrows mcols])
truesize(fig)

truesize(fig, [mrows ncols]) adjusts the display size of an image. fig

is a figure containing a single image or a single image with a colorbar.
[mrows ncols] is a 1-by-2 vector that specifies the requested screen area in
pixels that the image should occupy.

truesize(fig) uses the image height and width for [mrows ncols]. This
results in the display having one screen pixel for each image pixel.

If you omit the figure argument, truesize works on the current figure.

If the"TruesizeWarning” toolbox preference is "on”, truesize displays a
warning if the image is too large to fit on the screen. (The entire image is still
displayed, but at less than true size.) If "TruesizeWarning" is "off", truesize

does not display the warning. Note that this preference applies even when you
call truesize indirectly, such as through imshow.

imshow, iptsetpref, iptgetpref

12-209

uint8

Purpose
Syntax

Description

Remarks

12-210

Convert data to unsigned 8-bit integers

B = uint8(A)

B = uint8(A) creates the unsigned 8-bit integer array B from the array A. If A
is a uint8 array, B is identical to A.

The elements of a uint8 array can range from 0 to 255. Values outside this
range are mapped to 0 or 255. If A is already an unsigned 8-bit integer array,
uint8 has no effect.

The fractional part of each value in A is discarded on conversion. This means,
for example, that uint8(102.99) is 102, not 103. Therefore, it is often a good
idea to round off the values in A before converting to uint8. For example,

B = uint8(round(A))
MATLAB supports these operations on uint8 arrays:

= Displaying data values
= Indexing into arrays using standard MATLAB subscripting

=< Reshaping, reordering, and concatenating arrays, using functions such as
reshape, cat, and permute

<« Saving to and loading from MAT-files
< The all and any functions

= Logical operators and indexing

= Relational operators

MATLAB also supports the find function for uint8 arrays, but the returned
array is of class double.

Most of the functions in the Image Processing Toolbox accept uint8 input. See
the individual reference entries for information about uint8 support.

uint8 is a MATLAB built-in function.

uint8

Example a=[135];
b = uint8(a);
whos
Name Size Bytes Class
a 1x3 24 doublearray
b 1x3 3 uint8 array
See Also double, im2double, im2uint8

12-211

uintl6

Purpose
Syntax

Description

Class Support

Remarks

12-212

Convert data to unsigned 16-bit integers
1 = uintl6(X)

I = uintl6(X) converts the vector X into an unsigned 16-bit integer. X can be
any numeric object (such as a double). The elements of a uint16 range from 0
to 65535. Values outside this range are mapped to 0 or 65535. If X is already an
unsigned 16-bit integer array, uint16 has no effect.

The uint16 class is primarily meant to be used to store integer values. Hence
most operations that manipulate arrays without changing their elements are
defined, for example, the functions reshape and size, the relational operators,
subscripted assignment, and subscripted reference. While most MATLAB
arithmetic operations cannot be performed on uint16 data, the following
operations are supported: sum, conv2, convn, fft2, and fftn. In these cases the
output will always be double. If you attempt to perform an unsupported
operation you will receive an error such as Function "+" not defined for
variables of class “uintl6”.

You can define your own methods for uint16 (as you can for any object) by
placing the appropriately named method in an @uinti16 directory within a
directory on your path.

Other operations and functions supported for uint16 data include:
= Displaying data values

= Indexing into arrays using standard MATLAB subscripting

= Logical operators

=« Saving to and loading from MAT-files
« The functions cat, permute, all, and any

Most functions in the Image Processing Toolbox accept uint16 input. See the
individual reference entries for information about uint16 support.

The input image can be of class uint8 or double.

uinti6 is a MATLAB built-in function.

uintle

Example a=[135];
b = uintl6(a);
whos
Name Size Bytes Class
a 1x3 24 double array
b 1x3 6 uintl6 array
See Also double, uints, uint32, int8, intl6, int32

12-213

warp

Purpose Display an image as a texture-mapped surface

Syntax warp(X,map)
warp(l,n)
warp(BW)
warp(RGB)
warp(z,...)

warp(X,yY,Z,---)
h = warp(-..)

Description warp(X,map) displays the indexed image X with colormap map as a texture map
on a simple rectangular surface.

warp(l1,n) displays the intensity image 1 with gray scale colormap of length n
as a texture map on a simple rectangular surface.

warp(BW) displays the binary image BW as a texture map on a simple
rectangular surface.

warp(RGB) displays the RGB image in the array RGB as a texture map on a
simple rectangular surface.

warp(z, - ..) displays the image on the surface z.
warp(x,y,z...) displays the image on the surface (x,y,z).

h = warp(-..) returns a handle to a texture mapped surface.
Class Support The input image can be of class uint8, uint16, or double.
Remarks Texture-mapped surfaces generally render more slowly than images.

Example This example texture maps an image of a test pattern onto a cylinder.

[x,y,z] = cylinder;
I = imread("testpatl.tif");
warp(x,y,z,1);

12-214

warp

See Also imshow
image, imagesc, surf in the MATLAB Function Reference

12-215

wiener2

Purpose

Syntax

Description

Class Support

Example

Algorithm

12-216

Perform two-dimensional adaptive noise-removal filtering

J = wiener2(l,[m n],noise)
[J,noise] = wiener2(l,[m n])

wiener2 lowpass filters an intensity image that has been degraded by constant
power additive noise. wiener?2 uses a pixel-wise adaptive Wiener method based
on statistics estimated from a local neighborhood of each pixel.

J = wiener2(l,[m n],noise) filters the image 1 using pixel-wise adaptive

Wiener filtering, using neighborhoods of size m-by-n to estimate the local image
mean and standard deviation. If you omit the [m n] argument, m and n default
to 3. The additive noise (Gaussian white noise) power is assumed to be noise.

[J.noise] = wiener2(l,[m n]) also estimates the additive noise power before
doing the filtering. wiener2 returns this estimate in noise.

The input image 1 can be of class uint8, uintl6, or double. The output image
J is of the same class as I.

Degrade and then restore an intensity image using adaptive Wiener filtering.

