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NE X T GE N E R AT I O N CO G N I T I V E CELLULAR NE T W O R K S

INTRODUCTION
Radio frequency (RF) spectrum is a valuable but
tightly regulated resource due to its unique and
important role in wireless communications. With
the proliferation of wireless services, the
demands for the RF spectrum are constantly
increasing, leading to scarce spectrum resources.
On the other hand, it has been reported that
localized temporal and geographic spectrum uti-
lization is extremely low [1]. Currently, new
spectrum policies are being developed by the
Federal Communications Commission (FCC)
that will allow secondary users to opportunisti-
cally access a licensed band when the primary
user (PU) is absent. Cognitive radio [2, 3] has
become a promising solution to solve the spec-
trum scarcity problem in the next generation cel-
lular networks by exploiting opportunities in
time, frequency, and space domains.

Cognitive radio is an advanced software-
defined radio that automatically detects its sur-
rounding RF stimuli and intelligently adapts its
operating parameters to network infrastructure
while meeting user demands. Since cognitive
radios are considered secondary users for using
the licensed spectrum, a crucial requirement of
cognitive radio networks is that they must effi-
ciently exploit underutilized spectrum (referred
to as spectral opportunities) without causing

harmful interference to the PUs. Furthermore,
PUs have no obligation to share and change
their operating parameters for sharing spectrum
with cognitive radio networks. Hence, cognitive
radios should be able to independently detect
spectral opportunities without any assistance
from PUs; this ability is called spectrum sensing,
which is considered one of the most critical com-
ponents in cognitive radio networks.

Many narrowband spectrum sensing algo-
rithms have been studied in the literature [4, ref-
erences therein], including matched filtering,
energy detection [5], and cyclostationary feature
detection. While present narrowband spectrum
sensing algorithms have focused on exploiting
spectral opportunities over narrow frequency
range, cognitive radio networks will eventually
be required to exploit spectral opportunities
over a wide frequency range from hundreds of
megahertz to several gigahertz for achieving
higher opportunistic throughput. This is driven
by Shannon’s famous formula that, under certain
conditions, the maximum theoretically achiev-
able bit rate is directly proportional to the spec-
tral bandwidth. Hence, different from
narrowband spectrum sensing, wideband spec-
trum sensing aims to find more spectral opportu-
nities over a wide frequency range and achieve
higher opportunistic aggregate throughput in
cognitive radio networks. However, conventional
wideband spectrum sensing techniques based on
standard analog-to-digital converters (ADCs)
could lead to unaffordably high sampling rate or
implementation complexity; thus, revolutionary
wideband spectrum sensing techniques become
increasingly important.

In the remainder of this article, we first briefly
introduce the traditional spectrum sensing algo-
rithms for narrowband sensing. Some challenges
for realizing wideband spectrum sensing are then
discussed. In addition, we categorize the existing
wideband spectrum sensing algorithms based on
their implementation types, and review the state-
of-the-art techniques for each category. Future
research challenges for implementing wideband
spectrum sensing are subsequently identified,
after which concluding remarks are given.
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ABSTRACT
Cognitive radio has emerged as one of the

most promising candidate solutions to improve
spectrum utilization in next generation cellular
networks. A crucial requirement for future cog-
nitive radio networks is wideband spectrum sens-
ing: secondary users reliably detect spectral
opportunities across a wide frequency range. In
this article, various wideband spectrum sensing
algorithms are presented, together with a discus-
sion of the pros and cons of each algorithm and
the challenging issues. Special attention is paid
to the use of sub-Nyquist techniques, including
compressive sensing and multichannel sub-
Nyquist sampling techniques.

WIDEBAND SPECTRUM SENSING FOR
COGNITIVE RADIO NETWORKS: A SURVEY
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NARROWBAND SPECTRUM SENSING
The most efficient way to sense spectral oppor-
tunities is to detect active primary transceivers in
the vicinity of cognitive radios. However, as pri-
mary receivers may be passive (e.g., TVs), some
receivers are difficult to detect in practice. An
alternative is to detect the primary transmitters
by using traditional narrowband sensing algo-
rithms, including matched filtering, energy detec-
tion, and cyclostationary feature detection, as
shown in Fig. 1. Here, the term narrowband
implies that the frequency range is sufficiently
narrow such that the channel frequency response
can be considered flat. In other words, the band-
width of our interest is less than the coherence
bandwidth of the channel. The implementation
of these narrowband algorithms requires differ-
ent conditions, and their detection performance
is correspondingly distinguished. The advantages
and disadvantages of these algorithms are sum-
marized in Table 1.

