Dr Yvan Petillot

FFT Algorithms

- Developed by Cooley and Tukey in 1965
- Revolutionised signal processing and paved the way for DSP.
- Various forms exist:
$\stackrel{H}{4}$ Decompistion in Frequency (DIF)
$\stackrel{\wedge}{ }{ }^{\wedge}$ Decomposition in Time (DIT)
$\stackrel{H}{4}$ Radix-4, Radix-2
- Critical for filtering and convolution

Idea behind FFT

DFT:

$X(k)=\sum_{n=0}^{N-1} x_{p}(n) e^{-j 2 \pi \frac{k n}{N}}=\sum_{n=0}^{N-1} x_{p}(n) W_{N}^{n k}, \quad 0 \leq k \leq N-1$
Requires N^{2} multiplication and N^{2} addition.

Can this be reduced by finding more efficient ways of calculating $\mathrm{X}(\mathrm{k})$?

Subdividing the DFT into smaller DFTs is the solution!

Decimation in time (DIT)

DFT:

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi \frac{k n}{N}}=\sum_{n=0}^{N-1} x(n) W_{N}^{n k}, \quad 0 \leq k \leq N-1
$$

2 Points DFT:

$$
\begin{aligned}
& X(k)=\sum_{n=0}^{1} x(n) W_{2}^{n k}=x(0) W_{2}{ }^{0}+x(1) W_{2}{ }^{1 k} \\
& W_{2}=e^{-\frac{\mathrm{i} 2 \pi}{2}}=-1 \\
& X(0)=x(0)+x(1) \\
& X(1)=x(0)-x(1)
\end{aligned}
$$

No complex multiply!

Decimation in time 4 points DFT

4 Points DFT:

$X(k)=\sum_{n=0}^{4} x(n) W_{4}{ }^{n k}=x(0) W_{4}{ }^{0}+x(1) W_{4}{ }^{1 k}+x(2) W_{4}{ }^{2 k}+x(3) W_{4}{ }^{3 k}$
$W_{4}^{0 k}=W_{2}^{0 k}$
$\mathrm{W}_{4}^{2 \mathrm{k}}=\mathrm{W}_{2}^{1 \mathrm{k}}$
$X(k)=x(0) W_{2}^{0}+x(2) W_{2}^{1 k}+W_{4}^{k}\left[x(1) W_{4}^{0 k}+x(3) W_{4}^{2 k}\right]$
$X(k)=\operatorname{DFT}_{2}[x(n)]_{\text {neven }}+W_{4}^{k} \operatorname{DFT}_{2}[x(n)]_{\text {nodd }}$
$X(k)=X_{1}(k)+W_{4}^{k} X_{2}(k)$
where $x_{1}(n)=x(2 n)$ and $x_{2}(n)=x(2 n+1)$

Decimation in time 4 points DFT

4 Points DFT:

$$
\begin{aligned}
& X(k)=X_{1}(k)+W_{4}^{k} X_{2}(k) \\
& X_{1}(k+2)=X_{1}(k) \\
& X_{2}(k+2)=X_{2}(k) \\
& X(0)=X_{1}(0)+X_{2}(0) \\
& X(1)=X_{1}(1)+W_{4}^{1} X_{2}(1) \\
& X(2)=X_{1}(0)-X_{2}(0) \\
& X(3)=X_{1}(1)-W_{4}^{1} X_{2}(1)
\end{aligned}
$$

Decimation in time: Example

Example: $x(n)=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$
$X_{1}(0)=x(0)+x(2)=2$
$X_{1}(1)=x(0)-x(2)=-2$
$X_{2}(0)=x(1)+x(3)=4$
$X_{2}(1)=x(1)-x(3)=-2$
$W_{4}^{1}=e^{-\frac{j 2 \pi}{4}}=e^{-\frac{j \pi}{2}}=-j$
$X(0)=X_{1}(0)+X_{2}(0)=6$
$X(1)=X_{1}(1)+W_{4}^{1} X_{2}(1)=-2+2 j$
$X(2)=X_{1}(0)-X_{2}(0)=-2$
$X(3)=X(1)=X_{1}(1)-W_{4}^{1} X_{2}(1)=-2-2 j$

