
JETCAS 1

Characterising a Heterogeneous System for Person
Detection in Video using Histograms of Oriented

Gradients: Power vs. Speed vs. Accuracy
Calum Blair, Student Member, IEEE, Neil M Robertson, Senior Member, IEEE, and Danny Hume, Member, IET

Abstract—This paper presents a new implementation, with
complete analysis, of the processing operations required in a
widely-used pedestrian detection algorithm (the Histogram of
Oriented Gradients detector) when run in various configurations
on a heterogeneous platform suitable for use as an embedded
system. The platform consists of FPGA, GPU and CPU and we
detail the advantages of such an image processing system for
real-time performance. We thoroughly analyse the consequent
tradeoffs made between power consumption, latency and accu-
racy for each possible configuration. We thus demonstrate that
prioritisation of each of these factors can be made by selecting a
specific configuration. These separate configurations may then
be changed dynamically to respond to changing priorities of
a real-time system, e.g. on a moving vehicle. We compare the
performance of real-time implementations of linear and kernel
SVMs in HOG and evaluate the entire system against the state-
of-the-art in real-time person detection. We also show that our
FPGA implementation detects pedestrians more accurately than
existing implementations, and that a heterogeneous configuration
which performs image scaling on the GPU, and histogram
extraction and classification on the FPGA, produces a good
compromise between power and speed.

Index Terms—FPGA, GPU, Pedestrian Detection, Histogram
of Oriented Gradients

I. INTRODUCTION

AS the complexity and capability of image processing
algorithms within the field of computer vision advance,

the applications for these algorithms have expanded to cover
embedded vision systems operating in real time: examples
range from image enhancement through object detection [1]
and recognition to tracking [2]. Hardware acceleration is
often required to perform real-time processing [3], and this
problem only becomes more acute as algorithms become more
sophisticated and the volume of data to be processed grows.

A variety of COTS (commercial off-the-shelf) processors
such as GPUs (general-purpose graphics processing units),
FPGAs (field programmable gate arrays), and DSPs (digital
signal processors) can be used for a specific processing task.
Each implementation using these devices will have its own
power consumption, processing latency, and result accuracy,
along with other parameters such as how much processing

C. Blair and N.M. Robertson are with the Visionlab at Heriot-Watt
University, UK. e-mail: cgb7@hw.ac.uk

D. Hume is with Thales Optronics, Glasgow.
Manuscript received
Copyright (c) 2013 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

capacity is available for other tasks. However, the energy
requirements of these vision systems restrict the scenarios they
can be used in. A system which can perform scene analysis
tasks while balancing characteristics such as power consump-
tion, processing time and algorithm quality (e.g. the false alarm
rate of a detector) has several practical applications, especially
if it can adjust these characteristics in response to changing
constraints or priorities either in itself or its environment.

A. Motivation
The grand aim of our work is the development of a local

situational awareness system mounted on a vehicle [4], [5].
If the vehicle is stationary with the engine off, available
electrical power will be reduced, and required processing time
will be relaxed. Alternatively, if the vehicle is moving or
potential threats are nearby, more power for processing will
be available, the frame-rate required will increase, and a lower
false-alarm rate will be tolerated. In summary, we consider
real scenarios where the resource constraints of a system may
change dynamically. In this paper, however, we address the
implications of the run-time selection of the heterogeneous
architecture and its performance, for one algorithm: person
detection.

Another motivating application for such a system is mobile
robotics which deploy multiple sensors [6] navigating within
an unfamiliar environment. A need to conserve power will
usually dominate but there may be occasions where rapid or
accurate processing (e.g. identification of fast-moving objects)
will be required. It is important to understand what impli-
cations re-prioritising in this way has on, e.g., accuracy of
detection. Hence, a vital step in building a system like this
is an understanding of the tradeoffs involved when selecting
one processing architecture over another, how these change if
heterogeneous processors are used, and how these tradeoffs
affect application performance.

More broadly, in any resource-restricted mobile surveillance
system, the scene currently observed by a camera will dictate
the kind of processing required at any given time. This
may include enhancement of regions, detection of objects or
deployment of other sensing modalities. If timeliness or low
power is also a priority, we must choose which algorithm to
run and the processor to run it on. This becomes a tradeoff
between availability of a processor, accuracy required, power
available and latency.

In this paper, we use a pedestrian detection scenario as
the application to investigate this question. We are partly

JETCAS 2

motivated by its importance in many real applications (ser-
vice or factory robotics [7], or advanced driver assistance in
vehicles [8]) and partly by the fact that person detection is a
core component of our own, larger system.

We note that advances in pedestrian detection are being
constantly made [9], [10] and we choose HOG for the fol-
lowing reasons: a. it remains the most popular open-source
detector, with implementations available for various acceler-
ated processors; b. new algorithms [11] rely on histograms of
gradients and other image channels; c. there are baselines in
performance on FPGA/GPU/CPU (see §II-B1) for which we
may compare our implementation.

We note that the evolution of computer vision is moving
quickly towards widespread use of GPU implementations [12]
and the use of CPU/GPU combinations. There is a good argu-
ment therefore to include FPGA since it has been demonstrated
that image processing operations are amenable to considerable
speed enhancements on this architecture [13]. In this work we
exploit FPGAs, GPUs and a combination of both (as well as
CPU) in order to perform real-time processing in this task (see
Figure 1). These architectures differ in their memory hierar-
chy, approach to parallelism (both spatial and temporal), and
compute to input/output performance. FPGAs also differ from
platforms with a software design flow (processors and GPUs)
in that implementation requires a more involved understanding
of the hardware.

The current literature focusses on implementations of algo-
rithms for a specific platform, or comparisons of execution
time of more simplistic operations between devices. However,
there is a lack of a detailed comparison for larger and more
complex algorithms, and that is what this paper addresses.

B. Contributions

In this work we describe a platform with multiple heteroge-
neous accelerators and use the HOG pedestrian detector as the
example application to investigate the system’s characteristics
and performance. A schematic of the algorithm is shown in
Figure 2. The platform contains a FPGA, GPU and GPP
(general purpose processor or CPU) (again, the schematic is
shown in Figure 1).

The HOG algorithm is partitioned between processors in
several new ways. Stages are run on one processor or another,
or a combination of all three, with different characteristics in
each case.

In summary the contributions of this work are:
1) We describe the performance characteristics (power,

speed and accuracy) of various algorithm execution paths
using different combinations of accelerators.

2) We quantify the potential benefits available when using
a combination of accelerators in a single execution path,
the performance tradeoffs seen when mapping algorithm
operations onto a particular accelerator, and the aggregate
effect on performance once communications delays are
taken into consideration.

3) If a particular performance characteristic is prioritised,
we show which configuration should be selected and the
tradeoffs made when doing so.