= imread("saturn.tif");
imnoise(l, "gaussian®,0,0.005);
wiener2(J,[5 51);

mshow(J)

igure, imshow(K)

1
J
K
i
T

wiener2 estimates the local mean and variance around each pixel

wiener2

See Also

Reference

_ 1

R T auny)
n,n0n

2 _ 1

NIV, z a“(ng, ny)—p

where n is the N-by-M local neighborhood of each pixel in the image A. wiener2
then creates a pixel-wise Wiener filter using these estimates
2 2

b(ny,ny) = p+= 0;“ (a(ny, ny) - 1)

where V2 is the noise variance. If the noise variance is not given, wiener2 uses
the average of all the local estimated variances.

filter2, medfilt2

[1] Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood
Cliffs, NJ: Prentice Hall, 1990. pp. 536-540.

12-217

ycbcr2rgb

Purpose

Syntax

Description

Class Support

See Also

12-218

Convert YCbCr values to RGB color space

rgbmap = ycbcr2rgb(ycbcrmap)
RGB = ycbcr2rgb(YCBCR)

rgbmap = ycbcr2rgb(ycbcrmap) converts the YCbhCr values in the colormap
ycbcrmap to the RGB color space. If ycbcrmap is m-by-3 and contains the YCbCr
luminance (Y) and chrominance (Cb and Cr) color components as its columns,
then rgbmap is returned as an m-by-3 matrix that contains the red, green, and
blue values equivalent to those colors.

RGB = ycbcr2rgb(YCBCR) converts the YCbCr image YCBCR to the equivalent
truecolor image RGB.

If the input is a YCbCr image, it can be of class uint8, uintl6, or double; the
output image is of the same class as the input image. If the input is a colormap,
the input and output colormaps are both of class double.

ntsc2rgb, rgb2ntsc, rgh2ycbcr

Z00m

Purpose

Syntax

Description

Zoom in and out of an image

zoom on
zoom ofFf

zoom out

zoom reset

zoom

zoom xon

zoom yon
zoom(factor)
zoom(Fig,option)

zoom on turns on interactive zooming for the current figure. When zooming is
enabled, clicking the mouse on a point within an axes changes the axes limits
by a factor of 2, to either zoom in on or out from the point:

= For a single-button mouse, zoom in by clicking the mouse button and zoom
out by shift-clicking.

= For a two- or three-button mouse, zoom in by clicking the left mouse button
and zoom out by clicking the right mouse button.

Clicking and dragging over an axes when interactive zooming is enabled draws
a rubber-band box. When the mouse button is released, the axes zoom in to the
region enclosed by the rubber-band box.

Double-clicking within an axes returns the axes to its initial zoom setting.
zoom off turns zoom off in the current figure.
zoom out returns the plot to its initial zoom setting.

zoom reset remembers the current zoom setting as the initial zoom setting.
Later calls to zoom out, or double-clicks when interactive zoom mode is
enabled, return to this zoom level.

zoom toggles the interactive zoom status.
zoom xon and zoom yon set zoom on for the x- and y-axis, respectively.

zoom(factor) zooms in by the specified factor, without affecting the
interactive zoom mode. By default, factor is 2. A factor between 0 and 1
specifies zooming out by 1/factor.

12-219

Z00m

zoom(Fig,option) applies the zoom command to the figure specified by fig.
option is a string containing any of the above arguments. If you do not specify
a figure, zoom works on the current figure.

See Also imcrop

12-220

Working with Function
Functions

Passing an M-File Function to a Function Function
Passing an Inline Object to a Function Function
Passing a String to a Function Function

A Working with Function Functions

A-2

The Image Processing Toolbox contains several functions called function
functions, so named because they enable you to supply one of your own
functions as an input argument. For example, blkproc enables you to input
your own block processing function, and gtdecomp enables you to input your
own algorithm for defining a criterion of homogeneity. This section shows you
the different ways in which you can input your own function to a function
function.

Note As you may know, MATLAB has a directory named funfun containing
function functions. However, the function functions of the Image Processing
Toolbox are not included in this directory. For a discussion of the MATLAB
functions in funfun, see the section in the MATLAB documentation entitled
“Function Functions.”

There are three different methods for passing your own function to a function
function:

« Pass in a function handle to an M-file function
« Pass in an inline function
=« Pass in a string containing an expression

This appendix contains three examples — one to demonstrate each method.

Note Function handles are a new class in MATLAB 6.0. One advantage to
using them is that you can call a function function with a function handle to a
private function or subfunction. In previous versions of MATLAB, your
function had to be on the MATLAB path. For more information, see
function_handle in the MATLAB Function Reference.

All three examples use the function function blkproc. The following blkproc
syntax variation is used.

B = BLKPROC(A,[m n].fun,P1,P2,...)

This syntax takes as its arguments an image A, a block size [m n] used to divide
the image, and a function fun, which is used to process each block. This syntax
also takes any number of parameters (P1, P2, etc.) that may be needed by fun.

All three examples use the same simple function to alter the brightness of a
grayscale image.

f(x) = xxP1

x represents a block of size [m n], and P1 can take any value. Note that this
function was chosen because it works well for illustrative purposes; if you
really want to brighten an image, you should use the imadjust function.

Passing an M-File Function to a Function Function

Create an M-file containing your block-processing function. Using the example
function above, your M-file might contain the following lines.

function y = myblkfun(x,P1)

% For an input block of x, divide the pixel values by P1.

% Temporarily make x double so you can perform arithmetic on iIt.
y = uint8(double(x)*P1);

To use your M-file with blkproc, create a function handle (function_handle)
to it, and pass in the handle and any desired value for P1. For example,

1 = imread("cameraman.tif");

f = @myblkfun; % Create a function handle.
12 = blkproc(l, [10 10], f, 2);

imshow(l);

figure, imshow(12);

Figure A-1: Original Image (left) and Brightened Image (right)

A-3

A Working with Function Functions

A-4

Passing an Inline Object to a Function Function
Create an inline object at the MATLAB prompt. Pass the inline object and any
desired value for P1 to blkproc. For example,

myblkfun = inline("uint8((double(x)*2))",1);
I = imread("cameraman.tif");
12 = blkproc(l,[10 10], myblkfun, 2);

The results are the same as those shown in Figure A-1. For more information
about inline functions, see the online MATLAB reference page for inline.