Decimation in time: 8 points case

```
\(X(k)=\sum_{n=0}^{7} x(n) W_{8}^{n k} \quad, k=0,1, \ldots, 7\)
```

$X(k)=x(0) W_{8}^{0 k}+x(1) W_{8}^{1 \mathrm{k}}+x(2) W_{8}^{2 k}+x(3) W_{8}^{3 \mathrm{k}}+x(4) W_{8}^{4 \mathrm{k}}+x(5) W_{8}^{5 k}+x(6) W_{8}^{6 k}+x(7) W_{8}^{7 k}$
$X(k)=x(0) W_{8}^{0 k}+x(2) W_{8}^{2 k}+x(4) W_{8}^{4 k}+x(6) W_{8}^{6 k}+W_{8}^{1 k}\left[x(1) W_{8}^{0 k}+x(3) W_{8}^{2 k}+x(5) W_{8}^{4 k}+x(7) W_{8}^{6 k}\right]$
$\mathrm{W}_{8}^{2 \mathrm{nk}}=\mathrm{W}_{4}^{\mathrm{nk}}$
$X(k)=x(0) W_{4}^{0 k}+x(2) W_{4}^{k}+x(4) W_{4}^{2 k}+x(6) W_{4}^{3 k}+W_{8}^{1 k}\left[x(1) W_{4}^{0 k}+x(3) W_{4}^{1 \mathrm{k}}+x(5) W_{4}^{2 k}+x(7) W_{4}^{3 k}\right]$
$X(k)=X_{1}(k)+W_{8}^{k} X_{2}(k)$
$W_{8}^{k+4}=-W_{8}^{k}$

Decimation in time: 8 points case

Decimation in time: 8 points case

(a) Block diegram of 8 -potin OFT computed by recomposition of 2 -pont and 4 -point DFTs

Decimation in time: general case

$$
\begin{array}{rlrl}
X(k) & =\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi \frac{k n}{N}}=\sum_{n=0}^{N-1} x(n) W_{N}^{n k} & & X_{1}\left[k+\frac{N}{2}\right]=X_{1}(k) \quad, \quad X_{2}\left[k+\frac{N}{2}\right]=X_{2}(k) \\
& =\sum_{n \text { even }} x(n) W_{N}^{n k}+\sum_{n o d d} x(n) W_{N}^{n k} & & W_{N}^{k+N / 2}=W_{N}^{k} W_{N}^{N / 2}=-W_{N}^{k} \\
& =\sum_{l=0}^{N / 2-1} x(2 l) W_{N}^{2 l k}+\sum_{l=0}^{N / 2-1} x(2 l+1) W_{N}^{(2 l+1) k} & & \\
\text { BUT : } & & \\
W_{N}^{2 k} & =e^{\left.-\frac{j 2 \pi}{N} 2 \right\rvert\, k}=e^{-\frac{j 2 \pi}{N / 2} / k}=W_{N / 2}^{\mid k} & & X_{1}(n)=x(2 n), n=0,1, \ldots, N / 2-1 \\
X(k) & =\sum_{l=0}^{N / 2-1} x(2 l) W_{N / 2}^{l k}+W_{N}^{k} \sum_{l=0}^{N / 2-1} x(2 l+1) W_{N / 2}^{l k} & & X_{2}(n)=x(2 n+1), n=0,1, \ldots, N / 2-1 \\
& =\sum_{l=0}^{N / 2-1} x_{1}(l) W_{N / 2}^{l k}+W_{N}^{k} \sum_{l=0}^{N / 2-1} x_{2}(l) W_{N / 2}^{l k} & & \\
& =X_{1}(k)+W_{N}^{k} X_{2}(k) & &
\end{array}
$$

Decimation in time: general case

Decimation in time: general case

Using FFTs for inverse DFTs

- We've always been talking about forward DFTs in our discussion about FFTs what about the inverse FFT?

