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Abstract: In surveillance and scene awareness applications using power-constrained or battery-powered equipment, per-
formance characteristics of processing hardware must be considered. We describe a novel framework for
moving processing platform selection from a single design-time choice to a continuous run-time one, greatly
increasing flexibility and responsiveness. Using Histogram of Oriented Gradients (HOG) object detectors and
Mixture of Gaussians (MoG) motion detectors running on 3 platforms (FPGA, GPU, CPU), we characterise
processing time, power consumption and accuracy of each task. Using a dynamic anomaly measure based on
contextual object behaviour, we reallocate these tasks between processors to provide faster, more accurate de-
tections when an increased anomaly level is seen, and reduced power consumption in routine or static scenes.
We compare power- and speed- optimised processing arrangements with automatic event-driven platform se-
lection, showing the power and accuracy tradeoffs between each. Real-time performance is evaluated on a
parked vehicle detection scenario using the i-LIDS dataset. Automatic selection is 10% more accurate than
power-optimised selection, at the cost of 12W higher average power consumption in a desktop system.

1 INTRODUCTION

Opportunities for the use of advanced computer vi-
sion algorithms have increased to include surveillance
and monitoring applications. We consider the de-
ployment of such algorithms in a scenario with lim-
ited electrical power available for processing, such as
surveillance from a mobile vehicle which may be run-
ning on battery power. Timely and accurate detections
of objects and events are still important in such cir-
cumstances. Field Programmable Gate Arrays (FP-
GAs) and Graphics Processing Units (GPUs) offer
large improvements in speed and power compared to
a reference implementation on a standard CPU. This
is increasingly relevant given the growing trend for
smart cameras with processing capability, and the de-
velopment of mobile general-purpose GPUs. Each al-
gorithm implementation on one of these architectures
will have its own performance characteristics — pro-
cessing time, power consumption and algorithm ac-
curacy — and will exist at a certain point in a multi-
dimensional design space.

Using a heterogeneous system which contains
both FPGAs and GPUs offers increased flexibility, al-
lows decisions about the optimal platform to use to

be moved from design time to run-time, and allows
this decision to be updated in response to changing
characteristics within the image or environment. In
this paper, we use detection of parked vehicles in
surveillance video as an anomaly detection applica-
tion. First, we define an anomaly measure based on
the motion of objects within a video. Using a hetero-
geneous system to process video, we select process-
ing platforms — and hence alter system power, speed
and accuracy characteristics — based on this anomaly
level. We show how platform selection changes in
response to changing anomaly levels, and compare
the performance of this dynamically-mapped system
against a static one optimised for power or speed. To
summarise, the contributions of this work are: we de-
scribe our system consisting of multiple implementa-
tions of various object detection algorithms running
across various accelerators in a heterogeneous hard-
ware platform, demonstrate dynamic selection be-
tween these implementations in response to events
within a scene, and describe the associated tradeoffs
between power consumption and accuracy in a real-
time system. This paper is laid out as follows: after
describing relevant work in this section, §2 describes
each algorithm used in the system and their perfor-



mance characteristics. Once an overall anomaly level
is obtained, the mapping procedure described in §3
selects the next set of implementations. We discuss
methodology in §4, results are presented in §5 and
followed by analysis of the findings in §6. We con-
clude with pointers to future work in §7.

We consider first the architectural background of
this work, and then place it in the context of other
parked vehicle detection work evaluated on the same
dataset. FPGAs and GPUs are two of the most com-
mon ways of improving performance of compute-
intensive signal processing algorithms. In general,
FPGAs offer a large speedup over reference imple-
mentations and draw low power because they in-
stantiate logic which closely matches the applica-
tion. However, their use of arbitrary-precision fixed-
point arithmetic can impact accuracy slightly, and
they require specialised knowledge to program, of-
ten incurring longer development times (Bacon et al.,
2013). In contrast, GPUs have a software program-
ming model, using large arrays of floating-point units
to process data quickly, at the expense of power con-
sumption. Their ubiquitous presence in PCs and lap-
tops has made uptake very common in recent years,
and the availability of Nvidia’s CUDA language for
both desktop and (in the near future) mobile and tablet
devices greatly increases the potential for pervasive
vision computing.