Passing a String to a Function Function

You can also pass an expression to a function function. Just set the fun
parameter to a string containing your expression. For example,

= imread("cameraman.tif");

|
12 = blkproc(l,[10 10], "uint8((double(x)*2))");

The results are the same as those shown in Figure A-1.

Numerics

16-bit image files 2-14, 2-15
1-bit image files 3-7, 3-9

24-bit image files 2-8

4-bit image files 2-15
4-connected neighborhood 9-12
8-bit image files 2-14, 2-15, 3-8
8-connected neighborhood 9-11

A

adaptive filter
definition 8-2
adaptive filtering 8-23, 12-216
aliasing 4-6
alpha channel 11-5, 12-138
analyzing images
contour plots 8-8
edge detection 8-11, 12-59
histograms 8-9, 12-126
intensity profiles 8-5, 12-134
pixel values 8-4, 12-131
guadtree decomposition 8-12, 12-184
summary statistics 8-10
anti-aliasing 4-6, 12-143
applylut 9-21, 12-17
example 9-21
approximation
definition 11-2
of a background 1-10
area
of binary images 9-19, 12-23
of image regions 8-10
arrays
logical 2-8, 2-20
storing images 2-4
averaging filter 6-11, 12-78

B

background

of a binary image 9-11
definition 9-2

background approximation 1-10

bestblk 12-19

bicubic interpolation 4-4
definition 4-2

bilinear interpolation 4-4
definition 4-2

binary image
definition 2-2

binary image operations 9-2
border padding 9-3
connected-components labeling 9-16, 12-30
feature measurement 9-19
flood fill 9-14, 12-27
lookup table operations 9-21
lookup-table operations 12-17, 12-168
morphological operations 9-5, 12-32
neighborhoods 9-3, 12-17
object-based operations 9-11

binary images 12-164
4-connected neighborhoods 9-11
8-connected neighborhoods 9-11
about binary images 2-7
applying pseudocolor to objects 9-17
changing the display colors of 3-10
converting from other types 12-104
displaying 3-7, 9-4
Euler number 9-20, 12-25
image area 9-19, 12-23
object selection 9-18, 12-37
perimeter determination 9-13, 12-36
processing 9-2

binary masks 10-4

Index

definition 10-2
demo of xxiv
bit depth 12-140
1-bit images 3-7, 3-9
8-bit images 3-8
querying 12-124
screen bit depth 11-4
support
See also index entries for individual file
formats
supported bit depths 12-140
blkproc 5-9, 12-20
example 5-10, 5-11
See also dctdemo and ipss003
block operation
definition 5-2
block processing 5-2
block size 12-19
column processing 5-12
distinct blocks 5-9, 12-20
padding borders 5-6
sliding neighborhoods 5-5, 12-176
BMP 2-14, 12-123, 12-137, 12-150
bit depths supported when reading 12-140
bit depths supported when writing 12-154
border padding 5-6, 6-6, 9-3
definition 5-2
bounding box
finding for a region 8-10
brighten 12-22
brightness adjustment 8-16
demo of xxiii
See also imadjust
bwarea 9-19, 12-23
example 9-19
bweuler 9-20, 12-25
example 9-20

bwFill 9-14, 12-27
example 9-15, 9-16
bwlabel 9-16, 12-30
example 9-17
See also ipss001
bwmorph 9-9, 12-32
See also ipss001
skeletonization example 9-9
bwperim 9-13, 12-36
example 9-13
bwselect 9-18, 12-37
example 9-18
See also ipss001 and ipss002

C
Canny edge detector 8-11, 12-60
center of mass
calculating for region 8-10
center pixel
calculating 5-5
definition 5-2
in linear filtering 6-5
in morphological operations 9-5
of a structuring element 9-5
chrominance
in NTSC color space 11-15
in YCbCr color space 11-16
class support 2-12
See also data types
closure 9-8, 12-32
cmpermute 12-39
cmunique 12-40
col2im 12-41
colfilt5-12, 12-42
example 5-13, 5-15
color

Index

approximation 11-7, 12-57, 12-111, 12-194
dithering 11-13, 12-57
guantization 11-7, 12-194
reducing number of colors 11-6
color approximation
definition 3-2
color cube
a description of 11-7
guantization of 11-8
color planes 11-9, 11-18
of an HSV image 11-18, 11-19
of an RGB image 2-10
color reduction 11-6-11-14
color spaces
converting between 2-18, 11-15, 12-100, 12-177,
12-193, 12-196, 12-197, 12-218
HSV 11-17, 12-100
NTSC 11-15, 12-177, 12-196
RGB 11-15
YCbCr 11-16, 12-197, 12-218
colorbar 3-14, 12-44
example 3-14
colorcube 11-12
colormap
example 3-19
colormap (matrix)
creating a colormap using colorcube 11-12
colormap mapping 11-11
colormaps
brightening 12-22
darkening 12-22
plotting RGB values of 12-198
rearranging colors in 12-39
removing duplicate entries in 12-40
column processing 5-12, 12-42
definition 5-2
reshaping blocks into columns 12-105

reshaping columns into blocks 12-41
comp.soft-sys.matlab (MATLAB newsgroup) xxv
computational molecule 6-5
concatenation

used to display intensity as RGB 3-22
connected component

definition 9-2
connected-components labeling 9-16, 12-30

demo of xxiii
contour

definition 8-2
contour plots 8-8, 12-112

text labels 8-9
contrast adjustment

decreasing contrast 8-16

demo of xxiii

increasing contrast 8-15

See also imadjust
contrast stretching

See contrast adjustment
conv? 2-19, 6-4, 12-46, 12-212

comparison to filter2 6-8

example 6-4, 6-9
conversions between image types 2-16
convmtx2 12-48
convn 2-19, 6-10, 12-49, 12-212

example 6-11
convolution

convolution matrix 12-48

Fourier transform and 7-13

higher-dimensional 6-10, 12-49

separability 6-9

two-dimensional 6-4, 12-46, 12-70
convolution kernel 6-4

center pixel 6-5
coordinate systems

coordinate systems used by toolbox 2-21

Index

pixel coordinates 2-21
spatial coordinates 2-22
corr2 8-10, 12-50
correlation 6-8, 12-70
Fourier transform 7-14
correlation coefficient 12-50
cropping an image 4-8, 12-114
CUR
bit depths supported when reading 12-140
cursor images 12-140

