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Abstract—Generative models hold the promise of reducing
the computational load and cost caused by directly simulating
a real system. They are vital to the design and performance
evaluation of error control schemes and high layer wireless
communication protocols. Therefore, designing an efficient and
accurate generative model is highly desirable. Moreover, the
errors encountered in digital wireless channels exhibit correlation
among them. This stimulates us to construct a Markovian based
generative model with two embedded processes. The first process
is dedicated to assembling error bursts with error-free bursts,
whereas the second one is devoted to creating individual error
bursts employing the maximum gap norm within error bursts.
This premise is utilized in this paper to show that the resulting
generative model can generate error sequences with desired bit
correlations and is capable of statistically matching a descriptive
model, derived from an enhanced general packet radio service
(EGPRS) transmission system, regardless of the configuration of
its error sequences.

I. INTRODUCTION

A digital (discrete-time) channel comprises the complete
transmission chain in a communication system, including the
transmitter, the physical channel, and the receiver normally
expressed in the complex baseband. Error models aim to
characterize error sequences obtained by comparing input
sequences with output sequences of digital channels. Errors
perceived in digital wireless channels do not occur separately,
but in bursts or clusters. In order to combat these errors, it
is vital to develop error models. Error models have two main
advantages. First, they are significant to the design of error
control schemes and high layer communication protocols [1],
where knowledge of the burst error statistics are really benefi-
cial. Second, the underlying digital channels can be simulated
by generated error sequences. Therefore, the computational
load and time can be greatly reduced. Error models can be
classified into two types: descriptive and generative [2]. A
descriptive model identifies the statistical behavior of error
sequences gained from real communication systems. Whereas,
a generative model is a mathematical representation that
generates error sequences with similar statistical properties to
those produced by a descriptive model.

In the literature, researchers have proposed various gen-
erative models which can be classified into five categories.

The first catagory is based on Markov chains to construct
Markov models (MMs). The first model within this category
is Gilbert-Elliot model [3]. It is composed of only two states,
a bad or error state and a good state. The burst error statistics
resulting from this model are in general unsatisfactory due
to its simplicity. Thereafter, many modifications have been
made to improve this model [4], [5] including increasing the
number of states like the well-known simplified Fritchman
models (SFMs) [6]. They consist of one error state and
several good states. MMs have many applications [7], [8].
The second category is Hidden MMs (HMMs) [9]. They have
been established to convey complicated error sequences which
are identified by long error bursts interweaved with longer
error-free bursts. Baum-Welch based HMMs (BWHMMs)
give reasonable results for error profiles which have error
bursts with a bell-shaped error density [10], [11]. However,
there is still room for the HMMs to be further improved,
specifically to make them applicable to other configurations
of error sequences. Stochastic-Context Free Grammars models
(SCFGs) [11] are considered as the third category. The SCFGs
have been designed to apply to indoor channels, but they
have not succeeded in supplanting HMMs. Chaos theory has
been employed to construct the fourth category of generative
models. Chaotic models which depend upon chaotic attractors
[12] are certainly complex but their results fail to trace the
HMMs in many aspects. Chaotic models which rely on chaotic
maps [13] exhibit good results for some types of error patterns,
particularly heavy-tailed run length error patterns. The last
category is the deterministic process based generative models
(DPBGMs) [14], [15]. Their idea stems from the second order
statistics of fading envelope processes. The DPBGMs are the
best generative models in terms of providing realistic burst
error statistics. However, a drawback of the DPBGMs is that
they do not construct new error bursts in the process of
generating error sequences. Instead, they fetch them directly
from the original error sequences according to their lengths.

In this paper, we propose a novel generative model, called
Double Embedded Processes based Hidden Markov Model
(DEPHMM). It consists of two layers of processes. The first
layer is composed of only one error-free state and many error
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bursts states. Whereas, the second layer constructs detailed
error bursts inside the error bursts states. Estimating the
DEPHMM parameters is intuitive and plain. The DEPHMM
implementation is simple and the resulting burst error statistics
are satisfactory. Binary bit error sequences are considered.

This paper is outlined as follows. Section II introduces some
terms and definitions related to the binary bit error sequences
and their statistics. Section III reveals the full structure of
the DEPHMM and its parametrization. The simulation results
of the burst error statistics for the DEPHMM, compared
with those of a descriptive model, derived from the EGPRS
transmission system, and several other generative models, are
displayed in Section IV. Conclusions are drawn in Section V.