When building a system to perform a process-
ing task, we consider each of the characteristics of
FPGA and GPU and select the system which best
suits our application, for example prioritising fast run-
time over low power consumption. This has been
done for various smaller algorithms, such as colour
correction and 2-D convolution, as in (Cope et al.,
2010). This design-time selection can also be done at
a low level using an optimisation algorithm as shown
by (Bouganis et al., 2009), although this is usually
more concerned with FPGA area vs. latency trade-
offs. As an example, Figure 1 shows design space
exploration for power and time characteristics of im-
plementation combinations used in this paper, with a
well-defined Pareto curve at the left-hand side. To the
authors’ knowledge, little work has been done in the
area of power-aware algorithm scheduling at runtime;
the most appropriate is arguably (Yu and Prasanna,
2002), although this does not consider more than two
performance characteristics or deal with changing op-
timisation priorities over time.

The UK Home Office supplies the i-LIDS
dataset (Home Office Centre for Applied Science and
Technology, 2011) used in §5, and this has been used
for anomaly detection by other researchers. (Albiol
et al., 2011) identify parked vehicles in this dataset’s
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Figure 1: Design space exploration for power vs. time trade-
offs for all possible combinations of car, pedestrian and mo-
tion detector implementations. Pedestrian implementations
are labelled by colour, and car implementations by shape.

PV3 scenario with precision and recall of 0.98 and
0.96 respectively. However, their approach is consid-
erably different from ours, in that they:- (a) require
all restricted-parking lanes in the image to be manu-
ally labelled first, (b) only evaluate whether an object
in a lane is part of the background or not, and (c) do
not work in real-time or provide performance infor-
mation. In addition, their P and R results do not de-
note events, but rather the total fraction of time during
which the lane is obstructed. Due mainly to limita-
tions within our detectors, our accuracy results alone
do not improve upon this state-of-the-art, but given
the points noted above, we are arguably trying to ap-
proach a different problem (anomaly detection under
power and time constraints) than Albiol et al.

2 SYSTEM COMPONENTS

A flow diagram for the high-level frame processing
framework is shown in Figure 2. It works on of-
fline videos and dynamically calculates the number
of frames to drop to obtain real-time performance at
25FPS. (We do not count video decode time or time
for output image markup and display as part of pro-
cessing time.) The ‘detection algorithms’ block gen-
erates bounding boxes with type information, which
is used by the remaining algorithm stages. (An ex-
panded version of this step showing all combinations
is shown further on in Figure 4.) This section gives
details of each algorithm in Table 1, i.e. the detection
algorithms run on the image, and method for calcu-
lating image anomaly level. The object detectors and
background subtractor were by far the most computa-
tionally expensive algorithm stages, so each of these
had at least one accelerated version available. We use
a platform containing a 2.4GHz dual-core Xeon CPU,
a nVidia GeForce 560Ti GPU, and a Xilinx ML605
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Figure 2: Frame processing and algorithm mapping loop in anomaly detection system.
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Figure 3: Arrangement of accelerated processors within
heterogeneous system. Each processor can access host main
memory over PCI express, and the two accelerators have
private access to on-card memory.

Table 1: Algorithms and implementations used in the sys-
tem.

Algorithm Implementation(s)
Ped. Detection: FPGA GPU CPU
HOG (§2.1)
Car Detection: FPGA GPU CPU
HOG (§2.2)
Motion Segment: GPU
MoG (§2.3)
Tracking: Kalman CPU
Filter (§2.5)
Trajectory CPU
Clustering (§2.6)
Bayesian Motion CPU
Context (§2.7)

board with a XC6VLX240T FPGA, as shown in Fig-
ure 3. Implementation performance characteristics
are shown in Table 2 where appropriate.

