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Abstract—Gaussian Process classification (GPC) allows accu-
rate and reliable detection of objects. The high computational
load of squared-error or radial basis function kernels limits the
applications that GPC can be used in, as memory requirements
and computation time are both limiting factors. We describe our
version of accelerated GPC on GPU (Graphics Processing Unit).
GPUs have limited memory so any GPC implementation must
be memory-efficient as well as computationally efficient. Using a
high-performance pedestrian detector as a starting point, we use
its packed or block-based feature descriptor and demonstrate a
fast matrix multiplication implementation of GPC which is also
extremely memory efficient. We demonstrate a speed up of 3.7
times over a multicore, BLAS-optimised CPU implementation.
Results show that this is more accurate and reliable than results
obtained from a comparable support vector machine algorithm.

I. INTRODUCTION

Gaussian Process Classification (GPC) is an emerging
method of performing classification and regression for various
machine learning tasks. It has been used for prediction of
house prices, detection of various objects in multiple modal-
ities, and behavioural analysis [1]–[3]. It works by approx-
imating the underlying distribution of the variables under
observation by using a set of Gaussian distributions.

Recent work has shown that GPCs provide similar levels
of classification accuracy, while giving predictions which
are more reliable [4] than other comparable classifiers. See
the pedestrian detection example in Figure 1; false positives
with high confidence values (green, from another algorithm)
are treated less confidently by the GPC (red). In this case,
accuracy refers to the proportion of samples which are
classified correctly [5], while reliability is defined as how
well a classifier’s probabilistic predictions match ground-truth
observations. Classification algorithms are more likely to be
trusted and used by operators if they behave in a predictable or
well-understood manner [6]. Therefore, we argue that ranking
classifiers based on reliability – and improving that metric
where possible – allows more appropriate deployment of
classification and object or anomaly detection algorithms.

The main problem encountered when applying GPCs for
large-scale or extremely data-rich machine learning tasks is
that the calculations involved are expensive, both in terms of
processing time and memory use. General-Purpose Graphics
Processing Units (GPUs) have been used for some time now

Fig. 1: Existing detector (ACF with Adaboost classifier, green)
detects pedestrians and false positives with high confidence.
Gaussian Processes classifier (red) assigns low confidence to
false positives but maintains high confidence in true positives.

to speed up algorithm processing and evaluation due to the
high levels of parallelism available. Other families of machine
learning and classification algorithms such as support vector
machines (SVMs) [7] and neural networks [8] have been
accelerated on GPU, allowing the real-time classification of
test images and use in large-scale machine learning tasks.

This paper describes our accelerated Gaussian Process clas-
sifier implementation focusing on one such problem; reliably
detecting pedestrians in images using a state-of-the-art feature
extraction pipeline. We then compare this to an accelerated
SVM classifier to provide a baseline. Although we concentrate
on detection of pedestrians here, this can be extended to any
large-scale problem where features are extracted then stored
in a memory-efficient manner.

In Section II we describe related work and existing algo-
rithms and implementations. In Section III we describe the
algorithm we use in detail, our accelerated implementation of
it, and our testing methodology. We present timing, accuracy
and reliability results in Section IV and discuss our conclu-
sions and avenues for future work in Section V.



Fig. 2: Feature vector with multiple feature channels (three
colour channels, pixel gradient magnitude, and gradient his-
tograms in six angular bins) extracted from an image patch.

II. RELATED WORK

Here we discuss feature extraction, GPCs and implementa-
tions.

A. ACF Classifier

The ACF (Aggregate Channel Features) pedestrian detector
is one of the top-performing classifiers on current object
detection tasks [9]. It is based on one of the most well-known
object detectors, histograms of oriented gradients (HOG) [10].
It depends on extracting multiple different feature channels
from an image. The reference algorithm by Dollar et al. [9]
uses ten channels. Starting with a colour image, ACF extracts
LUV colour channels, pixel gradient magnitudes, and builds a
six-bin histogram of pixel gradient orientations. This approach
allows colour and shape features to be extracted. A set of
features for an image patch is shown in Figure 2. This is
then classified using an Adaboost classifier to give the final
detection result. Given the sample resolution involved and the
number of channels present, each feature vector has around
5000 entries. Large datasets therefore require large numbers
of calculations during training and testing stages. This paper
concentrates on acceleration of test-time calculations.