D
data types
16-bit integers (uint16) 12-212
8-bit integers (uint8) 2-4, 2-18, 12-210
converting between 12-58, 12-210, 12-212
double-precision (double) 2-4, 12-58
summary of image types and numeric classes
DC component
See zero-frequency component
DCT image compression
demo of xxiii
dct2 7-17, 12-51
See also dctdemo
dctdemo (demo application) xxiii
dctmtx 7-18, 12-54
See also dctdemo
demos xxii
location of xxii
running xxii
dilate 9-7, 12-55
example 9-19
dilation 9-5, 9-7, 12-33, 12-55
closure 9-8
example 9-19
grayscale 12-178

neighborhood for 9-5
opening 9-8
discrete cosine transform 7-17, 12-51
image compression 7-19
demo of xxiii
inverse 12-101
transform matrix 7-18, 12-54
discrete Fourier transform 7-9
discrete transform
definition 7-3
display depth 11-4
See screen bit depth
See screen color resolution
display techniques 12-147
adding a colorbar 12-44
binary images with different colors 3-10
displaying at true size 12-209
multiple images 12-207
texture mapping 12-214
zooming 12-219
displaying 3-2
adding a colorbar 3-14
an image directly from disk 3-13
binary images 3-7
displaying at true size 3-26
indexed images 3-3-3-4
intensity images 3-4-3-6
multiframe images 3-15-3-19
multiple images 3-19
RGB images 3-12
texture mapping 3-28
toolbox preferences for
See preferences
troubleshooting for 3-31

unconventional range data in an intensity image

3-5
zooming 3-26

Index

distance
between pixels 8-4
Euclidean 8-4

distinct block operations 5-9
definition 5-2
overlap 5-10, 12-20
zero padding 5-9

dither 12-57

dithering 11-13, 12-57, 12-194
example 11-13

double 2-19, 12-58

E
edge
definition 8-2
edge 8-11, 12-59
example 8-11
See also edgedemo
edge detection 8-11
Canny method 8-11
demo of xxiii
example 8-11
methods 12-59
Sobel method 8-11

edgedemo (demo application) xxiii

enhancing images

intensity adjustment 8-15, 12-109

noise removal 8-21

erode 9-7, 12-64
closure example 9-8
example 9-7
removing lines example 9-8
See also ipss002

erosion 9-5, 9-7, 12-33, 12-64
grayscale 12-178
neighborhood for 9-5

Euclidean distance 8-4, 12-183
Euler number 9-20, 12-25

F
fan beam projections 7-29
fast Fourier transform 7-9
higher-dimensional 12-68
higher-dimensional inverse 12-103
two-dimensional 12-66
two-dimensional inverse 12-102
zero padding 7-11
feature
definition 8-2
feature measurement 1-25, 8-10, 12-117
area 8-10
binary images 9-19
bounding box 1-28, 8-10
center of mass 8-10
feature-based logic
demo of xxiii
fft 7-9
fft2 2-19, 7-9, 12-66, 12-212
example 7-10, 7-12
fftn 2-19, 7-9, 12-68, 12-212
fftshift 12-69
example 6-15, 7-12
file formats 12-137, 12-149
file size
querying 12-124
files
displaying images from disk 3-13
reading image data from 12-137
writing image data to 12-149
filling a region 10-9
definition 10-2
demo of xxiv

Index

filter design 6-14
frequency sampling method 6-16, 12-75
frequency transformation method 6-15, 12-82
predefined filter types 6-11
windowing method 6-17, 12-85, 12-89
See also filters
filter2 6-8, 12-70
comparison to conv2 6-8
example 3-5, 3-14, 6-9, 8-22
See also nrfiltdemo and ipss002
filtering
a region 10-7
masked filtering 10-7
filtering a region 10-7
definition 10-2
filters
adaptive 8-23, 12-216
averaging 6-11, 12-78
binary masks 10-7
designing 6-14
finite impulse response (FIR) 6-14
frequency response 6-19, 7-12
Infinite Impulse Response (1IR) 6-15
Laplacian of Gaussian 12-78
linear 6-4, 12-70
median 8-22, 12-172
order-statistic 12-178
predefined types 6-11, 12-78
Prewitt 12-78
Sobel 6-12, 12-78
unsharp 12-78
FIR filters 6-14
demo of xxiii
transforming from one-dimensional to two-di-
mensional 6-15
firdemo (demo application) xxiii
flood-fill operation 9-14, 12-27

foreground
of a binary image
definition 9-2
fast Fourier transform
See also Fourier transform
Fourier transform 7-4
applications of the Fourier transform 7-12
centering the zero-frequency coefficient 7-12
computing frequency response 7-12
convolution and 7-13
correlation 7-14
DFT coefficients 7-10
examples of transform on simple shapes 7-8
fast convolution with 7-13
for performing correlation 7-14
frequency domain 7-4
higher-dimensional 12-68
higher-dimensional inverse 12-103
increasing resolution 7-11
padding before computation 7-11
rearranging output 12-69
two-dimensional 7-4, 12-66
two-dimensional inverse 12-102
zero-frequency component component
fregspace 6-18, 12-72
example 6-16, 6-18, 6-19
frequency domain 7-4
definition 7-3
frequency response
computing 6-19, 7-12, 12-73
desired response matrix 6-18, 12-72
frequency sampling method (filter design) 6-16,
12-75
frequency transformation method (filter design)
6-15, 12-82
freqz
example 6-15