2.1 Pedestrian Detection with HOG

We use various accelerated versions of the His-
tograms of Oriented Gradients pedestrian detector de-
scribed in (Dalal and Triggs, 2005); this algorithm is
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Figure 5: DET curve (False positives per image against miss
rate) for HOG pedestrian detector.

well-understood and has been characterised on vari-
ous platforms. Each version is split into three compu-
tationally expensive parts (image resizing, histogram
generation and support vector machine (SVM) classi-
fication), and these are implemented across different
processing platforms (FPGA, GPU and CPU) as de-
scribed by (Blair et al., 2013). These mappings are
shown in the left hand side of Figure 4. The follow-
ing mnemonics are used in this Figure and elsewhere:
a single implementation is referred to by the archi-
tecture each part runs on, e.g. running HOG with re-
sizing on CPU, histogram generation on FPGA and
classification on CPU is cfc. Each implementation
has different power consumption, speed and accuracy
characteristics, summarised in Table 2. These could
be switched between dynamically at runtime with no
performance penalty. We show a False Positives Per
Image (FPPI) curve for each implementation in Fig-
ure 5. Detector errors (e.g. in Figure 6) affect overall
accuracy dramatically. Errors in the training phase



image detections

cpu
operation: scale histograms classify group scale histograms classify group extract

BBs

gpu op-
eration: scale histograms classify scale histograms classify update

mask
image
opening

fpga op-
eration:

histograms classify histograms

Pedestrian Detection (HOG) Car Detection (HOG) Motion Detection (MOG2)

Figure 4: All possible mappings of image processing algorithms to hardware. Multiple possible implementation steps within
one algorithm are referred to by the platform they run on. Running HOG with a resize step on GPU, histograms on FPGA
and classification on GPU is referred to throughout as gfg. Data transfer steps not shown.

Figure 6: False positives (blue rectangle representing pedes-
trian) from object detectors affected training and testing per-
formance, both directly and through learned context mea-
sures.
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Figure 7: DET curve for HOG car detector.

also affect the clusters and context heatmaps in §2.6
and §2.7.

2.2 Car Detection with HOG

The HOG algorithm was again selected for car de-
tection due to the presence of existing implemen-
tations running in near-realtime across multiple ar-

chitectures. The CPU and GPU implementations of
HOG on OpenCV were modified to use the parame-
ters in (Dalal, 2006) for car detection. A FPGA ver-
sion was also implemented by modifying the cfc and
gfg versions in (Blair et al., 2013).

These implementations were trained on data from
the 2012 Pascal Visual Object Classes Challenge (Ev-
eringham et al., 2009). The SVM was learned as de-
scribed in (Dalal and Triggs, 2005). An FPPI curve
is in Figure 7, generated from all positive images in
Pascal-VOC at scale factor 1.05. This shows HOG-
CAR is not as accurate as the pedestrian version; this
is probably due to the smaller dataset and wider vari-
ation in training data. The detector is only trained
on cars, although during testing it was also possible
to detect vans and trucks. All designs (pedestrian
HOG with histogram and window outputs, and car
HOG with histogram outputs) were implemented on
the same FPGA, with detectors running at 160MHz.
Overall resource use was 52%.

2.3 Background Subtraction with MOG

The Mixture of Gaussians (MOG) algorithm was used
to perform background subtraction and leave fore-
ground objects. The OpenCV GPU version uses
Zivkovic’s implementation (Zivkovic, 2004). Con-
tour detection was performed to generate bounding
boxes as shown in Figure 8(a). As every bounding
box was passed to one or more computationally ex-
pensive algorithms, early identification and removal
of overlaps led to significant reductions in processing
time. Bounding boxes with ≥ 90% intersection were
compared and the smaller one was discarded; i.e. we
discard Bi if:

Bi∩B j

area(B j)
≥ 0.9 & area(Bi)< area(B j) . (1)

Occasionally heavy camera shake, fast adjustment of
the camera gain, or fast changes in lighting conditions



(a) Motion detection by
background subtraction in
video.