B. Gaussian Process Classification

Here we concentrate on binary classification of samples with
labels y ∈ {0, 1}. A high-level description of GPCs is given
here, then we provide specific details of the approximation
algorithm used in Section III. Gaussian Process Classifiers
allow probabilistic prediction p(y = +1|x∗) of a new data
sample x∗, after parameter learning on a set of training data
X and matching labels y. This is done in two stages. The
first involves defining a latent set of functions f(x). This is
assumed to have a Gaussian distribution and can be described
by mean µ(x) and covariance function k(X,x∗). This can be
a squared-error kernel:

k(xi, xj) = σ exp

(
− (xi − xj)

2

2ℓ2

)
. (1)

where σ and ℓ are hyperparameters learned in the training
process. A common alternative is the linear kernel:

k(xi, xj) = σxi · xj . (2)

To train a classifier, the distribution of the variable f∗ cor-
responding to (i.e., which best fits) x∗ must first be estimated:

p(f∗|X,y,x∗) =

∫
p(f∗|X,x∗, f)p(f |X,y)df . (3)

where f is the distribution of the latent function over X.
The second stage involves ‘squashing’ f∗ with an activation
function with output range [0, 1], such as:

σ(x) =
1

(1 + exp(−f(x))
. (4)

This can then be used to calculate the final class membership
probability:

π , p(y = +1|X,y,x∗) =

∫
σ(f∗)p(f∗|X,y,x∗)df∗ . (5)

The training process is O(n3), while testing is O(n2).
As a baseline we use the Support Vector Machine (a

common classification approach) with a radial basis function
(RBF) kernel. The SVM classification equation is given below,
with α,w and b learned during training.

f(x) =

N∑
i=1

αiK(x,wi) + b (6)

The RBF kernel used is identical to that given in (1).

C. Optimal Computation and Acceleration

Gaussian process regression and classification make ex-
tensive use of linear algebra. The standard library used
for this is LAPACK (Linear Algebra Package). This relies
heavily on BLAS (Basic Linear Algebra Subprograms); this
includes vector, matrix and vector-matrix algorithms, such as
fast multiplication of two matrices and tools for solution of
simultaneous equations1. Heavily optimised versions of BLAS
and LAPACK have been developed for a wide variety of
high-performance processors, where the order of operations
and amount of data stored in each level of the cache and
memory are tweaked by machine or by hand to ensure optimal
performance [11]. Two GPU versions are available, NVIDIA
cuBLAS2 and MAGMA [12].

Software packages such as MATLAB and Numpy rely on
BLAS for optimised computation. High-level statements like
C = AB are converted to calls to optimised libraries such as:

C = sgemm(A,B)

(i.e. single-precision, general matrix-matrix multiply). One of
the limitations of using BLAS is that all operations must be
reformulated to fit within the available subroutines provided
by the library. When evaluated, the exponent term in (1) is
expanded to:

(xi − xj)
2 = x2

i + x2
j − 2xixj . (7)

Three separate calls are then made to BLAS to calculate
each right-hand-side expression, resulting in three separate
passes over the data. Ideally, we would pass once over each
matrix, making all required calculations simultaneously. There
is considerable room for improvement here; for extremely
large problems (matrices of > 1000× 1000 in size), memory

1http://www.netlib.org/blas/
2https://developer.nvidia.com/cuBLAS



accesses as well as computations become a problem; datasets
become too big to fit in any cache and must be stored in
memory and traversed multiple times for any calculation.
This is particularly apparent when working with GPUs, where
overall throughput tends to be dominated by memory accesses
rather than computational performance. Memory on GPUs is
also much more limited than on conventional processors; 2GB
or 4GB maximum limits are common. This presents a problem
when very large X matrices are generated by the training
process.