Index

freqz2 6-19, 7-12, 12-73
example 6-16, 6-18, 6-20
See also firdemo

fsamp2 6-16, 12-75
example 6-16
See also firdemo

fspecial 6-11, 12-78
example 6-11, 6-13

ftrans2 12-82
example 6-15
See also firdemo

function functions
passing a string to A-4
passing an M-file to A-3
using A-2

using inline objects with A-4

function handles A-2
funfun A-2
fwindl 6-17, 12-85
example 6-18
See also Firdemo
fwind2 6-17, 12-89
See also Firdemo

G
gamma correction 8-17
demo of xxiii
See also imadjust
Gaussian convolution kernel
frequency response of 7-12
Gaussian filter 12-78
Gaussian noise 8-23
geometric operation
definition 4-2
geometric operations
cropping 4-8, 12-114

interpolation 4-4
resizing 4-6, 12-143
rotation 4-7, 12-145
getimage 12-93
example 3-13
getting started with the toolbox 1-2
graphics card 11-4
graphics file formats
converting from one format to another 2-20
list of formats supported by MATLAB 2-14
See also BMP, HDF, JPG, PCX, PNG, TIFF,
XWD
gray2ind 12-95
grayscale 2-16
grayscale morphological operations 12-178
grayslice 12-96

H
Handle Graphics properties
binary images and 3-11
indexed images and 3-4
intensity images and 3-6
RGB images and 3-12
setting 1-14
HDF 2-14, 12-123, 12-137, 12-150
appending to when saving (WriteMode) 12-150
bit depths supported when reading 12-140
bit depths supported when writing 12-154
compression 12-150
parameters that can be set when writing
12-150
reading with special imread syntax 12-140
setting JPEG quality when writing 12-150
head phantom image 7-30
histeq 12-97
example 8-20

Index

in imadjdemo xxiii
increase contrast example 8-19
See also imadjdemo and roidemo
histeq demo xxiii
histogram equalization 8-19, 12-97
demo of xxiii
histograms 8-9, 12-126
definition 8-3
demo of xxiii
holes
filling, in a binary image 9-14
HSV color space 11-17, 12-100, 12-193
color planes of 11-18, 11-19
hsv2rgb 11-17, 12-100
hue
in HSV color space 11-16
in NTSC color space 11-15

I
ICO

bit depths supported when reading 12-140
icon images 12-140
idct2 12-101
See also dctdemo
ifft 7-9
ifft2 7-9, 12-102
ifftn 7-9, 12-103
IR filters 6-15
im2bw 2-17, 12-104
im2col 12-105
See also dctdemo
im2double 2-19, 12-106
example 5-14
See also dctdemo and ipss003
im2uintl6 2-19, 12-108, 12-108
im2uint8 2-19, 12-107

imadjdemo (demo application) xxiii
imadjust 8-15, 12-109
brightening example 8-16
gamma correction and 8-17
gamma correction example 8-18
increase contrast example 8-15

See also imadjdemo, landsatdemo, roidemo, and

ipss003
image analysis 8-11
See also analyzing images
image area (binary images) 9-19, 12-23
image editing 10-9
image processing demos xxii
See also demos
image types 2-5
binary 2-7, 9-2
converting between 2-16
definition 2-2
indexed 2-5
intensity 2-7
multiframe images 2-11
querying 12-124
RGB 2-8
See also indexed, intensity, binary, RGB,
multiframe
supported by the toolbox 2-5
typographical conventions for xxi
images
analyzing 8-4
color 11-2
converting to binary 12-104
data types 2-4, 12-58, 12-210, 12-212
displaying 3-2, 12-147
displaying multiple images 3-19, 12-207
file formats 12-137, 12-149
getting data from axes 12-93
how MATLAB stores 2-4

Index

image types 2-5
reading data from files 12-137

reducing number of colors 11-6, 12-111

returning information about 2-16
RGB 2-8
sample images 1-2
storage classes of 2-4
writing to files 12-149
imapprox 11-12,12-111
example 11-12
imcontour 8-8, 12-112
example 8-8
imcrop 4-8, 12-114
example 4-8
imfeature 8-10, 9-19, 12-117
imfinfo 2-16
example 3-9
returning file information 12-123
imhist 8-9, 12-126
example 8-9, 8-15
See also imadjdemo
immovie 12-128
example 3-19
imnoise 8-21, 12-129
example 8-23
salt & pepper example 8-22
See also nrfiltdemo and roidemo
impixel 8-4, 12-131
example 8-5
improfile 8-5, 12-134
example 8-7
grayscale example 8-6
imread 2-14, 2-18, 12-137
example for multiframe image 3-16
imresize 4-6, 12-143
example 4-6
See also ipss003

imrotate 4-7, 12-145
example 4-7
imshow 2-18, 3-25, 12-147
example for binary images 3-7
example for indexed images 3-3
example for intensity images 3-4, 3-5
example for RGB images 3-12
notruesize option 3-8
preferences for 3-25
truesize option 3-26
imwrite 2-15, 2-18, 12-149
example 3-9
ind2gray 12-156
ind2rgb 2-17, 12-157
example 3-22
indexed image
definition 2-2
indexed images 12-166
about 2-5
converting from intensity 12-95
converting from RGB 12-194
converting to intensity 12-156
converting to RGB 12-157
reducing number of colors 11-6
reducing number of colors in 11-12
infinite impulse response (11R) filter 6-15
information
returning file information 12-123
inline 5-10, A4
See also function functions
inline object
definition 5-3
passing an inline object to a function function
A-4
intensity adjustment 8-15, 12-109
gamma correction 8-17
histogram equalization 8-19

