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ABSTRACT

A modular vehicle detection system, using a two-stage hypothesis generation (HG) and hypothesis combination
(HC) approach is presented. The HG stage consists of a set of simple algorithms which parse multi-modal data
and provide a set of possible vehicle locations. These hypotheses are subsequently fused in a combination stage.
This modular design allows the system to utilise additional modalities where available, and the combination of
multiple information sources is shown to reduce false positive detections. The system uses Thales’ high-resolution
long wave infrared polarimeter and a four-band visible/near infrared multispectral system. Vehicle cues are taken
from motion flow vectors, thermal intensity hot spots, and regions with a locally high degree of linear polarisation.
Results using image sequences gathered from a moving vehicle are shown, and the performance of the system is
assessed with Receiver Operator Characteristics.
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1. INTRODUCTION

Multi-sensor fusion can be used to integrate complementary information from a variety of modalities to enhance
the performance of tasks beyond the capabilities of a single sensor or modality.! Visible imagery is natural
to the user, and has been the focus of many vehicle detection systems.?3 High resolution visible cameras are
available at minimal cost and can provide further discriminatory information to the system. In addition, it has
been shown that Near-Infrared imagery can be used to enhance standard visible imagery enabling processing
techniques such as haze penetration,* and vegetation segmentation.® Jai’s AD-080 GE 2-CCD multi-spectral
imaging colour camera provides access to both the visible and near infrared (NIR) bands (1024 x 768 pixels, NIR,
at 750 nm to 1000 nm, 30 frames/s) through a single optical system.

Many Defence applications favour long-wave infrared sensors (LWIR, 8 pm to 12pm) at which wavelength
emission dominates the observed radiation, allowing 24-hour use and makes such sensors highly suited to locating
thermally distinct objects from the background — even if visually camouflaged.

Standard imagery measures the intensity of radiation at certain wavelengths as a function of spatial coordi-
nate. There is increasing interest in extending this to include measurements of the polarisation state of observed
radiation, which has the potential to provide more information about the scene.®® The complete polarisation

state of a plane monochromatic wave can be characterised by the four Stokes parameters:'©
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where a; and ay are the instantaneous amplitudes of the two orthogonal components E,, E, of the electric
vector, and § = ¢1 — ¢o is their phase difference. The parameters I, ), U and V may be interpreted as the
total intensity, the amount of linear polarisation in the horizontal direction, the amount of linear polarisation in
a plane rotated 45° from horizontal, and the amount of circular polarisation respectively.
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Figure 1: Demonstration of sensor setup on the trials van: the Visible and NIR sensors come through a single
optical system to two CCD arrays, while the LWIR polarimeter is separate, using a polarisation sensitive focal
array.

They Stokes parameters may be determined by a set of simple experiments, if I (0, €) represents the intensity
of light in the direction making an angle # with the positive direction of the x-axis, when the y-component is
subjected to a retardation e with respect to the x-component, then the following relations hold:

I=1(0°,0)+1(90°,0)

Q = 1(0°,0) — 1(90°,0) @
U—I(45° 0) — I (135°,0)
V =1(45°,7) — I(135°,T)

Thales’ high-resolution long wave infrared (LWIR) imager, Catherine MP (640 x 512 pixels, 8 pm to 12 um,
100 frames/s),'! can be modified to be sensitive to radiation at various angles of polarisation,'? allowing access
to the first three Stokes parameters in real time.

Both sensors are securely fixed to a pan & tilt head which is mounted on top of the trials van, this was
positioned to look at the road ahead which the vehicle was in motion, and was not moved while data was captured.
The sensor setup is demonstrated in Figure 1. To register the images from each sensor, the parameters of the
perspective transformation function were optimised to maximise the mutual information between the different
images. The use of mutual information is common in the related field of medical image registration,'® where
input images capture similar underlying structure, but the intensities of points across different modalities are
not directly related.

Thermal emission can be modelled through the process of refraction, where electromagnetic waves transition
from one medium to another.'* The refracted wave is partially polarised in a direction perpendicular to the
plane of incidence respectively, the components of which are governed by the Fresnel transmissivity equations:

T = sin 26; sin 20,
I = sinZ(o; +9t)cos2(9 —04)
T = sin 20, sin 26,

T sin?(0;+0:)

3)

where 6; is the angle of incidence and 6, is the angle between the surface normal and the line of sight of the
sensor, related by Snell’s law (n; sin; = n;sinf;). Man-made objects, particularly those with smooth surfaces,
are found to emit strongly polarised radiation compared to natural objects,'® 6 making measurements of the
degree of polarisation in a scene useful for vehicle detection. See for example, Figure 2, which shows the @ Stokes
image of two vehicles alongside the visible image.