II. TERMS AND DEFINITIONS

Suppose a binary input sequence to a digital wireless
channel is {ij} and a corresponding binary output sequence
is {oj}. Note that ij, oj ∈ {0, 1} , j = 1, 2, .... The resulting
binary error sequence {ej} is obtained by performing modulo
2 addition of the input sequence and output sequence, i.e.,
ej = ij⊕oj , where ⊕ is a modulo 2 addition operator. Clearly,
a binary error sequence is a sequence of “0”s and “1”s, where
“0” denotes a correct bit and “1” denotes an error bit. The
error sequence is a fundamental term in error models, hence,
requires detailed analysis.

A gap is described as a series of successive zeros between
two ones. Its length equals the number of zeros. An error
cluster is a series of successive ones having a length equal
to the number of ones. To highlight some specific gaps with
very long lengths, a threshold value η can be assigned to
distinguish between these long gaps and the other gaps which
are considered as part of the error bursts. This leads us to two
new definitions: error-free burst and error burst. An error-free
burst is a sequence of successive zeros that have at least η
bits in length. Note that an error-free burst can in general be
considered as a gap with a minimum length restriction, except
that an error-free burst is not necessarily located between
two ones. An error burst is a sequence of zeros and ones
delimited by ones. It is separated from other error bursts
by error-free bursts. The minimum length of an error burst
is 1. Note that error sequences can be considered as the
combination of consecutive error-free bursts and error bursts,
or the combination of consecutive gaps and error clusters. On
the other hand, error bursts also consist of consecutive gaps
with lengths less than η and error clusters.

For the purpose of analyzing error sequences comprehen-
sively, many burst error statistics have been elaborated in the
literature [2], [15]. These statistics are also used to investigate
the performance of generated error sequences. The burst error
statistics that will be used in this paper are listed below:

1) P (0m0 |1): error-free run distribution (EFRD), which is
the probability that an error is followed by m0 or more
error-free bits [6].

2) P (1mc |0): error-cluster distribution (ECD), which is the
probability that a correct bit is followed by at least mc

successive error bits [6].

3) PEB(me): error-burst distribution (EBD), which is the
cumulative distribution function (CDF) of error burst
lengths me [15].

4) PEFB(mē): error-free burst distribution (EFBD), which
is the CDF of error-free burst lengths mē [15].

5) P (m, n): block error probability distribution (BEPD),
which is the probability that a block of n bits contains at
least m errors [2].

6) ρ(Δk): bit error correlation function (BECF), which is
the conditional probability that the Δkth bit following
an error bit is also in error [2].

III. THE PROPOSED GENERATIVE MODEL

The starting point in configuring the DEPHMM is to divide
an obtained reference error sequence from a real system into
error bursts and error-free bursts. But, to ascertain the error-
free bursts we firstly need to find out the value of η. It can be
chosen through a range of values between ηi and ηf so that
the error burst identification is not affected. Both values are
simply obtained from the EFRD curve when it is flat.

Fig. 1 shows a sketch of the DEPHMM. Since the error-free
bursts consist of only “0”s, one state is sufficient to represent
them. On the other hand, the error bursts are considered as the
most important part in the DEPHMM, because they have many
structural variations. Therefore, error bursts deserve to be clas-
sified into many groups. Each group should convey a specific
structural behavior. Subsequently, a structural criterion must
be adopted for the purpose of error bursts classification. The
maximum gap in each error burst of the reference sequence
is the choice. Explicitly, the maximum gaps of error bursts
which could range from 0 to η−1 should be divided according
to their histogram into the number of error burst states, where
the divided intervals of the maximum gaps have approximately
equal number of error bursts. By using this criterion, the model
can circumscribe any degradation in error correlation, which
is adequately obvious in wireless communication systems.
Joining the error burst states with the error-free burst state
to construct generated error sequences is the first process in
the DEPHMM.

Producing error-free bursts is straightforward. Once we
recognize the reference error-free burst lengths distribution,
many error-free burst lengths can then be generated. The big
challenge now is how to construct generated error bursts so
that they convey the same behavior of the reference error
bursts. Because error bursts are composed of error clusters and
gaps with lengths less than η, both of them can be represented
by a separate number of states. As a result, many state
configurations are possible. But, since our major apprehension
is the detailed construction of errors within an error burst, we
allot several substates for the error clusters of each class of the
first process and single substate for the gaps of the error bursts.
Each error cluster substate is occupied by a single error cluster
length due to error clusters’ short lengths. Similar to the error-
free bursts, the production of gaps within error bursts of each
class depends mainly on their length probability distribution.
Connecting the error cluster substates with the gaps substate
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is the second process. The mean gap length of the generated
error bursts in each state should match that of the original
error bursts. Otherwise, the states with mismatched mean gap
lengths should be further partitioned.