Index

1-10

See also contrast adjustment
intensity image
definition 2-3
intensity images 12-165
about 2-7
converting from indexed 12-156
converting from matrices 12-170
converting from RGB 12-192
converting to indexed 12-95
displaying 3-4
number of gray levels displayed 3-5
intensity profiles 8-5, 12-134
interpolation 4-4
bicubic 4-4
definition 4-2
bilinear 4-4
definition 4-2
definition 4-3
intensity profiles 8-5
nearest neighbor 4-4
definition 4-3
of binary images 4-5
of indexed images 4-5
of RGB images 4-5
trade-offs between methods 4-4
within a region of interest 10-9
inverse Radon transform 7-27, 7-29
example 7-32
filtered backprojection algorithm 7-29
inverse transform
definition 7-3
ipss001 (demo application) xxiii
ipss002 (demo application) xxiii
ipss003 (demo application) xxiii
iptgetpref 3-25, 12-158
iptsetpref 3-25, 12-159
example 3-25, 3-26

iradon 7-27, 12-161
example 7-27

isbw 12-164

isgray 12-165

isind 12-166

isrgb 12-167

J

JPEG compression
and discrete cosine transform
demo of xxiii
discrete cosine transform and 7-19
JPEG files 2-14, 12-123, 12-137, 12-150
bit depths supported when reading 12-141
bit depths supported when writing 12-154
parameters that can be set when writing
12-151
JPEG quality
setting when writing a JPEG image 12-151
setting when writing an HDF image 12-150

L
labeling
connected components 9-16
levels of contours 8-9
Landsat data
demo of xxiii
landsatdemo (demo application) xxiii
Laplacian of Gaussian edge detector 12-60
Laplacian of Gaussian filter 12-78
line detection 7-25
line segment
pixel values along 8-5
linear filtering 5-6, 6-4, 12-70
averaging filter 6-11

Index

center pixel 6-5
computational molecule 6-5
convolution 6-4
convolution kernel 6-4
correlation 6-8
filter design 6-14
FIR filters 6-14
IR filters 6-15
noise removal and 8-21
predefined filter types 6-11
Sobel filter 6-12
logical arrays 2-8, 2-20
logical flag 2-8
lookup table operations 9-21
lookup-table operations 12-168
luminance
in NTSC color space 11-15
in YCbCr color space 11-16

M
magnifying 4-6
makelut 9-21, 12-168
example 9-21
masked filtering 10-7, 12-202
definition 10-3
mat2gray 2-17, 12-170
MATLAB Newsgroup xxv
matrices
converting to intensity images 12-170
storing images in 2-4
McClellan transform 12-82
mean2 8-10, 12-171
medfilt2 8-22, 12-172
example 8-22
See also nrfiltdemo and roidemo
median filtering 8-22, 12-172

minimum variance quantization
See quantization
Moiré patterns 4-6
montage 3-17, 12-174
example 3-17
morphological operations 9-5, 12-32
center pixel 9-5
closure 9-8, 12-32
diagonal fill 12-33
dilation 9-5, 9-7, 12-33, 12-55
erosion 9-5, 9-7, 12-33, 12-64
grayscale 12-178
opening 9-8, 12-33
predefined operations 9-9
removing spur pixels 12-33
shrinking objects 12-33
skeletonization 9-9, 12-33
structuring element 9-5
thickening objects 12-34
thinning objects 12-34
morphology
definition 9-3
mouse
filling region of interest in intensity image
10-9
getting an intensity profile with 8-4
returning pixel values with 8-4
selecting a polygonal region of interest 10-4
selecting objects in a binary image 9-18
movies
creating from images 3-18, 12-128
playing 3-19
multiframe images
about 2-11
definition 2-3
displaying 3-15, 12-174
limitations 2-11

1-11

Index

multilevel thresholding 12-96

N

nearest neighbor interpolation 4-4
definition 4-3

neighborhood
definition 9-3
structuring element 9-5

neighborhood operation
definition 5-3

neighborhoods
4-connected 9-11
8-connected 9-11

binary image operations 9-3, 9-11, 12-17

dilation and 9-6
erosion and 9-6
neighborhood operations 5-2
newsgroup for MATLAB xxv
nlfilter 5-7, 12-176
example 5-7
noise
definition 8-3
noise removal 8-21
adaptive filtering (Weiner) and 8-23
adding noise 12-129
demo of xxiii, xxiv
Gaussian noise 8-23, 12-129
grain noise 8-21
linear filtering and 8-21
median filter and 8-22
salt and pepper noise 8-22, 12-129
speckle noise 12-129
nonlinear filtering 5-6
nonuniform illumination
demo of xxiii
notruesize option 3-8

1-12

nrfiltdemo (demo application) xxiv
NTSC color space 11-15, 12-177, 12-196
ntsc2rgb 11-15, 12-177

@)
object

definition 9-3
object selection 9-18, 12-37
online help for the toolbox 1-31
opening 9-8, 12-33
order-statistic filtering 12-178
ordfilt2 12-178
orthonormal matrix 7-19
outliers 8-22
overlap 5-9

definition 5-3

p
padding borders

binary image operations 9-3
block processing 5-6
linear filtering 6-6
parallel beam projections 7-28
PCX 2-14, 12-123, 12-137, 12-150
bit depths supported when reading 12-141
bit depths supported when writing 12-154
perimeter determination 9-13, 12-36
phantom 7-30, 12-180
pixel values 8-4, 12-131, 12-183
along a line segment 8-5
returning using a mouse 8-4
pixels
definition 2-4
displaying coordinates of 8-4
Euclidean distance between 8-4

Index

returning coordinates of 8-4
pixval 8-4, 12-183
plotting colormap values 12-198
PNG 2-14
bit depths supported when reading 12-141
bit depths supported when writing 12-154
reading with special imread syntax 12-138
writing as 16-bit 2-15
writing options for 12-151
alpha 12-153
background color 12-153
chromaticities 12-153
gamma 12-153
interlace type 12-152
resolution 12-153
significant bits 12-153
transparency 12-152
polygon
pixels inside 10-4
selecting a polygonal region of interest 10-4
preferences
getting values 12-159
ImshowAxesVisible 3-25
ImshowBorder 3-25
ImshowTruesize 3-25
TrueSizeWarning 3-25
Prewitt edge detector 12-60
Prewitt filter 12-78
profile 8-4
definition 8-3
projections
fan beam 7-29
parallel beam 7-28
properties
See Handle Graphics properties

Q

gtdecomp 8-12, 12-184
example 8-13
See also gtdemo
gtdemo (demo application) xxiv
gtgetblk 12-187
See also qtdemo
gtsetblk 12-189
See also gtdemo
guadtree decomposition 8-12, 12-184
definition 8-3
demo of xxiv
getting block values 12-187
setting block values 12-189
guantization 11-7
minimum variance quantization 12-194
trade-offs between using minimum variance
and uniform quantization methods
11-11
uniform quantization 12-194