The matched filtering method is an optimal
approach for spectrum sensing since it maxi-
mizes the signal-to-noise ratio (SNR) in the
presence of additive noise. This advantage is
achieved by correlating the received signal with a
template for detecting the presence of a known
signal in the received signal. However, it relies
on prior knowledge of the PUs and requires cog-
nitive radios to be equipped with carrier syn-
chronization and timing devices, leading to
increased implementation complexity.

Energy detection [5] is a non-coherent detec-
tion method that avoids the need for prior
knowledge of the PUs and the complicated
receivers required by a matched filter. Both the
implementation and computational complexity
are relatively low. A major drawback is that it
has poor detection performance under low SNR
scenarios, and cannot differentiate between the
signals from PUs and the interference from
other cognitive radios.

Cyclostationary feature detection detects and
distinguishes between different types of primary
signals by exploiting their cyclostationary fea-
tures. However, the computational cost of such
an approach is relatively high, because it requires
a two-dimensional function to be calcuated,
which is dependent on both frequency and cyclic
frequency.

WIDEBAND SPECTRUM SENSING

Against the narrowband techniques mentioned
above, wideband spectrum sensing techniques
aim to sense a frequency bandwidth that exceeds
the coherence bandwidth of the channel. For
example, for exploiting spectral opportunities in
the whole ultra-high-frequency (UHF) TV band
(between 300 MHz and 3 GHz), wideband spec-
trum sensing techniques should be employed.
We note that narrowband sensing techniques
cannot be directly used for performing wideband
spectrum sensing because they make a single
binary decision for the whole spectrum and thus
cannot identify individual spectral opportunities
that lie within the wideband spectrum. As shown
in Table 2, wideband spectrum sensing can be
broadly categorized into two types: Nyquist

wideband sensing and sub-Nyquist wideband
sensing. The former type processes digital signals
taken at or above the Nyquist rate, whereas the
latter type acquires signals using a sampling rate
lower than the Nyquist rate. In the rest of this
article, we provide an overview of the state-of-
the-art wideband spectrum sensing algorithms,
and discuss the pros and cons of each algorithm.

NYQUIST WIDEBAND SENSING
A simple approach to wideband spectrum sens-
ing is to directly acquire the wideband signal
using a standard ADC and then use digital signal
processing techniques to detect spectral opportu-
nities. For example, Quan et al. [6] proposed a
multiband joint detection algorithm that can
sense the primary signal over multiple frequency
bands. As shown in Fig. 2a, the wideband signal
x(t) was firstly sampled by a high sampling rate
ADC, after which a serial-to-parallel conversion
circuit (S/P) was used to divide sampled data
into parallel data streams. Fast Fourier trans-
form (FFT) was used to convert the wideband
signals to the frequency domain. The wideband
spectrum X(f) was then divided into a series of
narrowband spectra X1(f), …, Xv(f). Finally,
spectral opportunities were detected using bina-
ry hypotheses tests, where H0 denotes the
absence of PUs and H1 denotes the presence of
PUs. The optimal detection threshold was jointly
chosen by using optimization techniques. Such
an algorithm can achieve better performance
than the single-band sensing case.

Furthermore, by also using a standard ADC,
Tian and Giannakis proposed a wavelet-based
spectrum sensing algorithm in [7]. In this algo-
rithm, the power spectral density (PSD) of the
wideband spectrum (denoted S(f)) was modeled
as a train of consecutive frequency subbands,
where the PSD is smooth within each subband
but exhibits discontinuities and irregularities on
the border of two neighboring subbands. The
wavelet transform was then used to locate the
singularities of the wideband PSD, and the wide-
band spectrum sensing was formulated as a spec-
tral edge detection problem, as shown in Fig. 2b.