The parameters of the DEPHMM are as follows:

1) N : the number of states for error bursts, i.e., S =
{s1, s2, ..., sN , sN+1}, where S is the set of states. N
is selected according to the accuracy demand.

2) Mu: the number of error cluster substates in each state,
i.e., Vu = {v1u, v2u, ..., vMu, vMu+1}, where Vu is the
set of substates and u = 1, ..., N . Mu is designated
according to the number of error cluster lengths in each
error burst state.

3) F = (fi,j): the state transition matrix, where fi,j is the
transition probability from si to sj , such that

fi,j = P [Qt+1 = sj |Qt = si] , 1 ≤ i, j ≤ N + 1

=

⎧⎪⎨
⎪⎩

1, 1 ≤ i ≤ N, j = N + 1,
NEB,jPN

j=1 NEB,j
≈ NEB,j

N×NEB,N
, i = N + 1, 1 ≤ j ≤ N,

0, otherwise,
(1)

with Qt being the current state at time t and NEB,j the
number of error bursts in sj . The structure of the state
transition matrix is

F =

⎛
⎜⎜⎜⎝

0 · · · 0 1
...

. . .
...

...
0 · · · 0 1

fN+1,1 · · · fN+1,N 0

⎞
⎟⎟⎟⎠ . (2)

4) Du = ((dh,k)u): the substate transition matrix, where
(dh,k)u is the transition probability from vhu to vku , such
that

(dh,k)u=P [Rt+1=vku |Rt=vhu ],1 ≤hu, ku≤Mu + 1

=

⎧⎪⎨
⎪⎩

1, 1 ≤ hu ≤ Mu, ku = Mu + 1,
NC,kuPMu

ku=1 NC,ku

, hu = Mu + 1, 1 ≤ ku ≤ Mu,

0, otherwise,
(3)

with Rt being the current state at time t and NC,ku

the number of error clusters in ku. The structure of the
substate transition matrix is

Du =

⎛
⎜⎜⎜⎝

0 · · · 0 1
...

. . .
...

...
0 · · · 0 1

dMu+1,1 · · · dMu+1,Mu 0

⎞
⎟⎟⎟⎠ . (4)

5) A = (aj(n)): the first process emission probability
distribution matrix, where aj(n) (1 ≤ j ≤ N + 1) is
the probability of getting the burst yn in state sj , that is

aj(n) = P [yn at t|Qt = sj ] , 1 ≤ n ≤ NEB,j , NEFB,j.

NEFB,j is the number of error-free bursts in sj .
6) B = (bku(m)): the second process gap emission proba-

bility distribution matrix, where bku(m) (ku = Mu + 1)

is the probability of getting the gap xm in state vku , that
is

bku = P [xm at t|Rt = vku ] , 1 ≤ m ≤ NG,ku .

NG,ku is the number of gaps in ku.
7) Πu = ((πk)u): the initial substate distribution vector,

where (πk)u is the probability of vku to be an initial
substate.

Πu = (dMu+1,1, ..., dMu+1,Mu , 0) , (5)

which is extremely important since it assures the initiation
of an error burst by an error cluster, otherwise the
definition of error burst is no longer valid. By analogy,
we can obtain the initial state distribution vector.

8) Ωu = ((ωk)u): the termination substate distribution
vector, where (ωk)u is the probability of vku to be the
final substate.

Ωu = (dMu+1,1, ..., dMu+1,Mu , 0) , (6)

which is also very important because it ensures that the
error burst is finalized with an error cluster as specified
in the definition.

9) δn,u: error burst length values. These values regulate the
termination of error bursts generation, so that Ωu shall be
activated according to them. The Activation takes place
when the generated error burst lengths become either
equal or around a chosen δn. The deviation from δn

should be small enough, otherwise, the current generated
error burst will be discarded. δn,u are acquired from the
reference error burst length distribution.

10) Γ: generated error sequence length. This value terminates
the error sequence generation once it is reached or
exceeded. It does not matter whether the current state
is error burst or error-free burst.

All the aforementioned parameters construct the DEPHMM
and explain its algorithm.

