Dr Yvan Petillot

Z transform 4.1

* Previously, we discussed the discrete-time Fourier transform
(DTFT)

» Here, we will begin our discussion of the Z-transform (ZT)

% ZT can be thought of as a generalization of the DTFT

% ZT ismore complex than DTFT (both literally and figuratively), but
provides a great deal of insight into system design and behavior

% Provide insight into the relationships between frequency using ZT and
DTFT relationships
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x[n] = %7 J’fHX(eJ' el @de, X(e)®) = g x[nje” @

n=-oo
» Thefirst equation asserts that we can represent any time
function x[n] by alinear combination of complex exponentials
el = cos(an) + j sin(an)
» Thesecond equation tells us how to compute the complex

weighting factors x(el«)

* Ingoing fromthe DTFT to the ZT wereplace gian by ,n
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* Ingoing fromthe DTFT to the ZT we replaceel“" by ;"
» ,n can be thought of as a generalization of gian

» For an arbitrary z, using polar notation we obtain z=pe® s0
N= pnejwn
 |If both p and w arereal, then ,n can be thought of asa

complex exponential (i.e. sines and cosines) with areal temporal
envelope that can be either exponentially decaying or expanding
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e Recdl that the DTFT is

X(e)®) = > x[nje” 1%
n=-o0
* Since we are replacing (generalizing) the complex exponential
building blocks i by ,n , areasonable extension of X(e!%“)

would be

(o]

X@= 5 «nz "

n=-o0

* Again, think of thisas building up the time function by a
weighted sums of functions ;" instead of gi«n
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« Example 1: Consider thetimefunction x[n] = a"u[n]
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« Example 2: Now consider the time function
x[n] = -a"u[-n-1]
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X(@z)= Y xnjz™ = _zl—a"z’" = _zl(az’l)"

n=—o

e Let I=-mn=-00 | =co;n=-10 =1

. Then, Z(Uz_l)" = g-(za‘l)' =1—Z(za'l)' =1-
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+ Did you notice that the Z-transforms were identical for Examples 1 and 2
even though the time functions were different? Yes, indeed, very different
time functions can have the same Z-transform! What’s missing in this
characterization? The region of convergence (ROC).

(o]

+ InExample 1, the sum X(2) = 5 "z "tonverges only for |2>ai
nfg

* InExample 2, the sumx(z) = S oz "bonverges only for lo| >|2|

n=—c0

+ So in general, we must specify not only the Z-transform corresponding to a
time function, but its ROC as well.
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* InExample 1, the ROC was IzPlal
» We can represent this graphically as:

Imfz]
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e In Example 2, the ROC was IzKlal
» We can represent this graphically as:

Imfz]

Re[z]

" zi=lal
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e It can be shown that an LS| system is stable if the ROC includes the unit
circle (UC), which isthe locus of points for which |7 =1
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¢ Comment: thisis exactly the same condition that is required for the DTFT
toexist
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+ Did you notice that we didn’t talk about inverse z-transforms
yet?

+ It can be shown (see the text) that the inverse z-transform can be
formally expressed as

x[n] = ZindX(z)z"'ldz

+ Comments:

% Unlike the DTFT, thisintegral is over acomplex variable, zand we need
complex residue calculus to evaluate it formally

% The contour of integration, c, isacircle around the origin that liesinside
theROC

% Wewill never need to actually evaluate thisintegral in this course
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* Theztransform isbased on a generalization of the frequency representation
used for the DTFT

« Different time functions may have the same z-transforms; the ROC is needed
aswell

¢ TheROC isbounded by one or more circles in the z-plane centered at its
origin

¢ AnLSl systemisstable if the ROC includes the unit circle

¢ Theinverse ztransform can only be evaluated using complex contour
integration
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