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Classification includes a broad range of decision-theoric approaches to the identification 
of images. All classification algorithms are based on the assumption that the image in 
question depicts one or more features and that each of these features belongs to one of 
several distinct and exclusive classes. The classes may be specified a priori through the 

use of training data or automatically clustered into sets of prototype classes. 

In this assignment, we investigated the use of neural networks for supervised 
classification 

We focused on the perceptron algorithm, then on the multilayer perceptron, and provide 
some matlab demonstrations. 
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INTRODUCTION  TO CLASSIFICATION 

with 

NEURAL NETWORKS 

__________________________________________________ 

 
 

Introduction 
 
Image classification uses the ability to detect patterns in any given data set. To detect 
patterns (or classes) we need to define decision rules to categorise the data samples. 
Classification can be supervised – where the system is output is evaluated  by a teacher 
and classed, or unsupervised– where the algorithm /system itself attempts to create 
classes from the data which the user then attempts categorise into meaningful classes 
after the classification process.    
 
The main techniques for pattern classification are summarised below, although in 
practice a combination of techniques are used for any given application. 

 

1 - Statistical pattern classification 

This method relies on defining a set of  decision rules based on standard statistical 
theory. A set of characteristic feature measurements are extracted from the input image 
data and then combined to define a feature vector, which identifies the object as 
belonging to a pattern class. In this method the decision rules for object assignment are 
obtained using prior knowledge of the expected distribution of the pattern class or from 
results seen from test data applied (i.e. we already know what we are looking for to 
define a class).  

In this method it can be difficult to express structured information 

 
Statistical classification  can take the form of Template Matching - the template is the 
ideal representation of the pattern in the image, and is correlated with the image under 
investigation. It can be applied to Optical Character Recognition (OCR) where use of a 
peep-hole template can overcome problems where a normal template fails due to a large 
portion of character area is common to many characters.  The drawbacks of this method 
is that no variation in scale or orientation is possible between template and image – 
although this can be cured with pre-processing techniques such as normalisation. This 
method can also require large amounts of computation if small templates which focus 



on key features are not used. The method is most suited to a controlled environment 
where the number of objects to be classified is not large. 
Characters can also be classified from an analysis of their horizontal and vertical line 
structure, or according to features such as line endings, corners, junctions, and 
crossovers. This provides a method independent of character size. 
A method mentioned in earlier course notes is the Decision Theoretic approach where a 
weighting vector is defined which will give an identifiable response with one class and 
a different response with another – a variant of this is the nearest neighbour technique. 
 
 

 

2 – Syntactic pattern classification 

This method relies on  the underlying structure of the patterns themselves i.e. 
decompose (parse) a pattern into sub-patterns (or primitives). The recognition of each 
pattern is usually made by parsing the pattern structure according to syntax rules. A 
block diagram of the process is given overleaf- 

 
 
 
 

   
  Fig 1 – Block Diagram of a Syntactic Pattern recognition System 

 

 
 
 
 
 
 
 
 
 



3 – Neural Networks 

The fundamental building block of a neural network is the neuron, which consists of a 
set of input connecting links, an adder, and an activation function.  

Neurons can utilise a number of different types of activation function, such as a step 
function (known as a Hard Limiter) which allows only two discrete output values, and a 
sigmoid function which can allow a range of output values between an upper and a 
lower limit. Many other functions are possible and a range are shown below (Fig 2). 

    Fig 2 – Types of activation function 

 

The basic neuron is known as the Perceptron which utilises the Step or Sign activation 
function, and gives rise to the term Threshold Logic Unit when combined with an input 
offset threshold. The block diagram is shown below: 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3 – Block Diagram of a Neuron (example Perceptron) 
 

Activation Function (Hard 
Limiter) 

Summer Inputs 



The input links are connected to  weighting functions which are applied prior to 
presentation to the adder. 

The adder then takes the weighted inputs and sums them. (The adder can also include an 
offset to raise or lower the net input to create a threshold ).  