IV. SIMULATION RESULTS AND DISCUSSIONS

In order to scrutinize the DEPHMM operation, a reference
error sequence needs to be obtained for its parametrization.
To achieve this, we consider an uncoded EGPRS transmis-
sion system with ideal frequency hopping. The elementary
digital channel is constituted of a Gaussian minimum shift
keying (GMSK) modulator, an interfered propagation channel,
a GMSK demodulator, and a hard decision Viterbi equalizer.
The underlying channel is tailored to a typical urban (TU)
environment with carrier-to-interference ratio (CIR) of 8 dB,
and mobile speed of 3 km/h. The data are transmitted using
time-division multiple access (TDMA) with blocks of 116 bits
and a transmission rate of Fs = 270.8 kb/s

The reference error sequence has 15 million bits. It exhibits
long error bursts interweaved with long error-free bursts. It has
4269 error bursts and 4268 error-free bursts with maximum
lengths of 6489 and 6251 bits, respectively. We find η from
Fig. 2 which displays the EFRD. From its shape plateau, we

221

Authorized licensed use limited to: Heriot-Watt University. Downloaded on February 21,2010 at 11:51:38 EST from IEEE Xplore.  Restrictions apply. 



find ηi = 400 and ηf = 1000 hold. The chosen value of η is
800. Γ = 21 million bits.

For the sake of comparison, a SFM, BWHMM, and DP-
BGM are implemented. The parameters of a SFM with K
states are obtained by fitting the weighted sum of K − 1
exponentials to the EFRD. The number of states used for
the SFM is 6. In fact, no better improvement of the SFM
statistics could be attained by increasing its number of states
to more than 6. In the BWHMM, the number of classes is
12, whereas the total number of states is 400. The number
of bits which should represent each block in the error bursts
is chosen to be 103 bits. For the DPBGM, the vector Ψ =
(9, 10, 0.09, 0.0783, 73.22Hz, 0.8132ms), RB = 0.9344, and
qs = 0.01 hold.

To assess any generative model, we need to investigate
how close its burst error statistics can match the descriptive
model. Figs. 2-7 illustrate the behavior of the burst error
statistics, mentioned in Section II, for the descriptive model
and the well-known generative models addressed before. It is
apparent that the SFM fails to characterize all the statistics
except the EFRD, since the SFM is designed by fitting it. The
BWHMM depicts an enhancement to the SFM, despite the
fact that it misses the contiguity with the descriptive model.
This is because the BWHMM was designed to best describe
error sequences with bell-shaped error density bursts. But,
our reference error sequence has many error bursts which
do not comply with such a shape. However, the DPBGM
statistics has small differences from the DEPHMM statistics
of high accuracy. Nevertheless, the DEPHMM leads the other
generative models since the DPBGM fetches the error bursts
from the reference error sequence rather than constructing
them by itself. In Figs. 2-5, 10 classes of error bursts are
selected for the DEPHMM. However, this number of classes is
not sufficient to fit the EFBD and BECF in Figs. 6-7 perfectly.
Therefore, we increased this number to 20 and 30. As a
result, a notable augmentation in the performance is achieved.
Although the total number of states of the DEPHMM reaches
260 (including the substates), it is still less than the number
of states of the BWHMM. Similar to the EFBD and BECF, it
is worth mentioning that the burst error statistics in Figs. 2-5
could be enhanced as well by increasing the number of classes.

V. CONCLUSIONS

This paper has demonstrated a novel method for developing
a binary HMM using double embedded processes. By this
method, the error bursts can be constructed rigorously and
hence the generated error sequence. As a consequence, the
correlation properties of the generated error sequence can
approximate those of the reference error sequence. The SFM
and BWHMM are unable to meet these criteria, whereas
small differences have been detected between the DPBGM
and DEPHMM. This has been examined by a descriptive
model obtained from the EGPRS system. Additionally, the
DEPHMM can deal with any formation of error sequences,
no matter whether it has a special shape of error bursts or
not. Whereas, the BWHMM has good behavior only for error

sequences with bell-shaped error density bursts. However, the
DPBGM does not construct the error bursts.
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Fig. 2. Error-free run distributions of the descriptive model obtained
from the EGPRS system and different generative models.
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Fig. 3. Error cluster distributions of the descriptive model obtained
from the EGPRS system and different generative models.
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Fig. 4. Error burst distributions of the descriptive model obtained
from the EGPRS system and different generative models.
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Fig. 5. Error-free burst distributions of the descriptive model obtained
from the EGPRS system and different generative models.
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