Figure 2: Emitted radiation is partially polarised in a plane perpendicular to the surface, and polarisation is
strongest for surfaces observed near grazing angle. An image of two vehicles is presented as observed in the Q
Stokes image (upper) and the visible (lower). Notice that the roof is present with maximum intensity, and the
sides are present with minimum intensity.
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Figure 3: Flowchart demonstrating operation of algorithm. In this example, at least two detection maps must
agree for a final detection to be marked.

It is hypothesised that through combining data collected from multiple sensing modalities, the performance
of simple detection algorithms will be improved. Utilising data collected from multiple sensors requires fusion to
combine the measurements. There are multiple levels at which data can be combined:'” pixel level fusion, where
a datacube is formed with the raw (or preprocessed) imagery; feature-level fusion, where features are extracted
from the inputs and combined before being classified; and decision-level fusion, where each input stream produces
a decision (binary or otherwise) which are subsequently combined. Fusion at lower levels of abstraction requires
accurate registration methods to perform well and is more computationally intensive; fusion at higher levels is
more readily adaptable to different sensor sets, or different operating conditions, but discards information earlier
in the system.

This paper explores how a vehicle detection system performs when using different combinations of input
imagery, and different types of detectors. The vehicle detection system is described in more detail in Section 2.
The experiments carried out are described in Section 3 and discussed in Section 4. Finally, Section 5 concludes
the paper with some closing remarks and paths for further investigation.

2. VEHICLE DETECTION SYSTEM

The vehicle detection system consists of a set of hypothesis generators (HGs) which process the input imagery
to form a set of output detection maps which are subsequently combined in a fusion engine to provide a final



set of detections for that frame. This process is summarised in Figure 3. Each of n HGs operate on a single

image I; from the set of all m available images, I = [Io, I, ..., I,,]. In the current implementation j can be one
of visible, near infrared (NIR), LWIR Intensity (TI), or LWIR Q Stokes (TQ):

vij =[fi(l;),i€{0...n} (4)
with each HG, f;(.), producing one component in the sparse set of detection maps y = [yo0,. - - ,yn,m]T. Each

map is a 2 dimensional image of the same size as the image processed to obtain it, I, where each pixel in the
map, p(u,v) € {0...1} represents the probability of finding a vehicle at that pixel. Once generated, these maps
are then registered to a common frame (that of the visible image) using a perspective transformation:

Yij (x1) = w5 (ta (%), 1y (x)) (5)
which maps coordinates x’ + x, x = (xq, xl)T, as:

apoTo + ap1T1 + ao2
a20%p + a2121 + Q22
a10To + a111 + a1z

a20To + a21T1 + a22

(6)
(7)

xy =ty (T0, 1) =

zy =ty (xo, 1) =

The perspective transformation matrix, a, is calculated offline using a mutual information similarity criterion

in an iterative registration process. These transformed maps, y' = [y{)’o, . ,yéy,AT7 are then combined in the
hypothesis combination (HC) stage using a certain fusion engine, g(.):
z=g(y) (8)

where z is the final set of detections. Details about specific HGs, f (.), and the method used in the HC stage,
g (.), are described in the following sections.

2.1 Hypothesis generation

This stage consists of a selection of hypothesis generators (HGs) which each transform a particular input into a
detection map. This has been done in such a way to allow any number of HGs to process and provide detections
from a wide range of input data, but provide output in a form which can be easily combined. This section details
three different HGs, two fairly low level methods consisting of simple thresholds which are used to process the
thermal intensity and the thermal @ Stokes inputs, and one higher level HG which aims to detect moving objects
from the visible input.

2.1.1 Motion

The motion HG makes the assumption that the camera is moving through the environment and, by tracking
feature points, attempts to detect regions where the tracks deviate from tracks associated with the background,
these outlying points are then further processed to identify any secondary consistent motion which could represent
a moving object.

In the first image of a sequence, the HG is initialised by detecting FAST (Features from Accelerated Segment
Test!'®) feature points, which are then tracked using the Pyramidal implementation of the Lucas Kanade Optical
Flow algorithm,'® 2% where correspondences are sought within a 10 x 10 pixel window over four pyramid levels.
Every n frames the HG is reinitialised by detecting new FAST feature points, where currently n = 10.

