

Tutorial 3
 Digital Signal Processing

1. Using the definition of a four point discrete Fourier transform, derive from first principles the radix 2 decimation in time algorithm and show its flowgraph including the multiplier weights.
2. Using the flow graph from question 1 calculate the four point DFT of the sequence $\mathrm{x}(\mathrm{n})=$ $\{3,2,1,0\}$.
3. A real valued sequence $\mathrm{x}(\mathrm{n})$ has M_{1} samples. The data are passed through a digital filter whose unit sample response $\mathrm{h}(\mathrm{n})$ is M_{2} samples in duration. It is desired to find $\mathrm{y}(\mathrm{n})$, the linear convolution of $\mathrm{x}(\mathrm{n})$ and $\mathrm{h}(\mathrm{n})$. Consider the mathematical complexity of two approaches for doing this.
(a) The direct convolution of $h(n)$ and $x(n)$. Determine the number of real multiplies that would be required if $M_{1}=600$ and $M_{2}=400$.
(b) Calculating the appropriate DFTs of $\mathrm{x}(\mathrm{n})$ and $\mathrm{h}(\mathrm{n})$ using the radix 2 FFT algorithm. Then calculating $y(n)$ with an inverse transform. Determine the number of real multiplies that would be required if $M_{1}=600$ and $M_{2}=400$.
4. (a) Derive the expression for the coefficients of a non-recursive filter which is to approximate this frequency response:

$$
H\left(e^{j \theta}\right)=1 \text { when } 0 \leq \theta \leq \frac{\pi}{2} \quad ; H\left(e^{j \theta}\right)=0 \text { elsewhere }
$$

(b) Calculate the values of the first 13 coefficients from the expression derived in (a).
(c) Derive an expression for $\hat{H}\left(e^{j \theta}\right)$ and either attempt to sketch or plot out with the aid of a computer its spectrum.
5. Using the expression derived in the previous question, determine the modified filter coefficients for the Hamming window function. The Hamming window is defined as:

$$
W_{H}(n)=0.54+0.46 \cos \left(\frac{n \pi}{N}\right) \text { for } 0 \leq n \leq N
$$

What function does the Hamming window perform?