However, special attention should be paid to
the signal sampling procedure. In these algo-

Figure 1. Block diagrams for narrowband spectrum sensing algorithms: a)
matched filtering; b) energy detection; c) cyclostationary feature detection.
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rithms, sampling signals should follow Shannon’s
celebrated theorem: the sampling rate must be
at least twice the maximum frequency present in
the signal (known as Nyquist rate) in order to
avoid spectral aliasing. Suppose that the wide-
band signal has frequency range 0~10 GHz; it
should be uniformly sampled by a standard ADC
at or above the Nyquist rate, 20 GHz, which will
be unaffordable for next generation cellular net-
works. Therefore, sensing wideband spectrum
presents significant challenges in building sam-
pling hardware that operates at a sufficiently
high rate and designing high-speed signal pro-
cessing algorithms. With current hardware tech-
nologies, high-rate ADCs with high resolution
and reasonable power consumption (e.g., 20
GHz sampling rate with 16 bits resolution) are
difficult to implement. Even if it becomes true,
the real-time digital signal processing of sampled
data could be very expensive.

One naive approach that could relax the
high sampling rate requirement is to use super-
heterodyne (frequency mixing) techniques that
“sweep” across the frequency range of interest,
as shown in Fig. 2c. A local oscillator (LO)
produces a sine wave that mixes with the wide-
band signal and down-converts it to a lower
frequency. The down-converted signal is then
filtered by a bandpass filter (BPF), after which
existing narrowband spectrum sensing tech-
niques can be applied. This sweep-tune
approach can be realized by using either a tun-
able BPF or a tunable LO. However,  this
approach is often slow and inflexible due to
the sweep-tune operation.

Another solution would be the filter bank
algorithm presented by Farhang-Boroujeny [8]
as shown in Fig. 2d. A bank of prototype filters
(with different shifted central frequencies) was
used to process the wideband signal. The base-
band can be directly estimated by using a proto-
type filter, and other bands can be obtained
through modulating the prototype filter. In each
band, the corresponding portion of the spectrum
for the wideband signal was down-converted to
basesband and then low-pass filtered. This algo-
rithm can therefore capture the dynamic nature
of wideband spectrum by using low sampling
rates. Unfortunately, due to the parallel struc-
ture of the filter bank, the implementation of
this algorithm requires a large number of RF
components.

SUB-NYQUIST WIDEBAND SENSING
Due to the drawbacks of high sampling rate or
high implementation complexity in Nyquist
systems, sub-Nyquist approaches are drawing
more and more attention in both academia
and industry. Sub-Nyquist wideband sensing
refers to the procedure of acquiring wideband
signals using sampling rates lower than the
Nyquist rate and detecting spectral opportuni-
ties using these partial measurements. Two
important types of sub-Nyquist wideband sens-
ing are compressive sensing-based wideband
sensing and multichannel sub-Nyquist wide-
band sensing. In the subsequent paragraphs,
we give some discussion and comparisons
regarding these sub-Nyquist wideband sensing
algorithms.
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Table 1. Summary of advantages and disadvantages of narrowband spectrum sensing algorithms.

Spectrum sensing
algorithm Advantages Disadvantages

Matched filtering Optimal performance
Low computational cost Requires prior information of the primary user

Energy detection Does not require prior information
Low computational cost

Poor performance for low SNR
Cannot differentiate users

Cyclostationary
feature

Valid in low SNR region
Robust against interference

Requires partial prior information
High computational cost

Table 2. Summary of advantages, disadvantages, and challenges of wideband spectrum sensing algorithms.

Type Nyquist wideband sensing Sub-Nyquist wideband sensing

Algorithm
sub-type

Standard ADC
[5, 6]

Sweep-tune/filter
bank sampling [6, 8]

Compressive sensing
[9–11]

Multichannel sub-
Nyquist sampling
[13–15]

Advantage Simple
structure

Low sampling rate,
high dynamic range

Low sampling rate,
signal acquisition cost

Low sampling rate,
robust to model
mismatch

Disadvantage High sampling
rate, energy cost

High implementa-
tion complexity

Sensitive to design
imperfections

Requires multiple
sampling channels 

Challenges Reduce sampling
rate, save energy

Develop feasible
and practical model

Improve robustness to
design imperfections

Relaxes synchroniza-
tion requirement

Conventional wide-
band spectrum sens-
ing techniques based
on standard analog-
to-digital converter
(ADC) could lead to
unaffordably high
sampling rate or
implementation 
complexity; thus,
revolutionary wide-
band spectrum 
sensing techniques
become increasingly 
important.