(b) False motion regions
from camera shake and il-
lumination changes.

Figure 8: Bounding box extraction from Mixture-of-
Gaussians GPU implementation.

would cause large portions of the frame to be falsely
indicated to contain motion, as shown in Figure 8(b).
When this occurred, all bounding boxes for that frame
were treated as unreliable and discarded.

2.4 Detection Merging

Object detections were generated from two sources:
a direct pass over the frame by HOG, or by detec-
tions on a magnified region of interest triggered by
the background subtractor. Motion regions were ex-
tracted, magnified by 1.5× then passed to both HOG
versions. This allowed detection of objects smaller
than the minimum window size. Candidate detections
from global and motion-cued sources were filtered
using the ’overlap’ criterion from the Pascal VOC
challenge (Everingham et al., 2009): a0 = area(Bi ∩
B j)/area(Bi ∪ B j) . Duplicates were removed if the
two object classes were compatible and a0(Bi,B j) >
0.45. Regions with unclassified motion were still
passed to the tracker matcher to allow identification
of new tracks or updates of previously-classified de-
tections.

2.5 Object Tracking

A constant-velocity Kalman filter was used to smooth
all detections. These were projected onto a ground
plane before smoothing, as shown in Figure 9.

As trajectory smoothing and detection matching
operate on the level of abstraction of objects rather
than pixels or features, the number of elements to pro-
cess is low enough, and the computations for each one
are simple enough that this step is not considered as a
candidate for parallelization.

2.6 Trajectory Clustering

The trajectory clustering algorithm used is a reimple-
mentation of that described by (Piciarelli and Foresti,
2006), used for detection of anomalies in traffic

Figure 9: Object tracking on an image transformed onto the
base plane. Green, blue and orange circles represent car,
pedestrian and undetermined (motion-only) clusters respec-
tively.

flow. The authors apply the algorithm to fast-moving
motorway traffic, whereas the i-LIDS scenes have
more object classes (pedestrians and vehicles), several
scene entrances and exits, greater opportunities for
occlusion, and long periods where objects stop mov-
ing and start to be considered part of the background.
Starting with a trajectory Ti = (t0, t1, . . . , tn) consist-
ing of smoothed detections over several frames, we
match these to and subsequently update a set of clus-
ters. Each cluster Ci contains a vector of elements c j
each with a point x j,y j and a variance σ j. Clusters are
arranged in trees, with each having zero or more chil-
dren. One tree (starting with a root cluster) thus de-
scribes a single point of entry to the scene and all ob-
served paths taken through the scene from that point.
For a new (unmatched) trajectory Tu, all root clusters
and their children are searched to a given depth and
Tu is assigned to the closest C if a Euclidean distance
measure d is below a threshold. If Tu does not match
anywhere, a new root cluster is created. For T previ-
ously matched to a cluster, clusters can be extended,



Figure 10: Trajectory clustering via learned object clus-
ters, re-projected onto camera plane. Green, blue and or-
ange tracks represent cars, pedestrians and undetermined
(motion-only) objects respectively.

(a) vx,ped (b) vy,ped (c) vx,car (d) vy,car

Figure 11: Ground-plane motion intensity maps built us-
ing movement from different object classes in PV3. In (d),
on-road vertical motion away from (blue) and toward the
camera (red) is distinct and clearly defined. Velocity scale
is in pixels per frame.

points updated or new child clusters split off as new
points are added to T. As with §2.4, clustering op-
erates on a relatively small number of objects and is
not computationally expensive, so was not considered
for acceleration. Learned class-specific object clus-
ters are shown in Figure 10, projected back onto the
camera plane.

2.7 Contextual Knowledge

Contextual knowledge relies on known information
about the normal or most common actions within the
scene (Robertson and Letham, 2012). Position and
motion information can capture various examples of
anomalous behaviour: for example stationary objects
in an unusual location, or vehicles moving the wrong
way down a street. Unsupervised learning based on
the output of the object classifiers during training se-
quences was used to learn scene context.