PCIe root port

FPGA

GPU

Memory ProcessorPCIe

Fig. 1. System Architecture showing the interaction for the GPU, FPGA and
CPU. Both accelerators can access main memory through DMA.

source image image scaling pixel
gradients

per-pixel
angle and
magnitude

cell
histograms

block
histograms

SVM scoring result
grouping detections

Fig. 2. HOG algorithm stages: (i) image scaling; (ii) gradients; (iii) angle &
magnitude calculation; (iv) generation of oriented histograms over cells; (v)
block concatenation and normalisation; (vi) linear SVM scoring; (vii) result
grouping.

4) We do this with the goal of extrapolating these results
to other compute-intensive image processing algorithms
which use similar detection and classification techniques.

5) In addition to this heterogeneous system, we also doc-
ument our implementation of HOG on an FPGA which
to our knowledge is the most accurate available for large
image sizes.

C. Paper Roadmap

Section II describes the background and related work,
including examples of applications where flexible processing
platforms are an advantage, previous architectural compar-
isons and analyses, and methods for automatic decisions
for allocating operations to architectures. Section III covers
the implementation, including the platform, a description of
the algorithm used and modifications made to it to suit the
underlying architecture. Results and a comparison to existing
implementations are given in section IV. We draw conclusions
from this, describe the tradeoffs between configurations, and
describe our plans for future work in section V.

II. RELATED WORK

Existing work which motivates this work and places it in
context is given in section II-A. Pedestrian detection algo-
rithms and existing implementations are covered in §II-B. In
section II-C, architectural differences and work on perfor-
mance comparisons are discussed.

Many studies show performance gained when moving cer-
tain processing operations to an accelerator, and application
speed-ups of tens to hundreds of times are regularly reported.
Several studies also compare the performance of different
accelerators for various elementary operations (e.g. 2-D image
filtering) [14], and show a trade-off between performance

JETCAS 3

in various accelerator architectures at various kernel sizes.
Designers can use this information to choose an architecture to
use to accelerate a specific algorithm. Alternatively, tools exist
which perform design space exploration automatically [15]
and allow the hardware engineer to select from various Pareto-
efficient area vs. latency tradeoffs when designing an ASIC.

A. Context-dependent Processing

The field of surveillance and security is one in which
advances in computer vision algorithms and platforms can
quickly be applied to existing problems. Consider Letham
et al. [4] as an example: segmentation algorithms are used
on visual and infrared sources to label areas of an image
containing road, sky and different types of vegetation. This
information is then used to improve the accuracy of classifiers
on that data, and elsewhere [16] to improve pedestrian detec-
tion accuracy by taking the contextual information surrounding
a detection into account (i.e. we expect to find a pedestrian
on the road, but do not expect to find them in the sky).
False alarms are therefore reduced. This technique relies on
the framework from Wolf and Bileschi [17], which samples
locations at distances around a possible detection to improve
the context (e.g. building, road, tree, sky) which that detection
is placed in. Letham et al.’s technique relies on fixed regional
classifiers, specific to the environment (a rural, open and
wooded environment); use of this in other environments would
require the use of other scene segmentation techniques. In an
embedded system, these would require to be running already or
to be loaded as required, e.g. by reconfiguration of an FPGA.

As an example of context-dependent sensor allocation,
Matzka [18] expresses the problem as one of optimisation. In a
car moving in traffic, the question of which cameras or sensors
(i.e. scene regions) to direct attention and hence processing to
is dictated by a combination of five factors. These are regions
which: have high saliency, have a low time-to-collision, have
vulnerable traffic participants, have participants which can be
classified in the time available, and, when observed, cause
a large reduction in uncertainty. This is a specific example
of context-dependent sensing in more well-known tasks, such
as autonomous vehicle navigation [19] where one or more
of visual and laser data is used for road finding at different
distances and speeds.

B. Pedestrian Detection

Pedestrian detection is one of the most common object-
detection tasks with both a real-world and real-time appli-
cation, and enough algorithms have been described to allow
comprehensive comparisons to be made [8], [9]. One of the
most popular in terms of existing implementations is HOG
(histogram of oriented gradients). Dalal and Triggs’ original
paper [20] was included in a review of pedestrian detection:
Dollár et al. [9] rank HOG as having middling performance
for computation time and accuracy compared to alternative
methods. In addition, almost all the detectors Dollár evaluated
used gradient histograms, so the techniques described in this
paper would also apply there.

1) HOG Implementations: HOG has been implemented
for GPU [21], in a FPGA-GPU system [22], and also ei-
ther partially or fully on FPGA. Kadota et al. [23] perform
HOG feature extraction in FPGA, then classify the results on
a microprocessor. Martelli et al. [24] perform FPGA-based
pedestrian detection using covariance features, and Hiromoto
et al. [25] describe a similar system using co-occurrence HoG.
We compare our implementation to these versions in the re-
sults. Similar techniques involving histograms of local features
followed by SVM classification have been used to perform
detection of vehicle orientation [26] and road signs [27].

C. Architecture Choice

Several direct architectural comparisons between different
COTS accelerator architectures which focus on performance
have been done. Early work focused solely on fundamental
operations such as matrix multiplication of varying sizes;
this gave way to domain-specific comparisons such as optical
flow [3]. Cope et al. [14] perform a broader FPGA/GPU
comparison and conclude that an algorithm’s memory access
rate and patterns can greatly affect the performance of any
implementation. Selection of an accelerator for a particular
application must therefore be done with this in mind.

Operator Allocation Strategies: In addition to the choice
of accelerator architecture, we must decide which stages or
operators of an algorithm to accelerate. For this operator
mapping problem, two approaches are possible; a designer
can chose an accelerator based on prior knowledge of the
algorithm and architecture characteristics, or this decision can
be made algorithmically.

In an example of the former, a static detection system based
on HOG, Bauer et al. [22] perform hypothesis generation
by calculating gradient histograms on FPGA, then doing
kernel SVM classification of regions of interest on GPU, thus
overcoming the limitations inherent in the FPGA architecture.

Quinn et al.’s work. [28] is an example of the latter approach
to partitioning. The Dynamo system is a hardware-software
platform which reconfigures itself in response to requests to
apply a certain sequence of operations or processing pipeline
to an image. The pipeline is made up of blocks for which
resource use (in the form of coprocessor area) and latency
are already known. The innovative step here involves deci-
sion making at runtime; the system performs multiobjective
optimisation to simulate various hardware/software algorithm
arrangements using dynamic programming (a multiobjective
optimisation algorithm) to select the lowest-latency partition-
ing scheme that fits within the area available on the reconfig-
urable hardware. The FPGA is then reprogrammed and the task
is rerun, in a process which takes several seconds. Although
the decision-making is performed at runtime, this system is
task-reconfigurable but is unable to react to changes faster
than this.

The Encore system described by Zuluaga et al. [15] is
another example of static hardware/software partitioning. This
analyses the dataflow paths in an algorithm, calculates the
latency and area improvement produced by moving certain
instructions from software to hardware, and produces a Pareto

JETCAS 4

curve allowing the designer to select a particular partitioning
arrangement, based on the desired area/latency tradeoff. Thus,
the decisions of which accelerators to use and which algorithm
stages to accelerate can be made programmatically at runtime.