R
radon 7-21, 7-27, 12-190
example 7-23
Radon transform 7-21, 12-190
center pixel 7-23
detecting lines 7-25
example 7-30
inverse 12-161
inverse Radon transform 7-27
line detection example 7-25
of the Shepp-Logan Head phantom 7-31
relationship to Hough transform 7-25
range of pixel values
typographical convention xxi
rank filtering 8-23

1-13

Index

See also order-statistic filtering
real orthonormal matrix 7-19

colormap mapping example 11-12
example 11-9, 11-10, 11-12, 11-13

region labeling 9-16 minimum variance quantization example 11-10
region of interest specifying a colormap to use 11-11

based on color or intensity 10-6 uniform quantization example 11-9

binary masks 10-4 rgb2ntsc 11-15, 12-196

definition 10-3 example 11-15

demo of xxiv rgb2ycbcr 11-16

filling 10-9, 12-200 example 11-16

filtering 10-7, 12-202 rgbplot 12-198

polygonal 10-4 Roberts edge detector 12-60

selecting 10-4, 10-5, 12-199, 12-204
region-based processing

roicolor 10-6, 12-199
roidemo demo application 10-2

demo of xxiv roidemo(demo application) xxiv
resizing images 4-6, 12-143 roifill 10-9, 12-200
anti-aliasing 4-6 example 10-9
resolution See also roidemo
screen color resolution 11-4 roifilt2 10-7, 12-202
See also bit depth contrast example 10-7
11-4 inline example 10-7
RGB color cube See also roidemo
a description of 11-7 roipoly 10-4, 10-5, 12-204
guantization of 11-8 example 10-4
RGB images 12-167 See also roidemo
about 2-8 rotating an image 4-7, 12-145

converting from indexed 12-157
converting to indexed 12-194

converting to intensity 12-192 S

definition 2-3 salt and pepper noise 8-22
demo of RGB Landsat data xxiii sample images 1-2
displaying 3-12 saturation

intensities of each color plane 8-8 in HSV color space 11-16

reducing number of colors 11-6 in NTSC color space 11-15
rgb2gray 2-17, 12-192 screen bit depth 3-20, 11-4
rgb2hsv 11-17, 12-193 definition 11-3

example 11-17, 11-18 See also ScreenDepth property
rgb2ind 2-17, 11-7, 12-194

1-14

Index

screen color resolution 11-4
definition 11-3
ScreenDepth 11-4, 11-5
separability in convolution 6-9
Shepp-Logan head phantom 7-30
Signal Processing Toolbox
as an adjunct to the Image Processing Toolbox
Xvi
hamming function 6-18
skeletonization 9-9
slideshow demos xxiii
sliding neighborhood operations 5-5, 12-176
center pixel in 5-5
padding in 5-6
Sobel edge detector 12-59
Sobel filter 6-12, 12-78
spatial coordinates 2-22
spatial domain
definition 7-3
statistical properties
mean 12-171
of objects 1-28
standard deviation 12-206
std2 8-10, 12-206
storage classes
converting between 2-19
definition 2-3
structure array 1-25
converting to a vector 1-25
structuring element 9-5
center pixel 9-5
definition 9-3
subimage 3-23, 3-24, 12-207
subplot 3-23, 3-23
subtraction
of one image from another 1-16
sum 2-19, 12-212

T
template matching 7-14

texture mapping 3-28, 12-214
thresholding
to create a binary image 1-18, 12-104
to create indexed image from intensity image
12-96
TIFF 2-14, 12-123, 12-137, 12-150
bit depths supported when reading 12-141
bit depths supported when writing 12-154
compression 12-151
ImageDescription field 12-151
parameters that can be set when writing
12-151
reading with special imread syntax 12-138
resolution 12-151
writemode 12-151
tomography 7-27
transform
definition 7-3
transformation matrix 6-15
transforms 7-2
discrete cosine 7-17, 12-51
discrete Fourier transform 7-9
Fourier 7-4, 12-66, 12-68, 12-69
inverse discrete cosine 12-101
inverse Fourier 12-102, 12-103
inverse Radon 7-27, 12-161
Radon 7-21, 12-190
two-dimensional Fourier transform 7-4
transparency 11-5, 12-138
transparency chunk 12-138
troubleshooting 3-31
for display 3-31
truecolor 11-6
truesize 3-26, 12-209

1-15

Index

1-16

U
uintl6 12-212

storing images in 2-4, 2-14
supported operations for 12-212
uint8 12-210
storing images in 2-4, 2-14
supported operations 2-18
supported operations for 12-210
uniform quantization
See quantization
unsharp filter 12-78
demo of xxiv

\Y

vector
typographical convention for xxi

w

warp 3-28, 12-214
example 3-28

wiener?2 8-23, 12-216
example 8-23
See also nrfiltdemo

windowing method (filter design) 6-17, 12-85,

12-89

X
X-ray absorption tomography 7-28
XWD 2-14, 12-123, 12-137, 12-150

bit depths supported when reading 12-141
bit depths supported when writing 12-154

Y
YCbCr color space 11-16, 12-197, 12-218

ycbcr2rgb 11-16
YIQ 11-15

Z
zero padding 7-13

and the fast Fourier transform 7-11
zero-cross edge detector 12-60
zero-frequency component
zoom 3-27, 12-219
zooming in 3-26, 12-219

	Preface
	What Is the Image Processing Toolbox?
	What Can You Do with the Image Processing Toolbox?
	New Features in Version 2.2
	Related Products
	Post Installation Notes

	About This Manual
	User Experience Levels
	Words You Need to Know
	Typographical Conventions
	Image Processing Toolbox Typographical Conventions

	Image Processing Demos
	MATLAB Newsgroup

	Getting Started
	Overview
	Exercise 1 — Some Basic Topics
	1. Read and Display an Image
	2. Check the Image in Memory
	3. Perform Histogram Equalization
	4. Write the Image
	5. Check the Contents of the Newly Written File