Type-specific information about object presence
at different locations in the base plane was captured

by recording the per-pixel location of each base-
transformed bounding box. Average per-pixel veloc-
ity v̄ in x− and y−directions was obtained from the
object trackers. For an object at base plane location
(x . . .x′, y . . .y′) with x−velocity vx and update rate
α = 0.0002,

v̄(x...x′, y...y′) = (1−α)v̄(x...x′, y...y′)+αv . (2)

This is shown in Figure 11. For most conceivable traf-
fic actions, presence and motion information is appro-
priate; however, this fails to capture more complex
interactions between people. We therefore focus on
behaviour involving vehicles.

2.8 Anomaly Detection

Based on §2.7 and §2.6 we can define an anomalous
object as one which is present in an unexpected area,
or one which is present in an expected area but moves
in an unexpected direction or at an unexpected speed.
A Bayesian framework is used to determine if an ob-
ject’s velocity in the x and y directions should be con-
sidered anomalous, based on the difference between
it and the known average velocity v̄ in that region. We
define the probability of an anomaly at a given pixel
p(A|D), given detection of an object at that pixel:

p(A|D) =
p(D|A)p(A)

p(D|A)p(A)+ p(D|Ā)p(Ā)
, (3)

where the prior probability of an anomaly anywhere
in the image, p(A), is set to a constant value. p(D|A),
the likelihood of detecting an event at any pixel in the
presence of an anomaly, is constant (i.e. we assume
that an anomaly can occur with equal probability any-
where within the image), and p(Ā) = 1− p(A).

p(D|Ā) is a measure based on the learned values
for v̄x or v̄y. It expresses the similarity of the observed
motion to mean motion at that pixel, and returns val-
ues between (0.01,0.99). These are based on the dis-
tance between, and relative magnitudes of, v and v̄:

dv =


sgn(v̄)max(C|v̄|, |v̄|+C), if sgn(v̄)

== sgn(v)
&|v|> |v̄|

sgn(v̄)min(−|v̄|/2, |v̄|− c), otherwise.
(4)

Here, C and c are forward and reverse-directional con-
stants. dv is then used to obtain a linear equation for v,
with a gradient of a = (0.01−0.99)/(dv− v̄). Finally,
b is obtained in a similar manner, and v is projected
onto this line to obtain a per-pixel likelihood that v is
not anomalous:

y = av+b , (5)

p(D|Ā) = max(0.01,min(0.99,y)) . (6)



Equation 3 now gives an object anomaly measure
UOx. This is repeated for y−velocity data to obtain
UOy.

This is combined with UC, an abnormality mea-
sure for the cluster linked to that object. When a
trajectory moves from one cluster to one of its chil-
dren, leaves the field of view, or is lost, the number
of transits through that cluster is incremented. For
any trajectory T matched to a cluster Cp with chil-
dren Cc1 and Cc2, the number of trajectory transitions
between Cp and all Cc is also logged, updating a fre-
quency distribution between Cc1 and Cc2. These two
metrics (cluster transits and frequency distributions of
parent–to–child trajectory transitions) allow anoma-
lous trajectories to be identified. If Ci is a root node,
UC(Ci) = (1+transits(Ci))

−1 . Otherwise if Ci is one
of n child nodes of Cp,

UC(Ci) = 1−
transitions(Cp→Ci)

n
∑
j=1

(transitions(Cp→C j))
. (7)

An overall anomaly measure Ui for an object i
with age τ is then obtained:

Ui = wo
Σ

τi
1 UOx

τi
+wo

Σ
τi
1 UOy

τi
+wcUCi , (8)

and Umax is updated via Umax = max(Umax,Ui) . The
UO measures are running averages over τ. An object
has to appear as anomalous for a time threshold tA
before affecting Umax. All w are set to 10, with the
anomaly detection threshold set at 15; two detectors
are thus required to register an object as anomalous
before it is logged.