III. IMPLEMENTATION

Section III-A describes our platform architecture. A descrip-
tion of the HOG algorithm follows in section III-B. Based on
this, we partition the algorithm between devices as described
in III-C. Our FPGA architecture for HOG follows in III-D.
An alternative classification method is discussed in III-E and
classifier training is covered in III-F.

A. Platform

Our platform, shown in Figure 1, is based on a dual-core
Intel Xeon 2.4GHz CPU, a NVIDIA GeForce 560Ti GPU and
a Xilinx ML605 board containing a Virtex-6 XC6VLX240T
FPGA. Both accelerators are connected over PCI-express. A
PCIe 2.0 x16 link is used for the GPU, and a 2.0 x4 link for
the ML605. The GPU requires both a PCIe link and a host
x86 CPU, so a PCIe link was used for data transfer to and
from FPGA. The use of a host CPU allows the FPGA to be
treated as an accelerator to an existing processor rather than a
standalone streaming processor. This approach simplifies the
FPGA control logic and also allows loading of frames via the
host, either from camera or video, or network. This removes
the need for a separate framegrabber connected to the FPGA.

B. HOG Algorithm

The histogram of oriented gradients algorithm was origi-
nally targeted at pedestrian detection but can be used to detect
other objects. This is a description of the original algorithm
from Dalal’s work [20]. A block diagram is shown in Figure 2.
Here we describe the complete algorithm, then later discuss
the steps which must be modified to perform the calculations
on a FPGA.

Algorithm Stages:
i. Gradients First, the colour source image is split up into

windows of 128 vertical by 64 horizontal pixels, each
containing blocks of 16×16 pixels, which in turn are
made up of four 8×8 pixel cells. Each colour channel is
then processed separately. In each case, the source pixels
belonging to each cell are gamma-corrected by taking the
square root, then convolved with a [1 0 −1] kernel
in both dimensions to generate gradients gx and gy .

ii. Orientation & Magnitude For each pixel in the cell,
magnitude M =

√
g2x + g2y and arctan

gy
gx

are calculated.
Dalal used 9 bins, split over 0 − 180◦; he noted that
this is effective for pedestrian detection, but can be
changed to 0− 360◦, e.g. for vehicle detection. Constants
b0, b1, . . . , b9 representing the edges of each bin are
set as tan 0◦, tan 20◦, . . . , tan 180◦. For each pixel, gygx is
evaluated and e.g. bin B0 is chosen if b0 ≤ (gy/gx) < b1.

iii. Histogram Generation M is then weighted based on the
difference between the gradient angle and the angle of
the bin edge, and added to the eight surrounding bins

TABLE I
DATA DIMENSIONS FOR EACH ALGORITHM STAGE, PER 1024× 768 FRAME

Algorithm Stage Single-scale data (kB)

source 768
cell histograms 432
normalised blocks 1670
window scores 38

(bins Bn and Bn+1 in all four cells in a block); this
prevents quantisation errors caused by large-magnitude
weights close to a bin edge. These steps produce a 1×36
block histogram vector bv.

iv. Block Normalisation and Concatenation This vector is
then normalised to produce bn in two stages: bn′ =

bv√
|bv|22+e

, where e � 1. bn′ is capped at 0.2, then

bn = bn′√
|bn′|22+e

. All the block vectors in the window are

concatenated, producing a feature descriptor fv. These
descriptors are produced for 7 horizontal by 15 vertical
overlapping block histograms which make up the 128×64
pixel window.

v. Window Scoring This feature descriptor is multiplied by
SVM weights of 7 × 15 elements with 36 weights each.
This produces a score s =

∑3780
n=1 (fvn · wn) + b for the

window.
vi. Image Shifting and Scaling HOG is a sliding-window

detector; the steps above are performed on a window
offset by 8 pixels from the previous one. This overlapping
allows better detection, but a pixel and hence a block
may belong to up to 105 windows and calculations will
be duplicated. In practice, block histograms for the entire
image are calculated, then the classifier window is slid
over the result. Scoring is repeated over all windows,
then the image is downscaled and the process is repeated
several times per octave.

vii. Result Grouping Finally, the scores for all windows at
all scales are then aggregated using mean shift and a
pedestrian detection is registered if this aggregate score
is above a given threshold. This is done using OpenCV’s
default grouping algorithm.

The CPU and GPU-versions of these stages are provided
by OpenCV code. The OpenCV v-2.4 CUDA implementa-
tion [12] corresponds closely to the original algorithm.

C. Algorithm Partitioning

We now consider algorithm partitioning and hence possible
dataflow paths. Similarly to §II-C, we investigated various
algorithm acceleration strategies between the host processor,
GPU and FPGA, taking into account the processing operations
and size of intermediate data generated at each step. Algorithm
stages i–iii mentioned in §III-B are stream processing and can
be performed on any architecture, but map well to a heavily-
pipelined FPGA. Stages iv–v involve vector multiplications.
These map easily to GPUs and multicore processors, and are
well-suited to the dense arrays of floating-point multipliers on
the GPU. Memory access patterns at this stage change from

JETCAS 5

ccc cfc cff gff gfg ggg

source

detections

fpga

cpu

fpgacpu

fpgacpu

fpgacpu

fpga

cpu

fpga

cpu

fpga

cpu

fpgacpu

fpgacpu

fpga

cpu

fpga

cpu

fpga

cpu

fpga

cpu

fpga

cpu

fpga

cpu

fpga

cpu

gpu

gpu

gpu

gpu

gpu

gpu

gpu

gpu

gpu

gpu Im
ag

e sca
lin

g

Grad
ien

ts

M
ag

nit
ud

e &

Ang
le

Grou
pin

g

Cell
Hist

og
ram

bin
nin

g

Bloc
k Hist

og
ram

&
Norm

ali
sat

ion

SVM
ev

alu
ati

on

Resu
lt

Grou
pin

g

M
ne

mon
ics

Fig. 3. Six possible processing paths through the algorithm. Any one of
these can be selected and used to generate detections. We define these using
the three-letter mnemonics above, and refer to them throughout the paper.

pixels which can be read for a few lines then discarded, to
cell histograms which must be copied to multiple blocks, and
classifier weights which are used many times over. A firmware
architecture for these stages is more resource-intensive and
also requires more development time. Finally, result grouping
operates on much smaller volumes of data so in all cases we
perform this on the host PC.

Considering the data dimensions at each step and realising
that data transfer between different devices between stages
will incur communication delays, we can generate a list of
dataflows through the application which are viable candidates
for implementation (shown in Figure 3). Based on Table I,
the only data which can reasonably be transferred between
different processors is input pixels at our chosen scale, cell
histograms or window scores. We split these paths into 3
stages: scaling, cell histogram generation, and classification,
and refer to them by the processor used to perform each task,
e.g. gfg means “scale on the GPU, generate cell histograms on
the FPGA, then normalise and classify on the GPU”. Specif-
ically, we wish to investigate whether mapping processing of
the early stages to FPGA and doing block processing on GPU
outperforms processing the entire algorithm on an individual
accelerator.