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n} ; \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

- One way to modify FFT algorithm for the inverse DFT computation is:
${ }^{\Perp}$ Replace W_{N}^{k} by W_{N}^{-k} wherever it appears $\stackrel{\rightharpoonup}{ }$ Multiply final output by $1 / \mathrm{N}$
- This method has the disadvantage that it requires modifying the internal code in the FFT subroutine

A better way to modify FFT code for inverse DFTs

- Taking the complex conjugate of both sides of the IDFT equation and multiplying by N :

$$
N x^{*}[n]=\sum_{k=0}^{N-1} X^{*}[k] W_{N}^{k n} ; \text { or } x[n]=\frac{1}{N}\left[\sum_{k=0}^{N-1} X^{*}[k] W_{N}^{k n}\right]^{*}
$$

- This suggests that we can modify the FFT algorithm for the inverse DFT computation by the following:
$\stackrel{\rightharpoonup}{\wedge}$ Complex conjugate the input DFT coefficients
$\left.{ }^{4}\right)$ Compute the forward FFT
$\stackrel{y}{c}$ Complex conjugate the output of the FFT and multiply by $1 / N$
- This method has the advantage that the internal FFT code is undisturbed; it is widely used.

Alternate FFT structures

- We developed the basic decimation-in-time (DIT) FFT structure in the last lecture, but other forms are possible simply by rearranging the branches of the signal flowgraph
- Consider the rearranged signal flow diagrams on the following panels

Alternate DIT FFT structures (continued)

- DIT structure with input bit-reversed, output natural (OSB 9.10):

Alternate DIT FFT structures (continued)

- DIT structure with input natural, output bit-reversed (OSB 9.14):

Alternate DIT FFT structures (continued)

- DIT structure with both input and output natural (OSB 9.15):

Alternate DIT FFT structures (continued)

- DIT structure with same structure for each stage (OSB 9.16):

Comments on alternate FFT structures

- A method to avoid bit-reversal in filtering operations is:
${ }^{4}>$ Compute forward transform using natural input, bit-reversed output (as in OSB 9.10)
$\stackrel{\Perp}{\Perp}$ Multiply DFT coefficients of input and filter response (both in bit-reversed order)
${ }^{4}$ Compute inverse transform of product using bit-reversed input and natural output (as in OSB 9/14)
- Latter two topologies (as in OSB 9.15 and 9.16) are now rarely used

The decimation-in-frequency (DIF) FFT algorithm

- Decimation in frequency is an alternate way of developing the FFT algorithm
- It is different from decimation in time in its development, although it leads to a very similar structure

The decimation in frequency FFT (continued)

- Consider the original DFT equation

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{n k}
$$

- Separate the first half and the second half of time samples:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{n k}+\sum_{n=N / 2}^{N-1} x[n] W_{N}^{n k} \\
& =\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{n k}+W_{N}^{(N / 2) k} \sum_{n=0}^{(N / 2)-1} x[n+(N / 2)] W_{N}^{n k} \\
& =\sum_{n=0}^{(N / 2)-1}\left[x[n]+(-1)^{k} x[n+(N / 2)]\right] W_{N}^{n k}
\end{aligned}
$$

- Note that these are not $N / 2$-point DFTs

Continuing with decimation in frequency ...

$$
X[k]=\sum_{n=0}^{(N / 2)-1}\left[x[n]+(-1)^{k} x[n+(N / 2)]\right] J_{N}^{n k}
$$

- For k even, let $k=2 r$

$$
X[k]=\sum_{n=0}^{(N / 2)-1}\left[x[n]+(-1)^{2 r} x[n+(N / 2)]\right] W_{N}^{n 2 r}=\sum_{n=0}^{(N / 2)-1}[x[n]+x[n+(N / 2)]] W_{N / 2}^{n r}
$$

- For k odd, let $k=2 r+1$

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{(N / 2)-1}\left[x[n]+(-1)^{2 r}(-1) x[n+(N / 2)]\right] y_{N}^{n(2 r+1)} \\
& =\sum_{n=0}^{(N / 2)-1}[x[n]-x[n+(N / 2)]] W_{N}^{n} W_{N / 2}^{n r}
\end{aligned}
$$