3 DYNAMIC MAPPING

The mapping mechanism selects algorithm imple-
mentations used to process the next frame. This runs
every time a frame is processed, allowing selection
of a new set of implementations M in response to
changing scene characteristics. M can be any com-
bination of paths through the algorithms in Figure 4;
Figure 1 shows system power vs. time for all such
combinations. Ten credits are allocated between the
three priorities P used to influence the selection of M:
power consumption wp, processing time wt and de-
tection accuracy wε. Here we assume that a higher
level of anomaly in the scene should be responded
to with increased processing resources to obtain more
information about the scene in a timely fashion, with
fewer dropped frames, and at the expense of lower
power consumption. Conversely, frames with low or
zero anomaly levels cause power consumption to be

Table 2: Performance characteristics (Processing Time
(ms), System Power (W) and Detection Accuracy (log-
average miss rate (%))) for various algorithm implementa-
tions on 770×578 video. Baseline power consumption was
147W .

Algo. Impl. Time Power Accuracy
(ms) (W) (%)

HOG ggg 17.6 229 52
(PED) cff 23.0 190 62

gff 27.5 186 61
gfg 39.0 200 59
cfc 117.3 187 59
ccc 282.0 191 53

HOG ggg 34.3 229 89
(CAR) cfc 175.6 189 94

gfg 60.0 200 92
ccc 318.0 194 89

MOG GPU 8.1 202 N/A

scaled back, at the expense of accuracy and process-
ing time. Realtime processing is then maintained by
dropping a greater number of frames. Prioritisation
could be either manual or automatic. When auto-
matic prioritisation was used, (i.e. the system was al-
lowed to respond to scene events by changing its map-
ping) the speed priority was increased to maximum
when Umax ≥ 15. A level of hysteresis was built in
by maximising the power priority when Umax < 12.
After every processed frame, if tprocess > FPS−1, then
dtprocess×FPSe frames are skipped to regain a real-
time rate.

Once a list of candidate algorithms (HOG-PED,
HOG-CAR and MOG) and a set of performance pri-
orities is generated, implementation mapping is run.
This uses performance data for each algorithm im-
plementation, shown individually for all algorithms
in Table 2. Exhaustive search is used to generate and
evaluate all possible mappings, with a cost function:

Ci = wpPi +wtti +wεεi , (9)

where all w are controlled by P. Estimated power,
runtime and accuracy is also generated at this point.
The lowest-cost mapped algorithms are then run se-
quentially to process the next frame and generate de-
tections.

4 EVALUATION METHODS

Clusters and heatmaps were initialised by training on
two 20-minute daylight clips from the i-LIDS train-
ing set. Each test sequence was then processed in ap-
proximately real time using this data. Clusters and
heatmaps were not updated between test videos. The



homography matrices used to register each video onto
the base plane were obtained manually. Tests were
run three times and referred to as follows, using the
prioritisation settings described in §3:

speed speed prioritised, auto prioritisation off;
power power prioritised, auto prioritisation off;
auto anomaly-controlled auto prioritisation on.

For each run, all anomalous events (defined as ob-
jects having U > 15 for more than a fixed time limit
tA = 10 or 15 seconds) were logged and compared
with ground-truth data. Power consumption for one
frame was estimated by averaging the energy used
to process each implementation over runtime for that
frame. Average power consumption over a sequence
of frames was obtained in the same manner.

A modified version of the i-LIDS criteria was used
to evaluate detection performance. Events count as
true positives if they are registered within 10 seconds
of the start of an event. For parked vehicles, i-LIDS
considers the start of the event to be one full minute
after the vehicle is parked, whereas we consider the
start of the event to be when it parks. We may thus
flag events before the timestamp given in the ground
truth data. The time window for matching detections
is thus 70 or 75 seconds long. The i-LIDS criteria
only require a binary alarm signal in the presence of
an anomaly; however, we require anomalous tracks to
be localised to the object causing the anomaly. The
detection in Figure 12(d) is thus incorrect; the white
van is stopped and should be registered as an anomaly,
but the car on the left is flagged instead. This counts
as one false-negative and one false-positive event.