The points which are successfully tracked are then used in a RANSAC (RANdom SAmple Consensus?!)
framework to obtain the Fundamental matrix.?? The RANSAC method is particularly attractive as it provides
an estimation of both the best model given noisy data, and the set of inliers and outliers to this model based on
whether they are within a threshold distance, pyi, between the epipolar line associated with the original point
and the matching point. Outliers are then filtered with a second RANSAC Fundamental Matrix estimation to
identify any consistent motion within the outlying points. Tracks which are outliers to global motion, but have
consistent motion, are marked as detections.



The ultimate detection map produced by the Motion HG is formed around the set of k tracks marked as

detections, X, = [Xo1,Xo02; - - - ,Xok]T, using a top-hat function:
1 minfx = xall, < g
X) = i 9
S (x) { 0 otherwise )

2.1.2 Thermal Polarimetric

Due to their nature, vehicles can often be identified as local heat sources, and also as regions of high linear
polarisation. This is exploited by both the thermal HG and the polarimetric HG which identify vehicles by
means of a threshold. Both local (adaptive) and global thresholds were tested.

The global threshold method is controlled by a single parameter, pgiobar:

1 I(x)> oba.
JTGlobal (X) = { 0 Ot(he)rv;ispecl bal (10)

The local threshold method computes the threshold for each pixel, ¢ (x), depending on the intensity within a
local neighbourhood:
_ 1 I(x)>t(x)
Friocal (x) = { 0 otherwise (11)

where the local threshold is equal to the mean intensity of pixels within a small window of the current pixel,
plus a constant c¢. For the current study a window size of 3 x 3 pixels was used, and the constant was used to
control the sensitivity of the HG.

2.2 Hypothesis combination

At this stage the vector of detection maps generated at the HG stage, y’ (x), is combined into a single detection
map, z (X):
z(x) =g(y (x)) (12)

This process is known as decision-level fusion (as this process is combining decisions which have already
been made at the HG stage). The fusion engine, g (.), should be able to recognise agreement between different
hypotheses while eliminating false detections. This is achieved using the relatively simple voting method where
detection maps are combined additively and a threshold is then applied which allows the user to select how many

HGs must agree:
{ LY iy (x) =t (13)

/ _
90y’ (x)) = 0 otherwise

Here, «; is a weighting coefficient applied to the output of detector i, and ¢ is the ultimate threshold for
determining a detection. The value for a; can be chosen from knowledge about how the individual detectors
perform, although in this work «; = 1 for all HGs.

3. EXPERIMENTS
3.1 Procedure

The experimental goal is to determine the detection performance of the system, specifically how each HG performs
independently, and how effectively the HC stage eliminates false positive detections. The system was tested using
an image sequence obtained with sensors as described above while travelling along a rural road. The sequence
extends for a total of 700 image frames, during which a number of vehicles are present at a variety of distances.
Ground truth data was created for the sequence using vatic (the Video Annotation Tool from Irvine, California??)
in offline mode. Example frames from the dataset with ground truth annotations are shown in Figure 4. Note
the combination of a close range vehicle on the road, some parked medium distance vehicles to one side, and
some distant vehicles on the road ahead.



(a) 100 (b) 300 (c) 500 (d) 700
Figure 4: Example frames from test data with ground truth annotations, the numbers are represent the frame
number. Note the presence of vehicles at a range of distances.

Experiments were performed to evaluate each HG independently, and then test how different combinations of
HGs altered the individual detection rates. From the sequence of 700 frames, every 10th frame was used to test
the system, making a total of 71 test frames. Performance was assessed using receiver operating characteristic
(ROC) curves which plot the true positive rate (tpR) against the false positive rate (fpR) over a number of
sensitivity levels. An ideal curve will pass through the point (0,1), and so a metric was also calculated as the
smallest distance between this point and the ROC curve. The rates were defined as:

tpR = ™ (14)
_fr
PR = N (15)

where vy are the number of vehicles which were detected, defined as vehicles with at least 10% of their area marked
as detected, vy are the total number of unoccluded vehicles in the scene, fp are the number of pixels incorrectly
identified as belonging to a vehicle respectively, and N are the total ground truth number of non-vehicle pixels.

The ROC curves were generated by collecting these statistics from detection maps produced for all 71 of the
test frames.