The contribution of this paper is to document and make
available as code our GPU-accelerated implementation of a
GPC inference stage for large classification problems, and
present timing, accuracy and reliability results. Although this
is coded specifically for the feature extraction stage of the
ACF algorithm, it can easily be adapted and used in any
algorithm which relies on data extraction from local feature
vectors stored in a data-efficient manner.

III. METHOD

First we describe the algorithm which allows us to approxi-
mate the latent function as a Gaussian, then the extraction and
storage in memory of ACF descriptors. Finally, we show how
the former can be applied to the latter in a computationally
and memory efficient manner.

A. GP Inference using Laplacian Approximation

Our goal is to produce an expression for the second term
in (5) which we can evaluate analytically or numerically. This
requires expressions for the predictive mean E[f∗|X,y,x∗]
and predictive variance V[f∗|X,y,x∗]. The algorithm here is
taken from [13, Ch.3]; see this reference for further details.

We start by defining the relationship between training and
test samples:[

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,x∗)
K(x∗,X) K(x∗,x∗)

])
. (8)

Where K describes the covariance matrix between training
samples X and test samples x∗, and is calculated using a
kernel function k(xi, xj) such as (1) or (2).

For notational convenience, we define KX as K(X,X),
KX∗ as K(X,x∗) and K∗ as K(x∗,x∗) throughout. Us-
ing [13, Ch.2] and [14, Ch.8,§9.3], we can define a conditional
Gaussian on (8) as:

f∗|X,x∗, f ∼ N (K(x∗,X)K−1
X f ,

K∗ −K(x∗,X)K−1
X ,KX∗) .

(9)

Evaluating this directly as in (3) is intractable [15], so we
use a Laplacian approximation (from [13, Ch.3§4]), which
allows the posterior over the training data and labels in (3)
to be approximated as a Gaussian:

p(f |X,y) ≈ q(f |X,y) = N (f̂ , A−1) , (10)

where

f̂ = arg maxfp(f |X,y) , (11)

Require: X,y, f , kernel function k(xi, xj)
1: f̂ , Eq[f ,X,y] = argmaxf p(f |X,y) // Using Newton’s

method
2: KX = K(X,X)
3: W = −∇∇ log(p(y|̂f))
4: L = cholesky(I +W

1
2KW

1
2 )

5: return W,L, f̂ ,KX

Fig. 3: Prepare training posterior. This only needs to be done
once and can be re-used during testing.

and (where ∇ represents differentiation):
A = −∇∇ log(p(f |X,y)|f=f̂ . (12)

f̂ can thus be found by applying Bayes’ rule to the pos-
terior distribution over the training variables, p(f |X,y) =
p(y|f)p(f |X)/p(y|X). Here, p(y|X) can be discarded as
we wish to maximise f . Taking the log of p(f |X,y) and
differentiating, we obtain the equation for the predictive mean:

Eq[f∗|X,y,x∗] = Kᵀ
X∗∇ log p(y|̂f) . (13)

Similarly, we define predictive variance as:

Vq[f∗|X,y,x∗] = K∗ −Kᵀ
X∗(KX +W−1)−1KX∗ . (14)

With the diagonal matrix W , −∇∇ log(p(y|f)).
Defining the symmetric positive definite matrix B as B =

I +W
1
2KXW

1
2 and using a Cholesky decomposition LLᵀ =

B such that L = cholesky(B), (14) can be simplified to:

Vq[f∗|X,y,x∗] = K∗ −Kᵀ
X∗W

1
2 (LLᵀ)−1W

1
2KX∗(15)

Vq[f∗|X,y,x∗] = K∗ − vᵀv (16)

where:
v = L\(W 1

2KX∗) . (17)