- These expressions are the $N / 2$-point DFTs of

$$
x[n]+x[n+(N / 2)] \text { and }[x[n]-x[n+(N / 2)]] W_{N}^{n}
$$

These equations describe the following structure:

Continuing by decomposing the odd and even output

 points we obtain

\ldots and replacing the N/4-point DFTs by butterflys we obtain

The DIF FFT is the transpose of the DIT FFT

- To obtain flowgraph transposes:
${ }^{\wedge}>$ Reverse direction of flowgraph arrows
$\stackrel{H}{>}$ Interchange input(s) and output(s)
- DIT butterfly:

DIF butterfly:

- Comment:
$\stackrel{\leftrightarrow}{\hookrightarrow}$ We will revisit transposed forms again in our discussion of filter implementation

The DIF FFT is the transpose of the DIT FFT

Comparing DIT and DIF structures:

DIT FFT structure:

DIF FFT structure:

Alternate forms for DIF FFTs are similar to those of DIT FFTs

Alternate DIF FFT structures

- DIF structure with input natural, output bit-reversed (OSB 9.20):

Alternate DIF FFT structures (continued)

- DIF structure with input bit-reversed, output natural (OSB 9.22):

Alternate DIF FFT structures (continued)

- DIF structure with both input and output natural (OSB 9.23):

Alternate DIF FFT structures (continued)

- DIF structure with same structure for each stage (OSB 9.24):

FFT structures for other DFT sizes

- Can we do anything when the DFT size N is not an integer power of 2 (the non-radix 2 case)?
- Yes! Consider a value of N that is not a power of 2 , but that still is highly factorable ...
Let $N=p_{1} p_{2} p_{3} p_{4} \ldots p_{v} ; q_{1}=N / p_{1}, q_{2}=N / p_{1} p_{2}$, etc.
- Then let

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] W_{N}^{n k} \\
& =\sum_{r=0}^{q_{1}-1} x\left[p_{1} r\right] W_{N}^{p_{1} r k}+\sum_{r=0}^{q_{1}-1} x\left[p_{1} r+1\right] W_{N}^{\left(p_{1} r+1\right) k}+\sum_{r=0}^{q_{1}-1} x\left[p_{1} r+2\right] W_{N}^{\left(p_{1} r+2\right) k}+\ldots
\end{aligned}
$$

Non-radix 2 FFTs (continued)

- An arbitrary term of the sum on the previous panel is
$\sum_{r=0}^{q_{1}-1} x\left[p_{1} r+l\right] W_{N}^{\left(p_{1} r+l\right) k}$
$=\sum_{r=0}^{q_{1}-1} x\left[p_{1} r+l\right] W_{N}^{p_{1} r k} W_{N}^{l k}=W_{N}^{l k} \sum_{r=0}^{q_{1}-1} x\left[p_{1} r+l\right] W_{q_{1}}^{r k}$
- This is, of course, a DFT of size q_{1} of points spaced by p_{1}

Non-radix 2 FFTs (continued)

- In general, for the first decomposition we use
$X[k]=\sum_{l=0}^{p_{1}-1} W_{N}^{l k} \sum_{r=0}^{q_{1}-1} x\left[p_{1} r+l\right] W_{q_{1}}^{r k}$

- Comments:

$\stackrel{\leftrightarrow}{\hookrightarrow}$ This procedure can be repeated for subsequent factors of N
$\stackrel{\Perp}{ }$ The amount of computational savings depends on the extent to which N is "composite", able to be factored into small integers
$\stackrel{\text { nh }}{ }{ }^{n}$ Generally the smallest factors possible used, with the exception of some use of radix- 4 and radix- 8 FFTs

Summary

- We have considered a number of alternative ways of computing the FFT:
${ }^{4}$ Alternate implementation structures
$\stackrel{y}{ }{ }^{4}$ The decimation-in-frequency structure
$\stackrel{H}{ } \Rightarrow$ FFTs for sizes that are non-integer powers of 2
${ }^{〔}$ Using standard FFT structures for inverse FFTs

