
Lazy OpenCV installation and use with
Visual Studio

Overview
This tutorial will walk you through:

 How to install OpenCV on Windows, both:

 The pre-built version (useful if you won’t be modifying the OpenCV library itself, and

only want to use it for your applications)

 A built-from-scratch version (useful for debugging your own applications, if you need

customised builds of OpenCV with specific features (multicore processing with

Threading Building Blocks, improved user interface with Qt, etc.), or if you are modifying

the underlying OpenCV library itself.

 How to configure a property sheet to allow easy setup of Visual Studio projects to link against

OpenCV.

 How to use a property sheet in a project. This configures all required header files and libraries in

a new Visual Studio project in a few clicks.

Contents
Overview ... 1

Prerequisites ... 2

Optional .. 2

1. Installing OpenCV .. 2

1.1. Pre-built version .. 3

1.2. Building from source: configuration with CMake ... 5

1.3. Building from source: compiling in Visual Studio ... 8

1.4. Building from source: setting environment variables ... 10

2. Configuring a Property Sheet .. 12

2.1. Using a pre-built OpenCV build ... 12

2.2. Using OpenCV built from source ... 13

3. Using a Property Sheet ... 15

3.1. An example project ... 15

3.2. Applying the property sheet ... 17

3.3. Testing the example project ... 19

Prerequisites
Visual Studio professional or better – version 2010 is the latest version which works with CUDA

builds for GPU, so we’ll use that. 2012 will work for non-GPU versions too. 2008 will probably work,

but hasn’t been tested. Available for free from Dreamspark https://www.dreamspark.com/ for

students. Express versions will probably work too.

CMake 2.8.x build system. Available from

http://www.cmake.org/cmake/resources/software.html#latest – download and install the win32

binary.

Optional
None of the following libraries are needed to get OpenCV running. However, depending on the

extra features you want to add to OpenCV, download and install the following extras before

installing OpenCV. Full details are on the main OpenCV installation tutorial here, but these are the

ones I’ve found useful.

 GPU support for nVidia GPUs: download and install the CUDA toolkit from

http://www.nvidia.com/getcuda

 Threading building blocks (TBB) for multicore processing: get the windows build from

http://threadingbuildingblocks.org/download. Unpack it somewhere and add the

appropriate binaries folder to the system path.

 Improved GUI with Qt: (puts a toolbar on all GUI windows, allows access to a control panel

with buttons, sliders etc.). Download and install the Qt libraries from http://qt-

project.org/downloads.

 mexopencv http://www.cs.stonybrook.edu/~kyamagu/mexopencv/index.html is also handy

and allows use of OpenCV functions from within MATLAB. Set up to work with prebuilt

OpenCV, and anything else needs modification of the build script. Not covered here.

1. Installing OpenCV
Note: there is an official tutorial at

http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html. It’s quite

comprehensive, but this one takes slightly less time and has notes on property sheets.

Download the latest version of the installer from

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/ (currently 2.4.4, March 2013) and

extract it somewhere. We’ll refer to this folder as <opencv_install_path>:

https://www.dreamspark.com/
http://www.cmake.org/cmake/resources/software.html#latest
http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html
http://www.nvidia.com/getcuda
http://threadingbuildingblocks.org/download
http://qt-project.org/downloads
http://qt-project.org/downloads
http://www.cs.stonybrook.edu/~kyamagu/mexopencv/index.html
http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html
http://sourceforge.net/projects/opencvlibrary/files/opencv-win/

1.1. Pre-built version
If you only need the pre-built version (i.e. if you won’t be modifying the OpenCV library itself, don’t

need GPU support, and will only use it to link against your own applications), the library is now

installed to e.g. C:\lazy\opencv.

Set the OpenCV_DIR environment variable to the build folder under this: here,

C:\lazy\opencv\build.

Add the folder containing the dynamic libraries to your system path. If using Visual Studio 2012, this

will be:

<opencv_install_path>\build\x86\vc11\bin

For Visual Studio 2010 or 2012, this will be:

<opencv_install_path>\build\x86\vc10\bin

For Visual Studio 2008, this will be:

<opencv_install_path>\build\x86\vc9\bin

For 64-bit Operating Systems: Visual Studio generates 32-bit code by default, so unless you have

downloaded the 64-bit compilers separately, you should still use the x86 versions of the libraries.

For these steps, use an environment variable editor like Rapid or use the method below:

Figure 1 Select 'edit environment variables'

Figure 2 Choose 'New variable'

http://www.rapidee.com/en/download

Figure 3 Enter name: OpenCV_DIR, value:
<opencv_install_path>\build, then hit

OK.

Figure 4 Add the appropriate path to the END of the
value:
<opencv_install_path>\build\x86\vc10\b

in this time.

Done! Go to stage 2.

1.2. Building from source: configuration with CMake
For anything more complex than the basic stuff, we need to build from scratch. Open CMake and

point it at the <opencv_install_path>. Choose a build directory. Anywhere except build is

fine:

Select the IDE version then hit finish:

Select any extra features, then provide any extra info to make the red lines go away. This time we’ll

select CUDA and TBB:

Figure 5 Select any extra features

Figure 6: I prefer to disable tests and performance
tests for faster builds. Enable BUILD_EXAMPLES to
build various demos (takes a while).

IMPORTANT: note the install location. By default it’s

<opencv_install_path>\<build_location>\install. We’ll need this later.

Press Configure again to make the red backgrounds go away. Anything with red text is something

that needs fixing. Recent versions of CMake are generally quite good at finding library locations:

Figure 7 Fix any remaining red text by supplying the right paths.
These will show up correctly once we press configure again.