D. FPGA HOG Architecture

The FPGA architecture is made up of stripe processors
placed side-by-side (see Figure 4. 16 stripes are required for
a 1024 × 768 image). Each one operates on a 64-pixel wide
stripe of image data and generates cell and block histograms
for all pixels within it.

All calculations involving a cell are performed as pixel data
is streamed in. These are detailed in §III-D1 and Figure 4a. If
the data is then being transferred to the host or GPU, the cell
histograms can then be read out and discarded from the FPGA.
Alternatively, §III-D2 and Figure 4b describe classification on
FPGA. For multiscale evaluation at n scales, the frame is
scaled on the GPU or host CPU then padded to the original
image size and passed to the FPGA for processing. While this
involves more data transfer and is slower than on-board image
scaling, complexity is reduced, particularly if many scales per
octave are needed.

1) Cell Histogram Operations:

Orientation and Magnitude:
Due to limitations in our PCIe interface we con-
vert the colour image to grayscale before transfer
to the FPGA. For magnitude generation, we use
the magnitude approximation described in Wilson
et al. [29] (Mapprox = 1

1+
√
2
(|gx| + |gy| +

√
2 ×

max(|gx|, |gy|))) to avoid square-roots. We then
select an orientation bin without using division or
trigonometric calculations, using the method de-
scribed in Bauer et al. [30]: we retain constants
b0, b1,..., b9 then set gx = −gx and gy = −gy if
gx < 0, then select bin B0 if b0gx ≤ gy < b1gx etc.

Cell Histogram:
Once an angle bin for a pixel is selected, the pixel’s
magnitude is then added to the relevant bin for
that cell. Weighted voting into several angle bins
is omitted; this simplifies the calculation and allows
re-use of cell histograms in adjacent blocks. These
histograms are stored in accumulators and, after
every 8 rows, are either read out to host memory or
passed to addressable shift registers (ASRs) within
the block normaliser (stage iv in Figure 4a). As each
stripe operates on 8 cells, we need to store ten cell
histograms (eight from row i and two from i − 1)
in the ASRs at any one time to generate a block
histogram.

2) Window Classification Operations:

Block Histogram:
All cell histograms in each stripe are loaded from
the ASRs filled in the previous stage, and then
normalised. Some of the overlapping blocks span
two stripes so cells are shared between stripes when
necessary, as shown by the transfers in Figure 4a. The
normalisation logic is shared between all blocks in
a stripe due to its complexity. The L1-norm is taken
instead of the capped L2-norm: bn = bv√

|bv|+e
. This

only requires one division and square root, instead
of two square-roots, divisions and dot products.

JETCAS 6

trow = 0

stages i,ii

stage iii

trow = 8
stage iv

stage iv

trow = 16
stage v

Stripe processor Fntransfers in transfers out

pixels in gradient processing

last cell
from Fn−1

cell histograms x8 last cell to
Fn+1

block processing and
normalisation

8x cell
histograms
to host

block histograms x8

column scores
from Fn−1

column scores
to Fn+1

per-column SVM
classification x8

sum 7 columns x8

8x window
scores to host

64 pixels

(a) HOG Stripe processor

×block
histogram B

SVM
Weights

blockRAM

+
completed

column
scores

s(i−6)...(i−1)

rolling
column score
blockRAM

window score
Si,j to host

36 × 1
vector w

(b) Ci, one of eight block classifiers in a stripe

Fig. 4. HOG stripe processors extract histograms from cells sequentially. A stripe processor (a) shares the normalisation logic, classification control logic
and SVM weights between its block classifiers. As pixels are fed in, cell histograms are generated, stored in an addressable shift register, and read out after
8 rows. Internally, these are then concatenated and normalised into block histograms. Cells from neighbouring stripes are included for blocks which overlap
between stripes. (b) At stage iv, each block B is classified for all windows it belongs to and the partial scores accumulated. Once a column is complete,
column scores from the rest of the windows are added to produce a window score.

SVM evaluation:
For histogram classification on the FPGA, 16 rows
of cells must be retained for each window of 7 ×
15 = 105 blocks; this is an impractical amount of
data to store. We avoid this problem by normalising
the cells into the appropriate block histograms B,
immediately classifying that block against each of
the 105 overlapping windows it belongs to, then
discarding the block histogram and retaining only
105 partial sums. This is done in the block classi-
fiers within each stripe (Figure 4b). For a window
at location mi,j , 7 partial sums si−6, si−5, . . . , si
representing columns of blocks mi−6, . . . ,mi will be
stored in the blockRAMs of classifiers Ci−6, . . . , Ci.
These will be updated as each new row of blocks
is processed. Once all rows forming window mi,j

have been processed, si will contain partial sums
for blocks Bi,(j−15,j−14,...,j) ·w and so on. Columns
si−6,...,i are summed in Ci to form a window score
Si,j , which is then transferred to the host. However,
because the sliding windows overlap vertically and
horizontally, the RAM in Ci also contains partial
sums for all windows which contain the location
mi,j . As before, these are read out as each window
finishes, and transferred from the preceding stripe
Fn−1 if necessary. Thus, instead of sliding an im-
age window through a classifier, we evaluate all
elements in the support vector for each new block

then gradually sum the results as new blocks are
presented. This requires one blockRAM and one
embedded multiplier for each column of blocks in
a stripe. Normalisation of 8 blocks per stripe and
the 3780 multiplications required by each block must
be completed before the next cell histograms arrive;
this prevents the FPGA version from being scaled
down to smaller image widths, but can work on larger
image widths by adding more stripes.

These optimisations, while making processing feasible, de-
grade the accuracy of the FPGA-based versions by a few
percent, as shown in §IV-B.

3) Operations for cfc and gfg: The same cell histograms
which are used on FPGA are transferred back to the host and
then to optionally to the GPU. Here, they are processed in
the same way as the original GPU data. We calculate full L2-
norms and use different classifier weights to account for the
earlier algorithm differences. The FPGA logic was designed
in a Simulink System Generator model and then synthesised
using ISE 13.4. All FPGA versions use the same bitstream,
with data being extracted at either the histogram or score
stage. This means that reconfiguration of the FPGA between
selection of different versions is not required.

E. SVM Radial Basis Function Classification

Linear evaluation of a feature vector fv, involves finding
s =

∑3780
i=1 (fvi ·wi)+b. A SVM using a radial basis function

(RBF) kernel is an alternative to this, and increases accuracy

JETCAS 7

at the expense of runtime. In this case, s =
∑nsv

i=1(αi · yi ·
K(fvi,xi)) + b, where K(fv,x) = exp (−γ‖fv − x‖2). We
implemented RBF classification on the GPU for gfg and ggg
versions. They are included in the results in §IV as gfg-kernel
and ggg-kernel respectively.

We also calculated the runtime for FPGA RBF classification
but did not implement it. See §V-A1 for a discussion.

