Z transform

Dr Yvan Petillot

Z Transform

- Previously, we discussed the discrete-time Fourier transform (DTFT)
- Here, we will begin our discussion of the Z-transform (ZT)
$\stackrel{4}{4}$ ZT can be thought of as a generalization of the DTFT
$\stackrel{\text { ZT is more complex than DTFT (both literally and figuratively), but }}{ }$ provides a great deal of insight into system design and behavior
$\stackrel{\leftrightarrow}{\wedge}$ Provide insight into the relationships between frequency using ZT and DTFT relationships

The Discrete-Time Fourier Transform (DTFT) and the Ztransform (ZT)

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega} d \omega \quad X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega}
$$

- The first equation asserts that we can represent any time function $x[n]$ by a linear combination of complex exponentials

$$
e^{j \omega n}=\cos (\omega n)+j \sin (\omega n)
$$

- The second equation tells us how to compute the complex weighting factors $X\left(e^{j \omega}\right)$
- In going from the DTFT to the ZT we replace $e^{j \omega n}$ by z^{n}

Generalizing the frequency variable

- In going from the DTFT to the ZT we replace $e^{i \omega n}$ by z^{n}
- z^{n} can be thought of as a generalization of $e^{j \omega n}$
- For an arbitrary z, using polar notation we obtain $z=\rho \mathrm{e}^{\mathrm{i} 0}$ so

$$
z^{n}=\rho^{n} e^{j \omega n}
$$

- If both ρ and ω are real, then z^{n} can be thought of as a complex exponential (i.e. sines and cosines) with a real temporal envelope that can be either exponentially decaying or expanding

Definition of the Z-transform

- Recall that the DTFT is

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega}
$$

- Since we are replacing (generalizing) the complex exponential building blocks $e^{j \omega n}$ by z^{n}, a reasonable extension of $X\left(e^{j \omega}\right)$ would be

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

- Again, think of this as building up the time function by a weighted sums of functions z^{n} instead of $e^{j \omega n}$

Computing the Z-transform: an example

- Example 1: Consider the time function $x[n]=\alpha^{n} u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=0}^{\infty} \alpha^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\alpha z^{-1}\right)^{n} \\
& =\frac{1}{1-\alpha z^{-1}}=\frac{z}{z-\alpha}
\end{aligned}
$$

Another example

- Example 2: Now consider the time function

- Let $l=-n ; n=-\infty \Rightarrow l=\infty ; n=-1 \Rightarrow l=1$
- Then, $\sum_{n=-\infty}^{-1}\left(\alpha z^{-1}\right)^{n}=\sum_{i=1}^{\infty}-\left(z \alpha^{-1}\right)^{\prime}=1-\sum_{i=0}^{\infty}\left(z \alpha^{-1}\right)^{\prime}=1-\frac{1}{1-z \alpha^{-1}}=\frac{1}{1-\alpha z^{-1}}$

The importance of the region of convergence

- Did you notice that the Z-transforms were identical for Examples 1 and 2 even though the time functions were different? Yes, indeed, very different time functions can have the same Z-transform! What's missing in this characterization? The region of convergence (ROC).
- In Example 1, the sum $X(z)=\sum^{\infty} \alpha^{n} z^{-n}$ converges only for $|z|>|\alpha|$
- In Example 2, the $\operatorname{sum} X(z)=\sum_{n=-\infty}^{\substack{n=0 \\-1}} \alpha^{n} z^{-n}$ converges only for $|\alpha|>|z|$
- So in general, we must specify not only the Z-transform corresponding to a time function, but its ROC as well.

What shapes are ROCs for Z-transforms?

- In Example 1, the ROC was $|z|>|\alpha|$
- We can represent this graphically as:

What shapes are ROCs for Z-transforms?

- In Example 2, the ROC was $|z|<|\alpha|$
- We can represent this graphically as:
(ROC is
shaded
area)

Stability and the ROC

- It can be shown that an LSI system is stable if the ROC includes the unit circle (UC), which is the locus of points for which $|z|=1$

- Comment: this is exactly the same condition that is required for the DTFT to exist

The inverse Z-transform

- Did you notice that we didn't talk about inverse z-transforms yet?
- It can be shown (see the text) that the inverse z-transform can be formally expressed as

$$
x[n]=\frac{1}{2 \pi \mathrm{j}} \oint_{\mathrm{c}} \mathrm{X}(\mathrm{z}) \mathrm{z}^{\mathrm{n}-1} d z
$$

- Comments:
$\stackrel{4}{4}$ Unlike the DTFT, this integral is over a complex variable, z and we need complex residue calculus to evaluate it formally
${ }^{4}$ The contour of integration, c, is a circle around the origin that lies inside the ROC
$\stackrel{\wedge}{ }{ }^{4}$ We will never need to actually evaluate this integral in this course

Summary on Z transform

- The z-transform is based on a generalization of the frequency representation used for the DTFT
- Different time functions may have the same z-transforms; the ROC is needed as well
- The ROC is bounded by one or more circles in the z-plane centered at its origin
- An LSI system is stable if the ROC includes the unit circle
- The inverse z-transform can only be evaluated using complex contour integration