 

The activation function is then applied to the result, thereby dictating what type of 
response the neuron makes to the summation.  

 

An essential process in the creation of a Neural network is the training phase. During 
this process the weighting functions applied to the inputs are adjusted using an adaptive 
learning rule such as the Perceptron Convergence algorithm. In this case we say that if 
Class 1 and Class 2 are linearly separable (lie on opposite sides of a straight line in 2D 
or hyperplane in xD) it is possible to achieve a weight vector (Wt) such that 

 
   

Wt x >=0 for each case of  x belonging to Class 1 
Wt x < 0 for each case of  x belonging to Class 2 

 
We then apply a training set  which consists of the input vector x, together with the 
class membership (i.e. 1 or 0) of the input vector. 
The training algorithm consists of two steps: 
1. If the Kth member of the training set xk(k=1,2,..,K) is correctly defined by the 

weight vector Wk, on the Kth repeat of the calculation, we make no change to the 
value of Wk i.e. 

  W(k+1)= Wk if Wk xk >=0 , and xk belongs to Class 1 
      or W(k+1)= Wk if Wk xk < 0 , and xk belongs to Class 2 
 
2. We update the weights if  

W(k+1)=Wk-(Q*xk) if Wk x Wt x >=0 for each case of  x belonging to Class 2 
 W(k+1)=Wk+Q*xk if Wk x Wt x < 0 for each case of  x belonging to Class 1 

 Where Q =learning step 

 

Each repeat of the set of training data to the perceptron  network is called an Epoch. The 
process is repeated until the weights stabilise, or max no. of iterations is reached. 

  

 

 



Figure 4 demonstrates the practical limitations of the preceptron and the effect when it 
is presented with classes which are not linearly separable. 

 

 

 

 

 

 

 

 

 

  Fig 4 – The preceptrons ability to deal with logic evaluation 

As can be clearly seen in case (c ) it is not possible to separate the two classes  linearly 
and the perceptron algorithm when confronted with this would iterate continuously or 
until a preset upper limit is reached  

The topology of the network can dictate the ability to classify, and the range of classes it 
can cope with. Although the perceptron individually can only classify 2 classes (1 or 0) 
it can classify more classes when the network inputs are connected in parallel to each 
individual perceptron (in this case each perceptron represents a class)- See Fig 5. 
However this technique is limited when more than one input vector maps to multiple 
classes. 

 

 
 
 
 
 
 
 
 
 
 
 
 

  Fig 5– The topology of a Parallel Perceptron Network 

 Inputs Outputs – each represents a 
different class 



__________________________________________________ 

MULTILAYER PERCEPTRON (MLP) 

__________________________________________________ 

1 - Why using a MLP ? 

The single layer perceptron can solve problems of linear separation like the one shown 
below:  

  

 

 

 

 

 

   Fig 6 – Linear separation with single layer perceptron 

The problem with the single layer perceptron method is that it cannot solve linearly 
inseparable problems of the kind shown below:  

 

 

 

 

 

  

  

    Fig 7 – XOR problem 

The reason for this difficulty is due to the use of the step function as the thresholding 
process. The use of this function removes information that is vital to the network if it is 
going to learn successfully.  

 



The information that is removed is the scale by which one needs to adjust the weights. 
This is due to neurons who are "barely ON" being treated the same as neurons who are 
"very much ON", when in reality they should be different. This problem is known as the 
credit assignment problem.  

The way around this problem is to us a slightly different function that is non- linear 
(such as the sigmoid). Now our input is not simply on or off, but instead lies within a 
range. As a result of "smoothing" out the step function to a non linear function it shall 
turn on or off as before, but in the sloping region in the middle we will get further 
information about the weights and whether to increase/decrease them. This is the 
principle of the Multi- layer perceptron. 