F. Classifier Training

Classifiers were trained on the positive images and a sample
of the negative images in the INRIA training set, then re-
trained once on negative errors using SVMLight. Two sets
of classifier weights were generated, one for cfc and gfg and
one for cff and gff. The ggg and ccc versions use the weights
from [20]. RBF classifiers were trained in the same manner.

IV. RESULTS

We now compare execution time, accuracy and power
consumption of each implementation. During execution it was
possible to change processing from one processing path to
another in consecutive frames with no delay due to switching.

Dollár notes that HOG detects pedestrians at around 90
pixels in height, placing them at 20m or more away from
the camera [9]. Scaling allows pedestrians much closer than
this to be detected, at the expense of detection runtime. In our
application we are more concerned with detection at a distance
(bearing in mind we are interested in detection from a mounted
vehicle), thus we evaluate performance at n = (1, 3, 13, 37)
scale levels, scaling the image by 1.05× between each level.

A. Performance Considerations

Using this system, we performed pedestrian detection on
a w = 1024 × h = 768 video at our chosen scale levels
(n = 37 is the maximum number of scales for this size of
video). Overall processing times for each version are given in
Table III. From these, the FPGA versions are fastest, taking
4.88ms at n = 1 (cff and gff are identical as no scaling is
done at this level). In these cases, most of the time taken is
spent moving the image data through the FPGA (1024× 768
pixels at 200Mhz = 3.91ms). A heterogeneous system only
shows a slight speed advantage at 3 scales, while for n > 3
the ggg version is consistently faster.

Figure 5 shows processing times of individual algorithm
stages and transfers between them. The FPGA implementation
is not capable of performing the multiple image scaling per
octave that HOG requires for accurate detection; this has been
mitigated by rescaling on the CPU or GPU and padding and
transferring the result. Due to limitations of our PCIe interface,
each scaled image must be transferred separately and incurs
its own overhead, in the form of additional data transferred
after the frame data to push remaining window scores or
cell histograms through the pipeline. For multiple scales, this
means the pipeline is emptied between each scaled image. The
”FPGA histograms” and ”FPGA scores” bars in Figure 5 also
include transfer to and from the FPGA. Data is transferred via
DMA into buffers in blockRAM on the FPGA. These buffers

TABLE II
RESOURCE UTILISATION FOR VLX240 FPGA FOR HOG APPLICATION

AND PCIE LINK LOGIC

Resource Capacity

Registers 40%
LUT 72%
Slice 92%
BlockRAMs 25%
Embedded Multipliers 18%

Overall 72%

TABLE III
PROCESSING TIMES FOR EACH EXECUTION PATH (LABELS DEFINED IN

FIGURE 3)

Linear SVM Time (ms)
1 level 3 levels 13 levels 37 levels

ccc 172 480 1365 1826

cfc 72.9 226 973 3328
cff 4.88 22.6 103 233
gff 4.88 17.4 78.5 196
gfg 7.82 25.4 111 303
ggg 7.10 17.8 47.6 59.0
Kernel SVM

gfg 2200 6540 28280 81180
ggg 3540 9570 25700 35345

are refilled as the processing logic consumes pixel data. Unlike
on the GPU, this approach means there is no discrete ”data
transfer to or from the FPGA” step; after the buffer is filled
initially, transfer time is hidden and is dictated by the rate at
which the HOG logic consumes and generates data.

The GPU implementation avoids this problem by storing
each frame in its own global memory, performing on-board
scaling, and only transferring individual detections back to
main memory; the compute:i/o ratio is higher.

The inefficiencies associated with the multiple transfers to
FPGA mean that all FPGA versions run slower than ggg at
multiple scales. In addition, for gfg the cell histograms must be
transferred twice (from the FPGA back to main memory then
to the GPU). However, the PCI-express specification allows
for direct endpoint-to-endpoint transfer, allowing an FPGA
to transfer data directly into GPU on-board memory. This
technique is currently only possible with Kepler-class GPUs
on Linux hosts [31] but is an option to consider for future
work.

Power consumption of the whole PC system for each version
is shown in Table IV. The bottom half of this table compares
each accelerated method. Consumption in gfg and ggg appears
to increase with the number of scales, while power for the
versions where the FPGA does most of the processing remains
constant. There is a tradeoff around n = 3 again; above this,
FPGA-based systems draw less power. In a system where all
3 processors are switched on, the cff or cfc versions draw
the least power at all scales. When implemented, all FPGA
versions ran at f = 200MHz. Implementation details are
given in Table II.

JETCAS 8

0 1 2 3 4 5 6 7 8 9

ccc

ggg
cff

gff

cfc

gfg

time(ms)

ve
rs

io
n

FPGA scores FPGA histograms transfer to GPU
GPU gradients block concatenation GPU normalisation
GPU classification transfer from GPU CPU processing

Fig. 5. Time (in ms) spent on each algorithm stage for each version, at n = 1 (no scaling). Transfers to and from the FPGA are contained within the FPGA
measurements, which also includes extra non-image data transferred to flush the buffer.

TABLE IV
SYSTEM POWER CONSUMPTION FOR EACH EXECUTION PATH AT 1, 3, 13

AND 37 SCALING LEVELS

Version Power Consumption (W)
FPGA 1 level 3 levels 13 levels 37 levels

cpu/gpu idle off 129
on 147

ccc off 156 155 156 161
ccc on 179 179 179 182
ggg off 170 180 198 201

cfc on 183 177 176 184
cff on 179 177 178 184
gff on 182 181 180 184
gfg on 187 193 201 206
ggg on 194 205 221 227

B. Detection Performance

Figure 6 shows a detection error tradeoff (DET) curve
for the INRIA pedestrian dataset. All images are padded to
1024 × 768 before evaluation. The results are comparable
to the original, with a slight decrease in accuracy in the
gfg and cfc-versions due to simplified block weighting, and
a further decrease for gff and cff due to the simplified
normalisation. This figure also shows comparisons to other
FPGA implementations, showing that our implementation is
more accurate. Figure 7 compares each of our implementations
to the performance of the original HOG algorithm on the
large positive test set from INRIA, using the evaluation code
from [9]; this allows comparison to other algorithms and
implementations. On this graph the differences between our
versions are more pronounced. cfc and gfg versions are still
similar.

C. Comparison to State-of-the-art

Results from the 3 FPGA implementations cited in §II are
plotted in Figure 6. Kadota et al. [23] perform HOG feature
extraction on FPGA at 30fps on VGA video, with 5% miss
rate on the INRIA dataset at 10−2 FPPW. Martelli et al. [24]

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5

false positives per window (FPPW)

m
is

s
ra

te

Kadota

Martelli

Bauer

Orig−HOG
ccc
gfg
cff
cfc
ggg
gff
ggg−kernel

Fig. 6. DET curve for single-scale HOG on INRIA dataset

10
−2

10
−1

10
0

0.40

0.50

0.64

0.80

1

false positives per image (FPPI)

m
is

s
ra

te

gff
cff
gfg
cfc
ccc
ggg
ggg−kernel
Orig−HOG

Fig. 7. DET curve for multiscale HOG on INRIA dataset

JETCAS 9

TABLE V
CHOICE OF ALGORITHM VERSION AND COMPROMISES FOR A GIVEN PRIORITY AT 13 SCALES. TRADEOFFS SHOWN AS PERCENTAGE DIFFERENCES FROM

THEIR BEST MEASUREMENT. ACCURACY IS MEASURED AS % CHANGE AT 10−4 FPPW.