Finally, this allows the posterior in (5) to be approximated
as a Gaussian q(f∗|X,y,x∗) with mean (13) and variance
(16). This can then be used to calculate mean and variance
values of new samples, and hence assign them a probabilistic
prediction value. These are summarised in Figure 3 (generation
of intermediate matrices, given training data) and Figure 4
(test-time prediction). Compute-heavy lines in the prediction
stage are marked with I; it is these that we must consider
accelerating. The usual method of calculating every line in
Figure 4, and the one which is best supported by BLAS, is to
store training and test data with one column for each sample.

B. Feature Extraction and Sliding-Window Classification

The ACF detector, as with many object detectors, works
by the ‘sliding window’ approach; first a set of features for
the whole image is generated, then a classification window
is run over all the features representing the source image.
All features inside the window are formed into a feature
vector and classified. Then the window is moved a short
distance (e.g. 8 pixels) in one direction, and this process is
repeated. As a single image patch ‘block’ representing a small



Require: X,x∗,y, f̂ ,W,L, kernel function k(xi, xj)
1: KX∗ = K(X,x∗) I
2: K∗ = K(x∗,x∗) I
3: Eq[f∗|X,y,x∗] = Kᵀ

X∗∇ log(p(y|̂f)) // latent mean
4: v = L\(W 1

2KX∗) I
5: Vq[f∗|X,y,x∗] = K∗ − vᵀv // latent variance
6: π̄∗ =

∫
σ(z)N (z|Eq[f∗],Vq[f∗])dz // prediction

7: return π̄

Fig. 4: Calculate π at test time. Compute-heavy lines marked
with I.

pixel region can belong to many windows simultaneously, the
memory-efficient way to do this is to store the features block
by block, channel by channel, and iterate through them as
they are classified at test time, only forming complete feature
vectors as they are presented to the classification algorithm.
This is incompatible with the BLAS approach; thus we can
either duplicate image blocks many times over to form BLAS-
compatible feature vectors, prioritising speed of computation
at the expense of memory consumption (and, in practice, slow
down calculations as we shuffle test vectors in and out of
cache), or prioritise a lower memory footprint, but be unable to
use the efficient BLAS routines. Here we combine the benefits
of both approaches (low memory consumption and optimised
processing).

C. GPU Acceleration

We now consider GPU acceleration of the algorithm in
Figure 4. The computationally expensive parts are the cal-
culation of KX∗ and K∗ in Figure 4, lines 1 and 2, and the
calculation of v on line 4. For KX∗ and K∗, we consider
the work documented in [12]. Kurzak et al., through extensive
automated parameter space exploration, produced an optimised
version of the C = AB matrix multiplication algorithm for a
GPU [12]. Given A = m × D and a B = D × n matrices,
each kernel walked along a vector of dimension D, loaded an
optimal number of values from the A and B matrices into fast
shared memory, then cross-multiplied and summed to produce
a single entry in C.

In our case, the A matrix is arranged as we would expect (as
the training matrix has one sample in each row). All samples
are separate, as they represent discrete positive or negative
training examples with no overlap. The B matrix, however,
is packed as described in §III-B. We therefore build a per-
block lookup table of B entries, then read the corresponding
entry. As B is so densely packed, this greatly reduces the
number of reads from slow global memory which must be
done, and means the calculation is dominated by reading of
A and writing of C (the resulting KX∗ matrix). As [12]
proved, these are already well-arranged. Subsequent kernels
take the result of (7) and apply the remaining steps in (1)
to get KX∗ and K∗, which is then transferred to the host to
continue with Figure 4. The solution of the division involving
the lower triangular matrix L on line 4 requires too much

TABLE I: Time taken to perform matrix multiplication stage
as part of classification algorithm in a 640 × 480 image
using baseline (CPU) and GPU-accelerated Gaussian Process
Classification and RBF support vector machine classification.