2 - Description of the MLP 

The multi- layer perceptron neural network model consists of a network of processing 
elements or nodes arranged in layers. Typically it requires three or more layers of 
processing nodes: an input layer which accepts the input variables (e.g. satellite channel 
values, GIS data etc.) used in the classification procedure, one or more hidden layers, 
and an output layer with one node per class (figure below). The principle of the network 
is that when data from an input pattern is presented at the input layer the network nodes 
perform calculations in the successive layers until an output value is computed at each 
of the output nodes. This output signal should indicate which is the appropriate class for 
the input data i.e. we expect to have a high output value on the correct class node and a 
low output value on all the rest.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8 – Architecture of multi- layer perceptron 



Every processing node in one particular layer is usually connected to every node in the 
layer above and below. The connections carry weights which encapsulate the behaviour 
of the network and are adjusted during training. The operation of the network consists 
of two stages. The ``forward pass'' and the ``backward pass'' or ``back-propagation''. In 
the ``forward pass'' an input pattern vector is presented to the network and the output of 
the input layer nodes is precisely the components of the input pattern. For successive 
layers the input to each node is then the sum of the scalar products of the incoming 
vector components with their respective weights.  

That is the input to a node j is given by    

   

where wji is the weight connecting node i to node j and outi is the output from node i.  

The output of a node j is    

  

which is then sent to all nodes in the following layer. This continues through all the 
layers of the network until the output layer is reached and the output vector is computed. 
The input layer nodes do not perform any of the above calculations. They simply take 
the corresponding value from the input pattern vector.  

The function f denotes the activation function of each node. A sigmoid activation 
function is frequently used,    

  

where x = inputj. This ensures that the node acts like a thresholding device. The sigmoid 
curve is illustrated in next figure: 

 

 

 

 

 

 

 Fig 9 – The sigmoid activation function. 



The multi- layer feed-forward neural network is trained by supervised learning using the 
iterative back-propagation algorithm. In the learning phase a set of input patterns, called 
the training set, are presented at the input layer as feature vectors, together with their 
corresponding desired output pattern which usually represents the classification for the 
input pattern. Beginning with small random weights, for each input pattern the network 
is required to adjust the weights attached to the connections so that the difference 
between the network's output and the desired output for that input pattern is decreased. 
Based on this difference the error terms for each node in the output layer are computed. 
The weights between the output layer and the layer below (hidden layer) are then 
adjusted by a rule called the generalised delta rule (Rumelhart)    

  

where wkj(t + 1) and wkj(t) are the weights connecting nodes k and j at iteration (t+1) and 
t respectively, h is a learning rate parameter. Then the d terms for the hidden layer 
nodes are calculated and the weights connecting the hidden layer with the layer below 
(another hidden layer or the input layer) are updated. This procedure is repeated until 
the last layer of weights has been adjusted.  

The term in equation above is the rate of change of error with respect to the input to 
node k, and is given by    

  

for nodes in the output layer, and    

  

for nodes in the hidden layers, where dk is the desired output for a node k.  

 

The back-propagation algorithm is a gradient descent optimisation procedure which 
minimises the mean square error between the network's output and the desired output 
for all input patterns P    

  

 

 



The training set is presented iteratively to the network until a stable set of weights is 
achieved and the error function is reduced to an acceptable level. The next figure 
summarises the training procedure of the multi- layer feed-forward neural network. To 
measure the generalisation ability of the multi- layer feed-forward neural network it is 
common to have a set of data to train the network and a separate set to assess the 
performance of the network during or after the training is complete. Once the neural 
network has been trained, the weights are saved to be used in the classification phase. 
During classification, image data are fed into the network which performs classification 
by assigning a class number to a pixel or segment using the numerical values computed 
at the output layer. Typically the output node giving the highest value is taken as the 
best class to assign.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 10 – Training procedure for multi- layer perceptron network 
 

When showing the untrained network an input pattern, it produces a random output. We 
need to define an error function which represents the different between our output 
received and the output we desire. This error function must be continually reduced so 
our output reaches that of the desired output.  