	Exercise 2 — Advanced Topics
	1. Read and Display An Image
	2. Perform Block Processing to Approximate the Background
	3. Display the Background Approximation As a Surface
	4. Resize the Background Approximation
	5. Subtract the Background Image from the Original Image
	6. Adjust the Image Contrast
	7. Apply Thresholding to the Image
	8. Use Connected Components Labeling to Determine the Number of Objects in the Image
	9. Examine an Object
	10. Compute Feature Measurements of Objects in the Image
	11. Compute Statistical Properties of Objects in the Image

	Where to Go From Here
	Online Help
	Toolbox Demos

	Introduction
	Overview
	Words You Need to Know

	Images in MATLAB and the Image Processing Toolbox
	Storage Classes in the Toolbox

	Image Types in the Toolbox
	Indexed Images
	Intensity Images
	Binary Images
	RGB Images
	Multiframe Image Arrays
	Summary of Image Types and Numeric Classes

	Working with Image Data
	Reading a Graphics Image
	Writing a Graphics Image
	Querying a Graphics File
	Converting The Image Type of Images
	Working with uint8 and uint16 Data
	Converting The Storage Class of Images
	Converting the Graphics File Format of an Image

	Coordinate Systems
	Pixel Coordinates
	Spatial Coordinates

	Displaying and Printing Images
	Overview
	Words You Need to Know

	Displaying Images with imshow
	Displaying Indexed Images
	Displaying Intensity Images
	Displaying Binary Images
	Displaying RGB Images
	Displaying Images Directly from Disk

	Special Display Techniques
	Adding a Colorbar
	Displaying Multiframe Images
	Displaying Multiple Images
	Setting the Preferences for imshow
	Zooming in on a Region of an Image
	Texture Mapping

	Printing Images
	Troubleshooting

	Geometric Operations
	Overview
	Words You Need to Know

	Interpolation
	Image Types

	Image Resizing
	Image Rotation
	Image Cropping

	Neighborhood and Block Operations
	Overview
	Words You Need to Know
	Types of Block Processing Operations

	Sliding Neighborhood Operations
	Padding of Borders
	Linear and Nonlinear Filtering

	Distinct Block Operations
	Overlap

	Column Processing
	Sliding Neighborhoods
	Distinct Blocks

	Linear Filtering and Filter Design
	Overview
	Words You Need to Know

	Linear Filtering
	Convolution
	Padding of Borders
	The filter2 Function
	Separability
	Higher-Dimensional Convolution
	Using Predefined Filter Types

	Filter Design
	FIR Filters
	Frequency Transformation Method
	Frequency Sampling Method
	Windowing Method
	Creating the Desired Frequency Response Matrix
	Computing the Frequency Response of a Filter

	Transforms
	Overview
	Words You Need to Know

	Fourier Transform
	Definition of Fourier Transform
	The Discrete Fourier Transform
	Applications

	Discrete Cosine Transform
	The DCT Transform Matrix
	The DCT and Image Compression

	Radon Transform
	Using the Radon Transform to Detect Lines
	The Inverse Radon Transform

	Analyzing and Enhancing Images
	Overview
	Words You Need to Know

	Pixel Values and Statistics
	Pixel Selection
	Intensity Profile
	Image Contours
	Image Histogram
	Summary Statistics
	Feature Measurement

	Image Analysis
	Edge Detection
	Quadtree Decomposition

	Image Enhancement
	Intensity Adjustment
	Noise Removal

	Binary Image Operations
	Overview
	Words You Need to Know
	Neighborhoods
	Padding of Borders
	Displaying Binary Images

	Morphological Operations
	Dilation and Erosion
	Related Operations

	Object-Based Operations
	4- and 8-Connected Neighborhoods
	Perimeter Determination
	Flood Fill
	Connected-Components Labeling
	Object Selection

	Feature Measurement
	Image Area
	Euler Number

	Lookup Table Operations

	Region-Based Processing
	Overview
	Words You Need to Know

	Specifying a Region of Interest
	Selecting a Polygon
	Other Selection Methods

	Filtering a Region
	Filling a Region

	Color
	Overview
	Words You Need to Know

	Working with Different Screen Bit Depths
	Reducing the Number of Colors in an Image
	Using rgb2ind
	Using imapprox
	Dithering

	Converting to Other Color Spaces
	NTSC Color Space
	YCbCr Color Space
	HSV Color Space

	Function Reference
	Functions by Category
	applylut
	bestblk
	blkproc
	brighten
	bwarea
	bweuler
	bwfill
	bwlabel
	bwmorph
	bwperim
	bwselect
	cmpermute
	cmunique
	col2im
	colfilt
	colorbar
	conv2
	convmtx2
	convn
	corr2
	dct2
	dctmtx
	dilate
	dither
	double
	edge
	erode
	fft2
	fftn
	fftshift
	filter2
	freqspace
	freqz2
	fsamp2
	fspecial
	ftrans2
	fwind1
	fwind2
	getimage
	gray2ind
	grayslice
	histeq
	hsv2rgb
	idct2
	ifft2
	ifftn
	im2bw
	im2col
	im2double
	im2uint8
	im2uint16
	imadjust
	imapprox
	imcontour
	imcrop
	imfeature
	imfinfo
	imhist
	immovie
	imnoise
	impixel
	improfile
	imread
	imresize
	imrotate
	imshow
	imwrite
	ind2gray
	ind2rgb
	iptgetpref
	iptsetpref
	iradon
	isbw
	isgray
	isind
	isrgb
	makelut
	mat2gray
	mean2
	medfilt2
	montage
	nlfilter
	ntsc2rgb
	ordfilt2
	phantom
	pixval
	qtdecomp
	qtgetblk
	qtsetblk
	radon
	rgb2gray
	rgb2hsv
	rgb2ind
	rgb2ntsc
	rgb2ycbcr
	rgbplot
	roicolor
	roifill
	roifilt2
	roipoly
	std2
	subimage
	truesize
	uint8
	uint16
	warp
	wiener2
	ycbcr2rgb
	zoom

	Working with Function Functions
	Passing an M-File Function to a Function Function
	Passing an Inline Object to a Function Function
	Passing a String to a Function Function

	Index