Priority Version to use Tradeoffs

high speed ggg power ↑ 26% accuracy ↓ 3%
lowest power cfc time ↑ 2000% accuracy ↓ 3%
high accuracy ggg-kernel time ↑ 54200% power ↑ 26%
power and speed gff power ↑ 1% time ↑ 65% accuracy ↓ 5%

0

50

100

150

200

250

0

200

400

600

800

1000

1200

1400

1600

ccc ggg

p
o

w
e

r
(W

)

ti
m

e
 (

m
s)

time power

Fig. 8. Power and time measurements for ccc and ggg. These offer two
extremes of power and speed, and we compare heterogeneous configurations
to these as a baseline.

perform FPGA-based pedestrian detection using covariance
features, achieving 20% miss rate at 10−4 FPPW on INRIA.
As shown in Figure 6, all our implementations including cff
and gff outperform these. Hiromoto et al. [25] describe a
similar system which works on co-occurrence HoG. They
do not provide accuracy information, but evaluate a QVGA
image at scale ratio s = 1.2 with 3615 windows per frame
at 38fps or 139166 sub-windows per second, whereas our gff
version described above evaluates 20868 windows per frame
at 13fps (271284 sub-windows per second) for the same s.
Kadota et al. [23]’s implementation evaluates 56466 windows
on 10 parallel elements, taking 5.7µs per window. In contrast,
our FPGA version takes 657µs to evaluate histograms over
a single-scale window or a further 40µs to generate window
scores, using up to 121 parallel elements to generate a row of
scores across the image at once. This longer window period
is dictated by the pixel clock and our larger frame width. In
both cases, our slower framerate is a limitation of our PCIe
architecture; if the multiscale evaluation was fully pipelined,
multiscale evaluation at s = 1.2 would take around 20ms.

V. DISCUSSION

Our aims with this work were: first, to investigate the
performance of a platform using heterogeneous architecture
when applied to a real-world image processing problem; and
second, to evaluate the tradeoffs between our implementations.

A. Tradeoffs

Based on the power, latency and accuracy results in Figure 6
and Tables III,IV, we can now give specific tradeoffs for this

-25

-20

-15

-10

-5

0

5

10

15

20

25

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

cfc cff gff gfg ggg

%
d

e
cr

e
as

e
 u

n
 p

o
w

e
r

fr
o

m
 g

gg
 (

re
d

)

%
in

cr
e

as
e

 in
 t

im
e

 f
ro

m
 g

gg
 (

b
lu

e
)

time power

Fig. 11. Relative change in power consumption and processing time of each
configuration compared to ggg. A larger red bar indicates decreased power
consumption.

system, and evaluate the costs of selecting one configuration
over any other. This is summarised in Table V for n = 13. In
the remainder of this section, we consider the viable imple-
mentations for pedestrian detection in this system. We discuss
the ggg-kernel implementation briefly in V-A1. Although it is
the most accurate, this configuration does not run fast enough
to be usable in any scenario, so we do not consider it further
here.

Of the configurations which are viable, ccc and ggg are
compared in Figure 8. These provide suitable extremes (slow-
est, lowest-power, and fastest, highest-power) to compare other
heterogeneous versions to.

Figure 9a shows the increase in power consumption above
the ccc baseline of 156W against processing time. Here, all
versions except gfg are Pareto-efficient when compared with
these two characteristics. Thus, ggg provides a fast, high-
power version, cfc provides a lower-power, much slower alter-
native, and the heterogeneous processing options occupy the
intermediate region. The remaining graphs here are informa-
tive when choosing a particular configuration based on relative
priorities; Figure 9b shows that, to get a 25% decrease in
power, we must accept a 50-100% increase in processing time.
This is expressed more accurately and intuitively in Figure 11,
which uses ggg as a baseline. Here, an 18% reduction in
power consumption from the maximum is obtained for a 50%
increase in processing time (by choosing gff). Any desired
further saving in power means that detection speed slows
down considerably; from gff, saving an extra 2% in power
(by switching to cfc) incurs a 20× speed penalty.

We perform a similar analysis for accuracy: Figure 10a gives

JETCAS 10

10050 1,000200 50020
0

5

10

15

20

25

30

35

40

45

processing time (ms)

%
 in

cr
ea

se
 in

 p
o

w
er

 c
o

n
su

m
p

ti
o

n
 f

ro
m

 c
cc

cfc
cff
gff
gfg
ggg

(a) Power consumption (W) above ccc baseline against processing
time for accelerated implementations

0 500 1000 1500 2000
10

15

20

25

30

35

40

45

%increase in processing time from ggg

%
 in

cr
ea

se
 in

 p
o

w
er

 c
o

n
su

m
p

ti
o

n
 f

ro
m

 c
cc

cfc
cff
gff
gfg
ggg

(b) Relative increase in power consumption above ccc vs. relative
increase in time from ggg

Fig. 9. Power consumption and time at n = 13 scales

cfc cff gff gfg ggg
−5

0

5

10

15

20

25

30

35

40

45

%
 c

ha
ng

e
in

 p
ow

er
 fr

om
 c

cc

0
−2

%
 c

ha
ng

e
in

 a
cc

ur
ac

y
fr

om
 c

cc
 (

re
d)

(a) Relative change in power consumption (blue) and accuracy (red)
from ccc. A larger red bar indicates increased accuracy.

0.11 0.115 0.12 0.125 0.13 0.135 0.14
20

25

30

35

40

45

50

55

60

65

miss rate at 0.0001 FPPW

in
cr

ea
se

 in
 p

o
w

er
 c

o
n

su
m

p
ti

o
n

 f
ro

m
 c

cc
 (

W
at

ts
)

cfc
cff
gff
gfg
ggg

(b) Change in power consumption above ccc version vs. miss rate

Fig. 10. Power consumption and accuracy at n = 13 scales

the power vs accuracy tradeoffs. Here, a 1% improvement in
miss rate at 10−4 FPPW requires 15% more power (using cff)
while a 2% gain requires 40% more power, or (as shown in
Figure 10b) an extra 65W (using 156W as the baseline).

From this analysis, the advantages of a heterogeneous
system become apparent: in situations where speed and power
consumption are both desired, and power consumption is the
most important constraint, gff provides a suitable compromise.
Note that from Table IV, gff requires less power than a GPU-
accelerated system when no FPGA is present. As shown by
Figures 9 and 10, gfg is always worse than other configurations
in all scenarios, showing the effect of increased communica-
tions delays between processors.