WANG LAYOUT_Layout 1  4/19/13  12:11 PM  Page 76



IEEE Wireless Communications • April 2013 77

Compressive Sensing-Based Wideband Sensing — Com-
pressive sensing is a technique that can efficient-
ly acquire a signal using relatively few
measurements, by which unique representation
of the signal can be found based on the signal’s
sparseness or compressibility in some domain.
As the wideband spectrum is inherently sparse
due to its low spectrum utilization, compressive
sensing becomes a promising candidate to real-
ize wideband spectrum sensing by using sub-
Nyquist sampling rates. Tian and Giannakis first
introduced compressive sensing theory to sense
wideband spectrum in [9]. This technique used
fewer samples closer to the information rate,
rather than the inverse of the bandwidth, to per-
form wideband spectrum sensing. After recon-
struction of the wideband spectrum,
wavelet-based edge detection was used to detect

spectral opportunities across wideband spec-
trum.

Furthermore, to improve the robustness
against noise uncertainty, Tian et al.. [10] studied
a cyclic feature detection-based compressive
sensing algorithm for wideband spectrum sens-
ing. It can successfully extract second-order
statistics of wideband signals from digital samples
taken at sub-Nyquist rates. The 2D cyclic spec-
trum (spectral correlation function) of a wide-
band signal can be directly reconstructed from
the compressive measurements. In addition, such
an algorithm is also valid for reconstructing the
power spectrum of a wideband signal, which is
useful if the energy detection algorithm is used
for detecting spectral opportunities.

For further reducing the data acquisition
cost, Zeng et al. [11] proposed a distributed

Figure 2. Block diagrams for Nyquist wideband sensing algorithms: a) multiband joint detection; b) wavelet
detection; c) sweep-tune detection; d) filter-bank detection.
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compressive sensing-based wideband sensing
algorithm for cooperative multihop cognitive
radio networks. By enforcing consensus among
local spectral estimates, such a collaborative
approach can benefit from spatial diversity to
mitigate the effects of fading. In addition, a
decentralized consensus optimization algorithm
was proposed that aims to achieve high sensing
performance at a reasonable computational cost.

However, compressive sensing has concen-
trated on finite-length and discrete-time sig-
nals.  Thus, innovative technologies are
required to extend compressive sensing to con-
tinuous-time signal acquisition (i.e., imple-
menting compressive sensing in the analog
domain). To realize the analog compressive

sensing, Tropp et al.. [12] proposed an analog-
to-information converter (AIC), which could
be a good basis for the above-mentioned algo-
rithms. As shown in Fig. 3a, the AIC-based
model consists of a pseudo-random number
generator, a mixer, an accumulator, and a low-
rate sampler. The pseudo-random number gen-
erator produces a discrete-time sequence that
demodulates the signal x(t) by a mixer. The
accumulator is used to sum the demodulated
signal for 1/w s, while its output signal is sam-
pled using a low sampling rate. After that, the
sparse signal can be directly reconstructed
from partial measurements using compressive
sensing algorithms. Unfortunately, it has been
identified that the performance of the AIC

Figure 3. Block diagrams for sub-Nyquist wideband sensing algorithms: a) analog-to-information converter-
based wideband sensing; b) modulated wideband converter-based wideband sensing; c) multi-coset sam-
pling-based wideband sensing; d) multirate sub-Nyquist sampling-based wideband sensing.
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model can easily be affected by design imper-
fections or model mismatches.

Multichannel Sub-Nyquist Wideband Sensing — To cir-
cumvent model mismatches, Mishali and Eldar
proposed a modulated wideband converter
(MWC) model in [13] by modifying the AIC
model. The main difference between MWC and
AIC is that MWC has multiple sampling chan-
nels, with the accumulator in each channel
replaced by a general low-pass filter. One signifi-
cant benefit of introducing a parallel channel
structure in Fig. 3b is that it provides robustness
against the noise and model mismatches. In
addition, the dimension of the measurement
matrix is reduced, making the spectral recon-
struction more computationally efficient.