To achieve this we adjus t the weights on the links between layers, this is done by the 
generalised delta rule calculating the error for a particular input and back-propagating it 
through to the previous layer. Thus each unit in the network has its weights adjusted so 
that it reduces the value of the error function and the network learns. The MLP is thus 
able to distinguish more complex pattern :  

 

 

 

 

 

 

           Fig 11 – Complex pattern classification 

 

3 - Summary of MLPs  

  
The MLP is the most widely used neural classifier today. It belongs to the class of 
supervised neural networks. MLP networks are general-purpose, flexible, non linear 
models consisting of a number of units organised into multiple layers. The complexity 
of the MLP network can be changed by varying the number of layers and the number of 
units in each layer. Given enough hidden units and enough data, it has been shown that 
MLPs can approximate virtually any function to any desired accuracy. In other words, 
MLPs are universal approximators. MLPs are valuable tools in problems when one has 
little or no knowledge about the form of the relationship between input vectors and their 
corresponding outputs.  
 
 
 
 



__________________________________________________ 

HANDWRITTEN DIGIT RECOGNITION 

__________________________________________________ 
 
 
The aim is to illustrate with a practical example the different steps in the 

development of a classifier. The chosen classification problem is the recognition of 
handwritten digits. 

 
There are 10 different digits, so the classifier has 10 output classes. It is a 

complicate classification problem because each person writes the digits differently. It is 
important to choose good features to be able to classify correctly the different digits, 
and train the classifier with a large amount of digits. 

 
Between the different techniques to classify, a neuronal net is chosen for the 

handwritten digits recognition. Neuronal nets are widely used in classification problems 
as was mentioned in the lectures. Matlab neuronal net toolbox is used to train and 
simulate the net. 

 
These are the steps to develop the classifier: 
 

1.- Search of the handwritten digits 
2.- Preprocessing of the handwritten digits 
3.- Feature extraction 
4.- Training of the Neuronal Net 
5.- Testing the Neuronal Net 

 
 
1.- Search of the handwritten digits 
 

110 images of digits have been used to develop the classifier, 11 example 
images for each class. Some have been downloaded from Internet and the others have 
been created scanning handwritten digits. All the figures have the same size, 40x30 
pixels, and they can be in colour or in black and white. 

 
The figure 12 shows some of the used digits: 
 

 
Fig 12.- Some Digits to recognise 

 
2.- Preprocessing of the handwritten digits 
 

To extract the features from the images, they have to be binary images, in black 
and white. That is the only preprocessing that the images need because there is not noise 
in the digits and is not necessary to apply filters. 

 



The first step is to convert the colour image to grey level image. After, the 
histogram is calculated and the image is threshold. The Otsu technique is used to decide 
the optimal threshold value for each image, using the function given in the Matlab 
tutorials. 

 
The figure 13 shows some digits before and after the preprocessing: 
 
 

 

 
Fig 13.- Digits before and after the preprocessing 

 
Not all the handwritten digits are located in the centre of the image, so it is 

necessary to detect where the digit exactly is to obtain better features. Once the image  is 
threshold, the boundaries of the digit are located and the features are calculated using 
the pixels inside the boundaries. 

 
The figure 14 shows the boundaries for one of the digits. Only the pixels inside 

the rectangle are used. 
 

 
Fig 14.- Boundaries of the digit 9 

 



Using the boundaries, the high and the width of the digits is calculated. These 
two values are used to normalize the distance and this way the features are independent 
on the size of the digit. Also the central point of the digit is calculated and some of the 
features are calculated respect this point. 

 
 
 
 

3.- Feature extraction 
 
8 different features are used to classify the handwritten digits: 
 
Feature 1: 
 
The first feature is the relation between the high and the width of the 

handwritten digit. The high and width are calculated in the preprocessing. 
 

feature 1 = high_digit / width_digit; 
 
Feature 2 and Feature 3: 
 
These two features check how the black pixels are distributed in the rectangle. 

First the number of black pixels inside the rectangle is calculated. (total_pixels of the 
digit). 