Algorithm Processor Implementation Time(s) Speedup

GPC CPU MATLAB BLAS 10.28
GPC GPU GPGPGPU 2.77 3.7×
SVM CPU LIBSVM 66.92
SVM GPU cuSVM [17] 1.74 38.5×

memory to obtain any benefit from performing the calculation
on a GPU. In our experiments it proved to be faster to execute
this on the CPU; the memory limitations on the GPU meant
that the test covariance matrix KX∗ had to be partitioned into
very small batches, because of the large size of KX . This
decreased transfer-to-compute ratio eventually meant that GPU
processing of (17) was slower than performing the calculation
on CPU.

IV. RESULTS

Here, to establish accuracy results, we consider detection
performance on the INRIA pedestrians dataset, using the
testing methodology in [16]. We compare this to a RBF (radial
basis function) SVM classifier accelerated on GPU, as this is
an accelerated detector which uses a similar approach [17];
the calculation in (6) is very similar to Figure 4 line 1, but
this computation is the only step required for SVM prediction.
Figure 5, using a ROC curve, shows the true positive rate
(TPR) achieved for a given false positive rate (FPR). Sim-
ilarly, Figure 6 shows a clearer separation between the two
approaches when the rate of false positives per image is plotted
against the miss rate. By both measurements, the GPC is
more accurate than the SVM version. This is true whether the
evaluations are run on CPU or GPU. The reliability diagram
in Figure 7 plots the confidence scores of predicted samples
against ground truth. Here, a ’well-calibrated’ or perfectly
reliable detector would lie on the black y = x line (i.e. of
all the detections it predicts with 60% confidence, 60% will
be evaluated as true. It shows that the GP classifier is more
reliable, as it lies closer to the black line representing a ‘well-
calibrated’ classifier.

Timing results are given in Table I. As a baseline we com-
pare this to a MATLAB BLAS GPU-accelerated implemen-
tation. The CPU version used an Intel Xeon X5650, with 12
cores at 2.67GHz. The GPU results used a NVIDIA GeForce
GTX 680 with 1536 cores and 2GB RAM. This shows a 3.7×
speedup compared to an optimised CPU processor. However,
every prediction also requires (17) to be applied. In contrast,
the cuSVM implementation in Table I performs classification
in a single step and runs faster. This is partly because the
SVM requires fewer support vectors to be multiplied (3000
as opposed to all 14000 training vectors used by the GPC),
and partly because the CPU SVM implementation is less
optimised.



Fig. 5: GPC and SVM Receiver Operating Characteristic
curve.

Fig. 6: GPC and SVM accuracy expressed as Detection Error
Tradeoff curve. The GPC is always more accurate.

A. Discussion

This has speeded up the operation of the GPC method by
a factor of 3.7. An alternative to this approach is to look at
algorithmic methods for reducing the number of computations
required to classify a new sample. Two methods can be
used; reducing the quantity of training or test data which
must be used in order to classify a sample, or simplifying
the relatively expensive functions in the classification stage.
Previous work [4] has considered the latter, showing that GPC
with a linear kernel (2) performs significantly less well in both
accuracy and reliability.

V. CONCLUSIONS

This work has described the motivation behind customised
GPU kernels for a common mathematical operation: the matrix
version of the operation in (7), and their application to
Gaussian Process Classification. This method demonstrates a
speedup over the BLAS approach, where matrix multiplica-
tions operations are heavily optimised for a given processor.
Therefore, when complex algorithms cannot be adequately
represented by the available BLAS algorithms, a customised
approach still offers a measurable benefit. However, as Table I
shows, this approach is still slower than a SVM classifier with
a similar kernel. Faster SVM predictions must be balanced
against the increased accuracy and reliability available with
GPCs. However, more efficient approaches are still needed
to deliver real time performance. The code described here is
available for download in [18].

Fig. 7: GPC and SVM Reliability; classifiers closer to black
line are more reliable.
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