In contrast to the large differences in runtime and power
consumption, the difference in accuracy is relatively minor
(Figure 7). As described in [9], the choice of pedestrian
detection algorithm appears to have a much larger effect on

accuracy than a variety of implementations. On a mobile
device, high accuracy is arguably less of a priority than fast
detections or low power consumption too.

When running this system, we could switch execution from
one version to another in successive frames; thus, configuration
selection can be done at runtime, to take account of changing
circumstances in the scenarios in §I.

This example scenario becomes more informative if we
expand our application to include hypothesis generation via
motion or hotspot detection from an IR camera; in this mode
the system would be used to confirm pedestrian detections at
a certain pixel height rather than exhaustive evaluation over
n scales. In the analysis above, we used n = 13 scales. At
13 scales per octave, this will detect pedestrians up to around
240 pixels in height. For detections closer to the camera than
this, we aim to use motion-cued detection on a smaller region
rather than evaluation of all possible scales across the whole

JETCAS 11

image. In any case, for low nscales, the tradeoffs change: cff
provides the fastest, lowest-power implementation, while at
n = 3, gff is slightly faster and more accurate.

1) RBF Classification Tradeoffs: As discussed in §III-E, we
calculated the requirements for radial basis function classifier
evaluation on FPGA. Examples exist in the literature, such as
Irick et al. [32] which works on small windows, or Cadambi
et al. [33] which classifies at 14GMACS. However, using all
the optimisations detailed in [33], and using all the multiplier
resources on our FPGA, we would still take around 700ms
to classify at single scale, and several seconds to classify a
frame at multiple scales. This is due to the large nsv (around
4000) generated during RBF classifier training (see §III-E) and
our large descriptor length (3780). The results for gfg-kernel
and ggg-kernel in Table III confirm this. Although we provide
an analysis of tradeoffs of other versions, an implementation
which takes this long to run is not useful in a realistic scenario.
Unlike Bauer et al. [22], we do not generate hypotheses to
reduce the number of windows and must evaluate all sliding
windows over all scales.

B. System Evaluation

We compared a heterogeneous system against the more
common model of a system with a processor and a single
type of accelerator. The tradeoffs between different versions
were then evaluated, in §V-A. As shown in Figure 9a, a
heterogeneous system (gff) provides a better tradeoff between
the fast, high-power all-GPU version and the slower, lower-
power all-CPU version. As shown in Figure 6, this is also
more accurate than existing FPGA implementations of HOG.
This system would better suit a task where several algorithms
(e.g. detections, segmentation etc.) can be run in parallel
and the result combined at the end. In our current setup,
transferring data between two accelerators over PCIe requires
a transfer back to the host first; future GPU architectures
allow direct FPGA-GPU transfer which would resolve this.
This system is also extensible to other image processing
applications such as detection of vehicle orientation or stop
signs, both of which can be done using extraction of features
based on local histograms followed by SVM classification. In
this case the tradeoffs will also be similar.

C. Future work

Having provided a comprehensive analysis of the differ-
ences between each configuration, our next steps are to demon-
strate dynamic, programmatic platform selection at runtime
by switching between processing platforms in one of our
example scenarios, using knowledge of the characteristics of
each version to respond to changing requirements and energy
constraints.

This allows extension of the tradeoff analysis to a more
complex set of tasks (including object detection using multi-
modal sensors). Implementing this detector in an embedded
system consisting of a low-power processor and GPU with
the FPGA could be done relatively easily, and would greatly
reduce the idle power consumption of this system. This would
be more effective for a situational awareness task when paired

with the right selection of algorithms: detection performance
could be improved further by better algorithm selection. The
limiting factor for performance of the FPGA version is evalu-
ation at multiple scales per octave. This implementation could
be expanded to a detector with either minimal [11] or no [34]
image scaling requirements which instead relies on model
scaling.

ACKNOWLEDGMENT

This work was supported by funding from EPSRC through
the Institute for System Level Integration, and Thales Optron-
ics.

REFERENCES

[1] M. Komorkiewicz, M. Kluczewski, and M. Gorgon, “Floating point
HOG implementation for real-time multiple object detection,” in 22nd
International Conference on Field Programmable Logic and Applica-
tions (FPL), Aug. 2012, pp. 711–714.

[2] O. Mateo Lozano and K. Otsuka, “Real-time Visual Tracker by Stream
Processing,” Journal of Signal Processing Systems, vol. 57, no. 2, pp.
285–295, Jul. 2008.

[3] J. Chase, B. Nelson, J. Bodily, Z. Wei, and D.-J. Lee, “Real-Time Optical
Flow Calculations on FPGA and GPU Architectures: A Comparison
Study,” in 16th International Symposium on Field-Programmable Cus-
tom Computing Machines. IEEE, 2008, pp. 173–182.

[4] J. Letham, N. M. Robertson, and B. Connor, “Contextual smoothing of
image segmentation,” in International Conference on Computer Vision
and Pattern Recognition Workshops, CVPRW 2010, San Francisco, 2010,
pp. 7–12.

[5] B. Connor, I. Carrie, J. Letham, and N. Robertson, “Scene understanding
and task optimisation using multimodal imaging sensors and context: a
real-time implementation,” SPIE Infrared Technology and Applications,
vol. 8012, pp. A1–9, 2011.

[6] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei,
I. Posner, R. Shade, D. Schroeter, L. Murphy, W. Churchill, D. Cole, and
I. Reid, “Navigating, Recognizing and Describing Urban Spaces With
Vision and Lasers,” The International Journal of Robotics Research,
vol. 28, no. 11-12, pp. 1406–1433, Jul. 2009.

[7] N. Bellotto and H. Hu, “Multisensor-based human detection and tracking
for mobile service robots.” IEEE transactions on systems, man, and
cybernetics. Part B, vol. 39, no. 1, pp. 167–81, Feb. 2009.

[8] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of
pedestrian detection for advanced driver assistance systems.” IEEE
transactions on pattern analysis and machine intelligence, vol. 32, no. 7,
pp. 1239–58, Jul. 2010.

[9] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection:
An Evaluation of the State of the Art,” IEEE transactions on pattern
analysis and machine intelligence, vol. 34, no. 4, pp. 743–762, Jul. 2011.

[10] P. Dollár, R. Appel, and W. Kienzle, “Crosstalk Cascades for Frame-Rate
Pedestrian Detection,” in ECCV 2012, 2012, pp. 1–14.

[11] P. Dollar, S. Belongie, and P. Perona, “The Fastest Pedestrian Detector
in the West,” in Procedings of the British Machine Vision Conference,
BMVC 2010. British Machine Vision Association, 2010, pp. 68.1–
68.11.

[12] Willow Garage, “OpenCV v.2.4,” 2011.
[13] B. Cope, P. Cheung, W. Luk, and S. Witt, “Have GPUs made FPGAs

redundant in the field of video processing?” in Proceedings. 2005 IEEE
International Conference on Field-Programmable Technology. IEEE,
2005, pp. 111–118.