5 RESULTS

i-LIDS uses the F1 score (F1 = (α+ 1)rp/(r+αp))
for comparing detection performance. α is set at 0.55
for real-time operational awareness (to reduce false-
alarm rate), or 60 for event logging (to allow logging
of almost everything with low precision).

Table 3 shows precision, recall and F1 scores for
all “parked vehicle” events in the PV3 scenario for
tA = 10 and 15 seconds. Night-time sequences have
no events but still generate a large proportion of false
positives, so this also shows results for daylight-only
(“day” and “dusk” clips) separately.

Table 4 shows performance details for all three
priority modes. The t f rame column shows overall
execution time (including overheads) relative to to-
tal source video length. The processing time col-
umn does not include overheads. It assumes that a
raw video frame is already present in memory, and

Table 3: Detection performance (precision and recall) for
parked vehicle events on i-LIDS PV3. F1-scores are shown
for operational awareness (OA) and event logging (EL).

Priority p r F1,OA F1,ER
for tA = 10 seconds
power 0.083 0.133 0.0957 0.1317
speed 0.105 0.194 0.1254 0.1913
auto 0.102 0.194 0.1226 0.1912
for tA = 10 seconds, daylight only
power 0.121 0.148 0.1294 0.1475
speed 0.130 0.214 0.1510 0.2118
auto 0.125 0.214 0.1466 0.2115
for tA = 15 seconds
power 0.118 0.065 0.0910 0.0652
speed 0.381 0.258 0.3259 0.2594
auto 0.222 0.133 0.1797 0.1342
for tA = 15 seconds, daylight only
power 0.167 0.065 0.1067 0.0652
speed 0.500 0.258 0.3752 0.2601
auto 0.286 0.133 0.2030 0.1345

Table 4: Processing performance for all prioritisation
modes, showing percentage of frames skipped, ( f skip), pro-
cessing time including (t f rame) and excluding overheads
(twork) compared to source frame time (tsrc), and mean esti-
mated power above baseline (P∗work). Idle/baseline power is
147W.

Priority f skip t f rame/ twork/ P∗work
(%) tsrc (%) tsrc (%) (W)

power 75.8 125.4 87.9 49.1
speed 59.5 124.3 81.7 72.8
auto 66.5 127.8 83.4 61.9
daylight only
power 75.5 125.4 87.9 49.1
speed 60.1 124.2 82.0 78.4
auto 66.0 122.0 83.4 61.8

frame-by-frame video output is not required (i.e. only
events are logged). In this case, the system runs faster
than realtime, with the percentage of skipped frames
shown in the f skip column. The slower power-
optimised priority setting causes more frames to be
skipped.

Figure 12 shows example detections logged af-
ter tA seconds. While some true positives are de-
tected (up to 50% in the best case), many false nega-
tives and false positives are present, and have various
causes. False positive are often caused by the back-
ground subtractor erroneously identifying patches of
road as foreground, caused by the need to acquire
slow-moving or waiting traffic in the same region.
False negatives are, in general, caused by poor perfor-
mance of the object classifiers or background subtrac-
tor. Directly failing to detect partially occluded ob-



(a) TP (b) TP

(c) FN (d) FN, FP
Figure 12: True detections and failure modes of anomaly
detector on i-LIDS PV3. (a), (b): true positives in varying
locations. (c): false negative caused by occlusion. (d) is
treated as a false negative and a false positive as the detector
identifies the car on the left instead of the van parked beside
it.

(a) High-quality video (b) i-LIDS video
Figure 13: Dataset quality impacts quality of detections: in
a separate video (a), video quality allows classification of
most objects as either pedestrian (blue circle) or car (green
circle). In i-LIDS, (b), detections often remain as uncate-
gorised motion (orange circle).

jects (as in Figure 12(c)), or stationary, repeated false
detections in regions overlapping the roadside which
are generated during training can both cause anoma-
lies to be missed. Poorer video quality also reduces
detection accuracy, as shown in Figure 13.

