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Motivation Military Applications

Defence Applications

Increased situational awareness &
surveillance requirements.

Human vigilance decays over time.
Increasing processing power in
vehicles and autonomous sensors.

Engine on/off→ power available
changes; balance power and desire
for fast, accurate detections?
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Motivation Hardware Mapping

Architectures

Given a complex, demanding
algorithm, choose:

GPU: parallelise/
accelerate by mapping
algorithm onto existing
architecture. High power,
accuracy.
FPGA: accelerate by
instantiating architecture to
match algorithm. Lower
power, harder to write.
Combinations?

GPU:

SM SM SM SM

SM SM SM SM

Global Memory

GPU

FPGA:

CLB CLB CLB CLB MULT

CLB CLB BRAM CLB CLB MULT

CLB CLB CLB CLB MULT
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Motivation Hardware Mapping

Algorithm Mapping to Hardware

How to select architecture for given algorithm? Both fine-grained
and coarse-grained.
Design Space Exploration→ Multidimensional space (power,
latency, chip area, accuracy, ...)
Large search space: exhaustive search→ dynamic, local+taboo,
genetic algorithm search.
Weighting & constraints depend on specific application, but may
change over time. Consider vehicle example.
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Motivation Anomaly Detection

Anomaly Detection: Vehicle parking

Anomaly detection
categories (A/B/C): “very
different from training set“ /
ambiguous / weak visual
evidence [1]
i-LIDS “Parked Vehicle”
dataset.
Real (messy) surveillance
data.

[1]: Loy et al., Detecting and discriminating behavioural anomalies. Pattern Recognition, 2011.
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Motivation Anomaly Detection

Related Work

Manually select yellow line
regions and note
obstructions: sensitive to
camera changes, detects
non-vehicles [1].
Real-time blob detection
(no class information) [2].
Different problem:
power-aware platform
selection at runtime?

[1]: Albiol et al., Detection of Parked Vehicles Using Spatiotemporal Maps, IEEE J. Intelligent Transportation Systems, 2011.

[2]: Bevilacqua & Vaccari, Real time detection of stopped vehicles in traffic scenes. AVSS 2007.
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Anomaly/Parked Vehicle Detection System

Problem Statement

Surveillance Application:
Real-time detection of
people and vehicles→
parked vehicles.
Awareness of system
power consumption.
Re-map (trade-off)
processing between
architectures on-the-fly if
we see potentially
anomalous behaviour.
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Anomaly/Parked Vehicle Detection System

System

host x86 CPU
GPU on-card

memory

FPGA host memory GPU
PCIe PCIe

FPGA: Xilinx Virtex-6 VLX240.
GPU: nVidia GTX560, 384
CUDA cores.
CPU: Intel Xeon dual-core.
Transfers use DMA but no
direct path between
accelerators.
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Anomaly/Parked Vehicle Detection System

performance
data

algorithm
→ platform
mapping

impl. search priority
selection

log event
and save

image

video
frame

detection
algorithms

detection
merging

object
tracking

trajectory
clusters

cluster
anoma-

lousness

anomaly
thresholding

location
context
update

object
anoma-

lousness

Mapping generation

Anomaly detection

System output

Only “detection algorithms” stage is computationally expensive
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Anomaly/Parked Vehicle Detection Object Detection

Computationally Expensive Detectors

Histogram of Oriented
Gradients:

Sliding-window classifier at
multiple scales.
Local dense features
extraction
Linear SVM classifier

Label each as
scale-histogram-classify (ccc
or gfg).
Measure time, power,
accuracy of every version. [1]

[1] Blair, C., Robertson, N.M. & Hume, D., Characterising a
Heterogeneous System for Person Detection in Video using
Histograms of Oriented Gradients: Power vs. Speed vs.
Accuracy. IEEE J. Emerging and Selected Topics in Circuits and
Systems, 2013

image

cpu
operation: scale histograms classify group

gpu
operation: scale histograms classify

fpga
operation: histograms classify

Pedestrian Detection (HOG)
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Anomaly/Parked Vehicle Detection Object Detection