3.2 Individual HG Results

Each hypothesis generator was tested in isolation, and the results are presented in this section. These results
are discussed in Section 4, and in Section 4.4 the we explore the outcomes when different HGs are combined.

3.2.1 Motion HG

The motion hypothesis generator, introduced in Section 2.1.1, makes predictions about the presence of moving
vehicles based on tracked points from the visible (RGB) input. In order to allow a reasonable distance to have
been travelled between input images, every 5th frame was selected from the original set of 700 frames. The
motion HG ROC curve is shown in Figure 5 alongside example tracked points and resultant detections. Note
that in Figure 5b tracks are denoted by white lines terminated by green circles for inliers to global motion, red
circles for outliers to global motion, but possess locally consistent motion, and blue circles for outliers to both
global and local motion.

3.2.2 Thermal HG

The thermal hypothesis generator input takes the input from the LWIR I image and tests both the local and
global threshold HGs introduced in Section 2.1.2. Results are shown alongside example output in Figure 6.

3.2.3 Polarimetric HG

The polarimetric hypothesis generator takes input from the LWIR Q image and tests both the local and global
threshold HGs introduced in Section 2.1.2. Results are shown alongside example output in Figure 7.
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Figure 5: The ROC curve generated using the Motion HG is shown in (a), alongside an example showing the
tracks from which the output was generated. Tracked feature points are indicated by white lines terminated by
large red circles if they are outliers to global motion and have consistent motion. Figure ¢ then shows the output
produced from this HG.
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Figure 6: ROC curves for Thermal Intensity HG when using (a) local and (d) global thresholds with corresponding
example input (b), (e) and output (c), (f) respectively.
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Figure 7: ROC curves for Polarimetric HG when using (a) local and (d) global thresholds with corresponding
example input (b), (e) and output (c), (f) respectively.

4. DISCUSSION

In this section we consider the performance of each HG when working independently, then in Section 4.4 an
overall discussion is presented comparing each HG and studying how different combinations of HGs alters the
detection results.

4.1 Motion HG

The Motion HG attempts to identify moving vehicles by tracking feature points identifying any points which
deviate from the global motion in a consistent manner. Results from this HG were shown in Figure 5.

These results show that this HG successfully identifies the large moving vehicle in the foreground, as a number
of the tracks on this vehicle are seen to deviate from the global motion. Additionally a number of the tracks that
are inconsistent with global motion, but also not conforming to a secondary motion (lines terminating in a blue
dot in Figure 5b) are identified and discarded — these will typically correspond to tracking errors. However, a
number of false positives are still present in the detection map.

The ROC curve seems to show a varying true positive rate at approximately constant false positive rate for
this HG, but the curve is not increasing monotonically. For each feature in the first image, the best fit projection
matrix allows an epipolar line to be drawn in the second image, on which the matching point in the second
frame is expected to lie. The distance between the matched point and this line is compared to a threshold to
determine whether the match is declared an inlier or outlier for this projection. This threshold was chosen as
the controlling parameter for this HG. However, the ROC curve suggests that this parameter has little effect on
the number of false positives recorded, but does alter the number of true positives recorded.

Although this HG is fairly simple and will only identify one non-global motion in the scene, even if it were
extended to a multi-body segmentation it would still only ever detect moving objects. This means that other



PLocal | TLocal | Motion | t tpR fpR metric
y - - 1] 0.9173 | 0.1103 | 0.1379
- y - 1] 0.8496 | 0.0396 | 0.1555
- - y 1] 0.5301 | 0.0298 | 0.4709
y y - 2 | 0.8045 | 0.0038 | 0.1955
y y y 3 1 0.3421 | 0.0003 | 0.6579
y y y 2 | 0.8722 | 0.0078 | 0.1281

Table 1: This table shows the true and false positive rates, alongside the metric, for system runs consisting
of different combination of detectors, and combination thresholds. PLocal is the Polarisation HG with local
threshold, TLocal is the Thermal HG is local threshold, Motion is the Motion HG, ¢ defines how many HGs must
agree for a final detection to be marked, tpR, fpR, and metric are the true positive rate, false positive rate, and
metric as defined in the text. The ideal metric is 0.0. The values shown are for runs with optimal parameters.

HGs will have to be responsible for detecting any stationary vehicles, and this HG can only provide additional
confidence to any moving vehicle detections.