 
The feature 2 is the percentage of pixels located in the upper area of the digit, in 

other words, the pixels located up the central point: 
 

feature 2 = upper_pixels/ total_pixels; 
 
The feature 3 is the percentage of pixels located in the left area of the digit, in 

other words, the pixels located in the left of the central point: 
 

feature 3 = left_pixels/ total_pixels; 
 
Feature 4: 
 
The next feature is the average of the distance between all the black pixels and 

the central point. 
 

Feature 4 =  ( ) ( )∑ ∑ −×−×
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 Where   (x,y) are the coordinates of a point 
   and (i,j) are the coordinates of central point. 
 
Feature 5, 6, 7, 8: 
 
The last 4 features calculate the moments of the digit respect the central point. 
 



For a f(x,y) two dimensional function, the central moment of order (p + q) is 
defined as: 
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 Where   (x,y) are the coordinates of a point 
   and (i,j) are the coordinates of central point. 
 
In the handwritten digit recognition, the 4 moments of order 3 are used as 

features. These are the moments of order 3: 
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4.- Training of the Neuronal Net 
 
There are 110 different images of the digits, 11 images per class. A hundred of 

these images are used to train the neuronal net and the other 10 to test the performance 
of the network. Most of the images are used to train the network because is important to 
train with a large amount of digits. 

 
The output layer needs 10 neurons, one per each class to recognize. Different 

neuronal nets can be chosen to recognize the handwritten digits. Neuronal nets with 
different number of layers and different neurons per layer have been trained and 
simulated. Also different transfer functions have been implemented and their 
performance has been compared. 

 
The neuronal net with better performance is shown in the figure 15: 



 

 
Fig 15: The neuronal network to classify the digits 

 
There are 4 different layers and each one has got 10 neurons. The neurons of the 

input layer have got 8 inputs that are the calculated features. All the others neurons have 
got 10 inputs that are the outputs of the previous layer. 

 
All the neurons use the hyperbolic tangent sigmoid or tansig transfer function. 

This transfer functions has been chosen because the performance of the network is 
better and less neurons and layers are needed to recognise the handwritten digits. 

 
If the number to recognize is a zero, the value of the first output neuron a 1, and 

the output of all the others neurons is a zero. The same happens for the others digits. 
 
Matlab has got different algorithms to train the network. In this case the gradient 

descent weight and bias learning function is used. The ‘learngd’ function adjusts the 
weight and bias of the different layers depending on the gradient in the output error. The 
objective is to minimize the Sum squared error in the output. 

 
The figure 16 shows the training of the network. At the beginning the Sum 

squared error (sse) is big, but after 300 epochs the error of the network is very small and 
the neuronal net can recognize the training digits with a very small error. 
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Fig 16.- Training of the neuronal network 

 
 

5.- Testing the Neuronal Net 
 
Once the neuronal net has been trained, the performance can be calculated using 

Matlab functions. 
 
First the neuronal network is simulated with the training images. The 100 digits 

used to train the network are correctly classified, all the digit are classified in the correct 
class. 

  
Now the network is simulated with the 10 images that are not used in the 

training. There is an image for each class. The table 1 shows the result of the simulation, 
in grey colour are shown the number that have been bad classified: 

 
 

Digit to 
recognise 

 
0 1 2 3 4 5 6 7 8 9 

Digit 
classified 

has 
8 1 5 3 4 5 9 7 8 9 

Table 1.- Result of the simulation 
 
Three digits have been bad classified, the 0 is recognized as a 8, the 2 is 

recognized as a 5 and the 6 is recognized as a 9. All the other digits are recognized 
correctly. 

 



Only 10 elements for each class have been used to train network, and using more 
digits to train the neuronal network the result should be better. Another way to improve 
the result is using other features. 

 
The feature selection and extraction is the important and hard part of the 

classification because the training and simulation of the network is quite easy to 
implement using the Matlab function. The performance of the classifier depends more 
on the chosen features than on the used neuronal network configuration. 

 
 



HOW TO USE THE MATLAB FILES: 
 
Matlab neuronal network is necessary to train and simulate the network 
 
* First execute the ‘training_files.m’ file: 

- This file uses the functions that calculate the features and saves all the 
features in the files ‘training_features.txt’, ‘training_targets.txt’, 
’simulation_features.txt’, and ‘simulation_targets.txt.’ 