Figure 8 Speed up CUDA builds dramatically by only
building for the card you have: this machine has
compute capability 1.2

Finally, press Configure again. If there are no remaining red boxes or red text, check the options

match what you selected and hit generate. This generates Visual Studio project files in the build

directory. If this works, you should see ’generating done’ at the bottom of the window. On to 1.3!

1.3. Building from source: compiling in Visual Studio
In Visual Studio, open the resulting solution from the build folder. (I prefer to rename the solution at

this point to make it easier to distinguish different custom builds):

When the solution loads, there are two important projects: ALL_BUILD and INSTALL. First build the

ALL_BUILD project. This takes a while, particularly with GPU builds:

If you get any messages from CMake asking to reload, just hit ‘Cancel’:

Similarly , ignore any messages about individual projects:

Finally, once ALL_BUILD shows as building successfully, build the INSTALL project:

This installs the headers, static and dynamic libraries to the install location set in step 1.2. Here, it’s

C:\lazy\opencv\build_custom\install.

Once the install is finished, switch to Release mode and build the ALL_BUILD and INSTALL projects in

the same way. (You can also automate all of this with BuildBatch build…)

Once the release mode binaries have been built and installed, go to 1.4.

1.4. Building from source: setting environment variables
Set the OpenCV_DIR environment variable to the folder you installed OpenCV to in the previous

step (<opencv_install_path>\<build_location>\install from above). Here, this is

C:\lazy\opencv\build_custom\install.

Add the folder containing the dynamic libraries to your system path. This is

<opencv_install_path>\<build_location>\install\bin, or

C:\lazy\opencv\build_custom\install\bin here.

For these steps, use an environment variable editor like Rapid or use the method below:

Figure 9 Select 'edit environment variables'

Figure 10 Choose 'New variable'

Figure 11 Enter name: OpenCV_DIR, value:
<opencv_install_path>\<build_locati

on>\install, then hit OK.

Figure 12 Add the appropriate path to the END of the
value:
C:\lazy\opencv\build_custom\install\bin

this time.

Done! Go to stage 2.

http://www.rapidee.com/en/download

2. Configuring a Property Sheet

2.1. Using a pre-built OpenCV build
Open a command window and enter these commands:

PATH

set OpenCV_DIR

And check the output. Ensure the OpenCV_DIR environment variable is set correctly, and that the
OpenCV binaries directory from step 1.1 is in your PATH:

If either of these are missing, log off, log on and try again.

Next, download (right-click, save as) the lazy_opencv_prebuilt.props file from here. (This

link doesn’t work in Adobe Reader 11. Copy and paste this instead:

http://home.eps.hw.ac.uk/~cgb7/opencv/lazy_opencv_prebuilt.props)

Open it in a text editor and check that the OpenCV version matches yours (2.4.4) in this example.

Change it if not.

Done! Go to stage 3.

http://home.eps.hw.ac.uk/~cgb7/opencv/lazy_opencv_prebuilt.props

2.2. Using OpenCV built from source
Open a command window and enter these commands:

PATH

set OpenCV_DIR

And check the output. Ensure the OpenCV_DIR environment variable is set correctly, and that the

OpenCV binaries directory from step 1.3 is in your PATH:

If either of these are missing, log off, log on and try again.

Next, download (right-click, save as) and save the lazy_opencv.props file from here. (This link

doesn’t work in Adobe Reader 11. Copy and paste this instead:

http://home.eps.hw.ac.uk/~cgb7/opencv/lazy_opencv.props)

Open it in a text editor, and check the OpenCV version matches yours (2.4.4) in this example. Change

it if not. If using GPU, check your compute capability matches what’s in the file (1.2 here).

http://home.eps.hw.ac.uk/~cgb7/opencv/lazy_opencv.props

Done! Go to stage 3.

3. Using a Property Sheet

3.1. An example project
Start a new console project in Visual Studio. Untick the ‘precompiled header’ option.

Now write a ‘hello world’ in the resulting project:

Note the red lines under unknown terms.

#include <opencv2\core\core.hpp>
#include <opencv2\highgui\highgui.hpp>

using namespace cv;
int main(int argc, char* argv[])
{
 VideoCapture vc;
 Mat frame;
 char ch;
 bool isVideo=true;
 try{
 vc.open(0);//open default camera
 }
 catch (Exception e){
 frame = Mat::eye(100,100,CV_32FC1);
 isVideo = false;
 }
 while ((ch=waitKey(10)) !='q'){
 if (isVideo)
 vc>>frame;
 imshow("hello world",frame);
 }
 if (isVideo)
 vc.release();
 return 0;
}

3.2. Applying the property sheet
Now click Property Manager on the bottom left, or choose View->Property Manager.

Right-click the project name on the left, choose Add Existing Property Sheet and select the (normal

or pre-built) appropriate property sheet:

Hit Open.

IMPORTANT: Right-click and save the project now, otherwise it will fail to build.

The project should now build and debug. To do this for any other project, just repeat section 3.2.

3.3. Testing the example project
Build the test project. Note the red underlines have disappeared at this point:

…And run it1:

1
 Dog not included.

We now also get full Intellisense:

Access to definitions in the headers:

And ability to step inside OpenCV Library code while debugging.

	Overview
	Prerequisites
	Optional

	1. Installing OpenCV
	1.1. Pre-built version
	1.2. Building from source: configuration with CMake
	1.3. Building from source: compiling in Visual Studio
	1.4. Building from source: setting environment variables

	2. Configuring a Property Sheet
	2.1. Using a pre-built OpenCV build
	2.2. Using OpenCV built from source

	3. Using a Property Sheet
	3.1. An example project
	3.2. Applying the property sheet
	3.3. Testing the example project