4.2 Thermal HG

The results obtained with the Thermal HG were shown in Figure 6. It is evident that the local threshold is much
more suited to this modality, and produces a much improved ROC curve. This can be explained by observing for
example the road near to the camera. This area is present at relatively large intensity which triggers the global
threshold into reporting a detection, while as the area is consistent, the adaptive threshold is better suited to
picking out the smaller objects of interest from the scene.

One issue with this detector, in both global and local modes, is that while the medium- and long-range
vehicles are identified successfully, only sections (the exhaust, tyres, and roof) of the short-range vehicle are
identified. Improvements to this HG may be realised by performing some post-processing to group vehicle part
detections in order to expand the detected region to encompass the whole vehicle.

4.3 Polarimetric HG

The results obtained with the Polarimetric HG were shown in Figure 7. The Stokes Q image used for this HG
can be seen to be much more noisy than the thermal intensity image, and this is evident from the adaptive
threshold which shows many local false detections in the road region. However, compared to the global example,
where the entire road region is highlighted as a detection, the local version is found to perform more favourably.
This can be ascribed to the strong signature of the road in this modality, which is marked along its entirety as
a detection in the global threshold method, while only in the more speckled areas in the local method.

One method of improving this HG could be to apply a median filter to the input, this would remove much of
the speckled appearance, however this would also remove the ability to detect any distant vehicles present over
a small number of pixels. As such it would be preferable to filter the detection map by another means.

4.4 Overall comparison

A comparison of the optimum detection rates for each of the three HGs, along with different combinations is
provided in Table 1. The metric shown is the distance between the optimum (fpR, tpR) point listed for that
system, and the ideal (0, 1) point (an ideal metric would be 0.0).

Comparing the HGs operating independently, it can be seen that the Polarimetric detector provides the
largest true positive rate of all the detectors, with a correspondingly small metric. However of the individual
HGs it also exhibits the largest false positive rate. This is confirmed qualitatively by observing the large number
of false positive detections in the road region of Figure 7c.

The thermal HG used alone performs similarly to the polarimetric HG, with both the true and false positive
rates slightly lowered, and similar overall metric.

However, the motion HG when used on its own is quite interesting in that while it has a comparably poor
true positive rate, detecting around half of the vehicles present, it has the smallest false positive rate of the
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Figure 8: Detection maps from (a) thermal and (b) polarimetric HGs alongside and combined system output

(c)-

individual HGs. The small true positive rate is to be expected as this HG is not designed to detect any vehicles
which are not in motion, but the small false positive rate is encouraging.

The lower half of the table shows different combinations of HGs. Line four shows the results obtained when
combining the polarimetric and thermal HGs run with optimum parameters, and only generating an output
detection if both HGs agree. This has the result of lowering the true positive rate below both of the individual
HGs, but also reduces the false positive rate by an order of magnitude. This demonstrates that this combination
does effectively eliminate much of the noise present in both of these HGs, as can be seen in Figure 8 which shows
the output from each HG individually, and the fused result after combination.

Two methods of combining all three HGs were trialled where a detection was marked if any two or all
three HGs agree. Requiring a unanimous decision was found to have the effect of reducing the true positive
rate somewhat, but significantly reducing the false positive rate by two orders of magnitude compared to any
individual HG, or one order of magnitude below the combined Polarimetric-Thermal system. Relaxing the
constraint to only require agreement between any two of the three HGs improves the true positive rate to a level
comparable to the best performing individual HG, while also significantly reducing the false positive rate.

5. CONCLUSIONS & FUTURE WORK

This paper introduces a new vehicle detection system which combines a set of simple detectors operating on
multiple input modalities. It has been shown that combining different types of data is an effective method
to significantly reducing false positive detections, without significantly hampering the number of true positive
detections. This work also highlights how discriminative polarimetric imaging can be, especially in the thermal
infrared waveband where emission dominates and observed radiation can reveal significant information about
object shape and location.

For future work, it is thought that combining the data at an earlier stage may improve performance further:
combining the polarimetric and intensity data into a single image in a lower-level fusion system and then pro-
cessing could be beneficial, as combining processed data inherently involves loss of information. Additionally the
current method does not attempt to group information from the different HGs: for example, the polarimetric
HG detects the vehicle roof while the thermal HG detects the tyres. Without grouping these measurements will
be considered independent and will not contribute to an increased confidence of detection, even though they may
both be identifying the same vehicle.

Additionally, the system only currently uses temporal data in the Motion HG, while if detections were filtered
throughout the sequence, instantaneous detections from the current frame could be fed into a more probabilistic
detection framework which makes detection predictions based on information from multiple frames.
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