6 DISCUSSION

Given that the system must run in real-time (as we
drop frames to ensure a close-to-realtime rate), the
main tradeoffs available here are accuracy and power;
optimising for time allows more frames to be pro-
cessed, which in combination with the natural in-
creased detection accuracy of the ggg detectors, in-
creases p and r. This is borne out by the data in Ta-
ble 3.

45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

system power consumption above baseline (W)

F 1
-s

co
re

(α
=

0.
55
)

power, tA = 10 sec power, tA = 10 sec, daylight
power, tA = 15 sec power, tA = 15 sec, daylight
speed, tA = 10 sec speed, tA = 10 sec, daylight
speed, tA = 15 sec speed, tA = 15 sec, daylight
auto, tA = 10 sec auto, tA = 10 sec, daylight
auto, tA = 15 sec auto, tA = 15 sec, daylight

Figure 14: F1−scores for operational awareness (α = 0.55)
against power consumption, for various time thresholds.

The key figures in Table 4 are mean esti-
mated power consumption above baseline; there is
29W range in average power consumption between
highest-power and lowest-power priority settings.
When the system was run with speed prioritised with
the FPGA turned off, power consumption was 208W ,
or 62W above baseline. The average power for
auto-prioritised mode with the FPGA on was 61.9W ,
but this is dependent on the dataset used; datasets
with fewer moving objects would have a lower av-
erage power consumption than this. As Figure 14
shows, running the system in automatic prioritisation
mode allows an increase in accuracy of 10% over the
lowest-power option for a cost of 12W in average
power consumption. A further 17% gain in F1−score
(from auto to speed) costs an extra 17W above base-
line. These results show a clear relationship between
power consumption and overall detection accuracy.

6.1 Comparison to State-of-the-Art

Some previous work has considered four clips made
publicly available from i-LIDS, known as AVSS and
containing 4 parked-vehicle events, classed as easy,
medium, hard and night. The only work we are aware
of which evaluates the complete i-LIDS dataset is (Al-
biol et al., 2011). Using spatiotemporal maps and
manually-applied lane masks per-clip to denote areas
in which detections are allowed, Albiol et al. are able
to improve significantly on the precision and recall
figures given above, reaching p− and r−values of 1.0
for several clips in PV3. They do not provide perfor-
mance information but note that they downscale the
images to 240× 320 to decrease evaluation time. In
their work they discuss the applicability and limita-
tions of background subtractors for detecting slow-
moving and stopped objects, as well as discussing
the same difficulties with the i-LIDS data previously



seen in Figure 13. As in §1, we also consider real-
time implementation and power consumption, with an
end goal of a fully automatic system. Unlike Albiol
et al.’s requirement for manual operator intervention,
we only need to re-register videos between clips to
overcome camera movement, which could be done
automatically. If we only consider our detector ac-
curacy compared to those of other researchers work-
ing on this data, we cannot improve upon existing re-
sults. However, we are tackling the novel problem
of power-aware anomaly detection rather than offline
lane masking, and any accuracy measurement must
be traded against other characteristics, as Figure 14
shows. The most obvious way to improve these re-
sults would be to use the currently best-performing
object classifiers, but implementing multiple hetero-
geneous versions of these would take prohibitively
long to develop.

7 CONCLUSION

We have described a real-time system for performing
power-aware anomaly detection in video, and applied
it to the problem of parked vehicle detection. We are
able to select between various algorithm implementa-
tions based on the overall object anomaly level seen
in the image, and update this selection every frame.
Doing this allows us to dynamically trade off power
consumption against detection accuracy, and shows
benefits when compared to fixed power- and speed-
optimised versions. Although the accuracy of our de-
tection algorithms (HOG) alone is no longer state-of-
the-art, future improvements include introduction of
more advanced object classifiers (such as (Benenson
and Mathias, 2012)) and a move to a mobile chipset,
which would reduce idle power consumption while
maintaining both speed and accuracy, with the trade-
off of increased development time.
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