Car and motion detection

image detections

cpu
operation: scale histograms classify group scale histograms classify group extract

BBs

gpu
operation: scale histograms classify scale histograms classify update

mask
image
opening

fpga
operation: histograms classify histograms

Pedestrian Detection (HOG) Car Detection (HOG) Motion Detection (MOG2)
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Anomaly/Parked Vehicle Detection Object Detection

Detector outputs

13/29



Anomaly/Parked Vehicle Detection Object Detection

Detector performance: Power vs. Runtime
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Anomaly/Parked Vehicle Detection Object Detection

Power vs. Runtime (detailed)
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Legend: 1 point = ped + car + motion solution
colour: pedestrian detector type
shape: car detector type

e.g. car-gfg is car detector using scale (GPU)

→ histogram (FPGA)→ classify (GPU)
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Anomaly/Parked Vehicle Detection Anomaly/Parked Vehicle Detection

High-Level Anomaly Detection
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Transform detections to ground plane and match to Kalman-filtered
tracks
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Anomaly/Parked Vehicle Detection Anomaly/Parked Vehicle Detection

Anomaly Detection via Clustering

Cluster tracks into trees of
trajectories (Piciarelli & Foresti).

Trajectories which only one
object travels along are unusual.
Trajectories that split from their
frequently-travelled siblings are
unusual.

Define cluster anomaly measure UC :

UC(Ci ) =


1

1 + transits(Ci )
, for root node Ci ,

1−
transitions(Cp → Ci )

Σ(transitions(Cp → all children of Cp))
, for child node Ci of

parent Cp.
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Anomaly/Parked Vehicle Detection Anomaly/Parked Vehicle Detection

Contextual Anomaly Detection

“Events or movements not
present in training data”.
Learn object presence & mean
velocity per-pixel v̄ in x & y .
Ux ∝ p(A|D) =

p(D|A)p(A)

p(D|A)p(A)+p(D|Ā)p(Ā)

No info about p(D|A) so set to
constant.
For x: p(D|Ā) = f (vx , v̄x )

Object anomaly
Uo = Uc + Ux + Uy

Umax = max(all Uo)
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Anomaly/Parked Vehicle Detection Anomaly/Parked Vehicle Detection

Anomaly Measure
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Anomaly/Parked Vehicle Detection Mapping to Hardware

Implementation Search

Exhaustive search (ped, car, motion) = 6× 4× 1 combinations
Cost C = wpP + wt t + wεε.
P, t , ε known; set all w using anomaly level
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Anomaly/Parked Vehicle Detection Mapping to Hardware

Evaluation

Run next frame using chosen implementations
Choice of FPGA/ GPU/ CPU now task-driven, dynamic.
Skip frames (∼ 50− 75%) to keep realtime.
Processing time, system power (est.), log events.
Evaluate task-driven (auto) vs. fixed power or speed-optimised
version.
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Conclusion Results

Anomaly Detection Results

Prioritisation True False False p(%) r (%)
positives positives negatives

for tA = 10 seconds
power 4 29 23 12.1 14.8
speed 6 40 22 13.0 21.4
auto 6 42 22 12.5 21.4

for tA = 15 seconds
power 2 10 29 16.7 6.5
speed 8 8 23 50.0 25.8
auto 4 10 26 28.6 13.3

Event detection relatively poor. Causes?
Poor detectors (high false negative/positive), occlusion, slow-moving traffic, sudden
image gain changes, camera shake, anomaly detectors too simple to capture
multi-vehicle events. . .
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Conclusion Results

Accuracy vs. Power
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Conclusion Results

Relative tradeoffs
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Conclusion Results

Video
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Conclusion Results

Hits and Misses
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Conclusion Summary

Summary

Dynamic selection of implementations between different hardware
platforms (FPGA, GPU, CPU) is possible, in response to changing
user requests or scene conditions.
Scene-controlled mapping selection offers reduced power
consumption at some cost in accuracy.

Future work
Mobile chips (lower power)
Improved detector algorithms
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Conclusion Summary

Questions?
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Appendix

Detector performance: Accuracy
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