[14] B. Cope, P. Y. Cheung, W. Luk, and L. Howes, “Performance Compar-
ison of Graphics Processors to Reconfigurable Logic: A Case Study,”
IEEE Transactions on Computers, vol. 59, no. 4, pp. 433–448, Apr.
2010.

[15] M. Zuluaga and N. Topham, “Resource Sharing in Custom Instruction
Set Extensions,” in 2008 Symposium on Application Specific Processors.
IEEE, 2008, pp. 7–13.

[16] N. Robertson and J. Letham, “Contextual Person Detection in Outdoor
Scenes,” in Proc. European Conference on Signal Processing (EUSIPCO
2012), 2012.

[17] L. Wolf and S. Bileschi, “A Critical View of Context,” International
Journal of Computer Vision, vol. 69, no. 2, pp. 251–261, Apr. 2006.

JETCAS 12

[18] S. Matzka, Y. Petillot, and A. Wallace, “Efficient Resource Alloca-
tion using a Multiobjective Utility Optimisation Method,” in Work-
shop on Multi-camera and Multi-modal Sensor Fusion Algorithms and
Applications-M2SFA2, 2008.

[19] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-e. Jen-
drossek, C. Koelen, C. Markey, C. Rummel, J. V. Niekerk, E. Jensen,
P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Ne-
fian, and P. Mahoney, “Stanley : The Robot that Won the DARPA Grand
Challenge,” Journal of Field Robotics, vol. 23, no. April, pp. 661–692,
2006.

[20] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, CVPR 2005.
IEEE Computer Society Conference on. IEEE Computer Society, 2005,
pp. 886– 893.

[21] V. Prisacariu and I. Reid, “fastHOG-a real-time GPU implementation
of HOG,” Department of Engineering Science, Oxford University, Tech.
Rep. 2310, 2009.

[22] S. Bauer and S. Kohler, “FPGA-GPU architecture for kernel SVM
pedestrian detection,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2010 IEEE Conference on. IEEE, 2010, pp.
61–68.

[23] R. Kadota and H. Sugano, “Hardware architecture for HOG feature
extraction,” in Intelligent Information Hiding and Multimedia Sig-
nal Processing, 2009. IIH-MSP’09. Fifth International Conference on.
IEEE, 2009, pp. 1330–1333.

[24] S. Martelli, D. Tosato, M. Cristani, and V. Murino, “FPGA-based pedes-
trian detection using array of covariance features,” Distributed Smart
Cameras (ICDSC), 2011 Fifth ACM/IEEE International Conference on,
pp. 1–6, 2011.

[25] M. Hiromoto and R. Miyamoto, “Hardware architecture for high-
accuracy real-time pedestrian detection with CoHOG features,” in Com-
puter Vision Workshops (ICCV Workshops), 2009 IEEE 12th Interna-
tional Conference on. IEEE, Sep. 2009, pp. 894—-899.

[26] P. E. P. Rybski, D. Huber, D. D. Morris, and R. Hoffman, “Visual
classification of coarse vehicle orientation using Histogram of Oriented
Gradients features,” in 2010 IEEE Intelligent Vehicles Symposium.
IEEE, Jun. 2010, pp. 921–928.

[27] T. P. Cao and G. Deng, “Real-Time Vision-Based Stop Sign Detection
System on FPGA,” in Digital Image Computing: Techniques and Appli-
cations. IEEE, 2008, pp. 465–471.

[28] H. Quinn, M. Leeser, and L. Smith King, “Dynamo: a runtime par-
titioning system for FPGA-based HW/SW image processing systems,”
Journal of Real-Time Image Processing, vol. 2, no. 4, pp. 179–190,
2007.

[29] T. Wilson, M. Glatz, and M. Hodlmoser, “Pedestrian detection imple-
mented on a fixed-point parallel architecture,” in Consumer Electronics,
2009. ISCE’09. IEEE 13th International Symposium on. IEEE, 2009.

[30] S. Bauer, U. Brunsmann, and S. Schlotterbeck-macht, “FPGA Imple-
mentation of a HOG-based Pedestrian Recognition System,” in MPC
Workshop Karlsruhe, no. July, 2009.

[31] NVidia Corporation, “Developing a Linux kernel module using RDMA
for GPUDirect,” 2012.

[32] K. Irick, M. DeBole, V. Narayanan, and A. Gayasen, “A Hardware
Efficient Support Vector Machine Architecture for FPGA,” in 16th
International Symposium on Field-Programmable Custom Computing
Machines. IEEE, Apr. 2008, pp. 304–305.

[33] S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass, E. Cosatto,
S. Chakradhar, and H. P. Graf, “A Massively Parallel FPGA-Based
Coprocessor for Support Vector Machines,” in 17th IEEE Symposium
on Field Programmable Custom Computing Machines. IEEE, 2009,
pp. 115–122.

[34] R. Benenson and M. Mathias, “Pedestrian detection at 100 frames per
second,” in Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, 2012, pp. 2903–2910.

Calum Blair Calum Blair is an Engineering Doctor-
ate (EngD) student with the Visionlab at Heriot-Watt
University, Edinburgh, and Thales Optronics. His
doctorate studies focus on the real-time acceleration
of image processing and scene analysis algorithms
across various hardware platforms. He received his
M.Eng. from the University of Glasgow in 2009.

Neil M. Robertson Dr Neil Robertson is principal
investigator of the Vision Lab at Heriot-Watt Univer-
sity and an Honorary Fellow of the School of Engi-
neering at the University of Edinburgh. He works on
projects in collaborative robotics, human behaviour
recognition, multi-modal registration and sensor fu-
sion with his research team (http://visionlab.eps.
hw.ac.uk). From 2000-07 Dr Robertson worked in
the UK Scientific Civil Service with DERA, and
then QinetiQ ltd. He held a prestigious 1851 Royal
Commission Fellowship at Oxford University (2003-

06) in the Robotics Research Group. He received his D.Phil. from Oxford in
2006 and M.Sci. from Glasgow University in 2000.

Danny Hume Danny Hume has a B.Eng.(Hons)
in Electrical Engineering and is manager of the
Systems Discipline at Thales Optronics, a defence
company specialising in optics and imaging systems
and systems integration. He is a member of the IET.

(http://visionlab.eps.hw.ac.uk)
(http://visionlab.eps.hw.ac.uk)

	Introduction
	Motivation
	Contributions
	Paper Roadmap

	Related Work
	Context-dependent Processing
	Pedestrian Detection
	HOG Implementations

	Architecture Choice

	Implementation
	Platform
	HOG Algorithm
	Algorithm Partitioning
	FPGA HOG Architecture
	Cell Histogram Operations
	Window Classification Operations
	Operations for cfc and gfg

	SVM Radial Basis Function Classification
	Classifier Training

	Results
	Performance Considerations
	Detection Performance
	Comparison to State-of-the-art

	Discussion
	Tradeoffs
	RBF Classification Tradeoffs

	System Evaluation
	Future work

	References
	Biographies
	Calum Blair
	Neil M. Robertson
	Danny Hume

