	FIR Filters	
	Dr Yvan Petillot	
FIR Filters		4.1

$$\begin{split} & \text{Low Pass design} \\ & h_{ip}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\theta}) e^{jn\theta} d\theta \\ & = \frac{1}{2\pi} \int_{-\theta_c}^{\theta_c} K e^{jn\theta} d\theta = \frac{K}{2\pi} \left[\frac{e^{jn\theta}}{jn} \right]_{-\theta_c}^{\theta_c} \\ & = \frac{K}{n\pi} \sin(n\theta_c) \end{split}$$
Infinite number of coefficients, non causal!
$$y(n) = \sum_{k=-\infty}^{\infty} h(k) x(n-k)$$

ference	betwe	en windows ?			
Win	ndow type	Mathematical expression	Sidelobes (dB)	Transition width	Stop band attenuation
Rec	ctangular	$w(n) = 1, 0 \le n \le N - 1$	-13	0.9/N	-21
Har	mming	$w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right) 0 \le n \le N-1$	-31	3.1/N	-44
Har	nning	$w(n) = 0.50 - 0.40 \cos\left(\frac{2\pi n}{N-1}\right) 0 \le n \le N-1$	-41	3.3/N	-53
Bla	ckman	$w(n) = 0.42 - 0.50co\left(\frac{2\pi n}{N-1}\right) + 0.08co\left(\frac{4\pi n}{N-1}\right) 0 \le n \le N-1$	-57	5.5/N	-74