 
* Execute the ‘network_training.m’ to train the network. 
 
* Execute the ‘simulate_network.m’ file to simulate the network. The results are saved 

    in the files ‘simulation_outputs.txt’ and  ‘simulation_training_data.txt’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



__________________________________________________ 

MATLAB TUTORIAL 

__________________________________________________ 
 
 

 
1 - Perceptron demo : classifying 3D patterns into 2 classes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         Fig 17 – Perceptron Demo 
Download: 
initPerceptron.m (initialization module)  
plotInput.m (plots the input patterns)  
plotDecisionSurf.m (plot the weight vector, and the classification boundary defined by the 
weight vector)  
trainPerceptron.m (function for implementing the learning)  
runPerceptron.m (calls the plotting m-files and trainPerceptron) 
demoPerceptron.m (calls initPerceptron and runPerceptron until convergence or maximal 
number of iterations) 
 



vectorinputratelearningweightsweights __ ×+=

vectorinputratelearningweightsweights __ ×−=

Principle: 
The perceptron which has been implemented is a simple feedforward algorithm with linear 
treshold activation function. If the total weighted summed to a unit is greater than or equal to 
the threshold, its state is set to 1, otherwise it is -1. 
 
The following rule has been used: after a pattern is presented to the network, we compare the 
value of the actual output produced by the network to the value of the target output. If the 
target is +1 and output is -1, we update the weight vector according to : 
 
 
Otherwise, if unit should be -1 and is actually +1, update the weight vector according to  
 
 
If the patterns are linearly separable, then the perceptron learning algorithm will converge on 
a perfect solution. 
Note that if the patterns are not linearly separable, the algorithm does not converges. 
 
Questions: 

a) Have a look at the code in 'initPerceptron.m', 'runPerceptron.m', 'trainPerceptron.m' 
and 'demoPerceptron.m' to see how the weights and states are initialized, and how the 
weights are updated. Now do the following:  
Execute the script 'demoPerceptron, which initializes the weights and training patterns 
by calling 'initPerceptron' and then repeatedly run the script 'runPerceptron' until the 
network has converged (weights no longer change) or until the maximal number of 
iterations has been reached. You can view the weight vector, and the associated 
classification boundary (desicion surface perpendicular to the weight vector) on the 
figure.  
Repeat this entire process for several runs, using different random patterns and 
different random initial weights. Why does the convergence time differ from one run 
to the next?  
 

b) Increase the difficulty of the classification problem by changing the variance of the 
random Gaussian function used to generate the training patterns. Does the Perceptron 
converge more quickly or more slowly on these data, or does it converge at all? How 
can you explain the convergence or lack of convergence by looking at the training 
patterns? Conclude on the limitations of the perceptron. 

 
2 - Matlab Classification Toolbox (Copyright John Wiley & Sons) 
 
Download: 
The classification toolbox can be freely downloaded from the internet 
(http://tiger.technion.ac.il/~eladyt/Classification_toolbox.html). To install it, you just need to 
unzip the file and specify the path (use File|set Path). A user guide is provided with the 
software. 
 
Principle: 
You have access to a large number of classification algorithms that you can vizualise the 
effects of different parameters: the input data, the error estimation method, the percentage of 
training vectors, the use of a preprocessing step... A multiple algorithm comparison tool is 
provided.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   Fig 18 – Classification Toolbox 
 
 
Questions:  

a) Open the file called XOR. Choose different algorithms and try to train the data. Verify 
that a perceptron cannot classify non- linearly separable data. Try to use a 
backpropagation algorithm. What is the influence of preprocessing on the results ?  

b) Using the Holdout error estimation option, evaluate the influence of the percentage of 
training vectors. What difference do you make between training vectors and test 
vectors ? 

c) Get some information on cross-validation. Using cross-validation allow us to reduce 
the percentage of training vectors. Explain why.  

 
 