An alternative multichannel sub-Nyquist sam-
pling approach is multi-coset sampling, as shown
in Fig. 3c. Multi-coset sampling is equivalent to
choosing some samples from a uniform grid,
which can be obtained using a sampling rate fs
higher than the Nyquist rate. The uniform grid is
then divided into blocks of m consecutive sam-
ples, and in each block v (v < m) samples are
retained, while the rest of samples are skipped.
Thus, multi-coset sampling is often implemented
by using v sampling channels with sampling rate
of fs/m, with different sampling channels having
different time offsets. To obtain a unique solu-
tion for the wideband spectrum from these par-
tial measurements, the sampling pattern should
be carefully designed. In [14], some sampling
patterns were proved to be valid for unique sig-
nal reconstruction. The advantage of the multi-
coset approach is that the sampling rate in each
channel is m times lower than the Nyquist rate.
Moreover, the number of measurements is only
v – mth of that in the Nyquist sampling case.
One drawback of the multi-coset approach is
that the channel synchronization should be met
such that accurate time offsets between sampling
channels are required to satisfy a specific sam-
pling pattern for robust spectral reconstruction.

To relax the multichannel synchronization
requirement, an asynchronous multirate wide-
band sensing approach was studied in [15]. In
this approach, sub-Nyquist sampling was induced
in each sampling channel to wrap the sparse
spectrum occupancy map onto itself; the sam-
pling rate can therefore be significantly reduced.
By using different sampling rates in different
sampling channels as shown in Fig. 3d, the per-
formance of wideband spectrum sensing can be
improved. Specifically, in the same observation
time, the numbers of samples in multiple sam-
pling channels are chosen as different consecu-
tive prime numbers. Furthermore, as only the
magnitudes of sub-Nyquist spectra are of inter-
est, such a multirate wideband sensing approach
does not require perfect synchronization between
multiple sampling channels, leading to easier
implementation.

OPEN RESEARCH CHALLENGES

In this section, we identify the following research
challenges that need to be addressed for imple-
menting a feasible wideband spectrum sensing
device for future cognitive radio networks.

SPARSE BASIS SELECTION

Nearly all sub-Nyquist wideband sensing tech-
niques require that the wideband signal should
be sparse on a suitable basis. Given the low
spectrum utilization, most of the existing wide-
band sensing techniques have assumed that the
wideband signal is sparse in the frequency
domain (i.e., the sparsity basis is a Fourier
matrix). However, as spectrum utilization
improves (e.g., due to the use of cognitive radio
techniques in future cellular networks), the
wideband signal may no longer be sparse in the
frequency domain. Thus, a significant challenge
in future cognitive radio networks is how to per-
form wideband sensing using partial measure-
ments if the wideband signal is not sparse in the
frequency domain. It will be essential to study
appropriate wideband sensing techniques that
are capable of exploiting sparsity on any known
sparsity basis. Furthermore, in practice, it may
be difficult to acquire sufficient knowledge about
the sparsity basis in cognitive radio networks, for
instance, when we cannot obtain enough prior
knowledge about the primary signals. Hence,
future cognitive radio networks will be required
to perform wideband sensing when the sparsity
basis is not known. In this context, a challenging
issue is to study “blind” sub-Nyquist wideband
sensing algorithms, where we do not require
prior knowledge about the sparsity basis for the
sub-Nyquist sampling or spectral reconstruction.

ADAPTIVE WIDEBAND SENSING
In most sub-Nyquist wideband sensing systems,
the required number of measurements will pro-
portionally change when the sparsity level of
wideband signal varies. Therefore, sparsity level
estimation is often required for choosing an
appropriate number of measurements in cogni-
tive radio networks. However, in practice, the
sparsity level of the wideband signal is often
time-varying and difficult to estimate, because of
either the dynamic activities of PUs or the time-
varying fading channels between PUs and cogni-
tive radios. Due to this sparsity level uncertainty,
most sub-Nyquist wideband sensing systems
should pessimistically choose the number of mea-
surements, leading to more energy consumption
in cellular networks. As shown in Fig. 4, more
measurements (i.e., 0.38N rather than 0.25N
measurements for achieving success recovery rate
0.9) are required for the sparsity uncertainty
between 10 and 20, which does not fully exploit
the advantages of using sub-Nyquist sampling
technologies. Hence, future cognitive radio net-
works should be capable of performing wideband
sensing, given the unknown or time-varying spar-
sity level. In such a scenario, it is very challenging
to develop adaptive wideband sensing techniques
that can intelligently/quickly choose an appropri-
ate number of compressive measurements with-
out prior knowledge of the sparsity level.

COOPERATIVE WIDEBAND SENSING
In a multipath or shadow fading environment,
the primary signal as received at cognitive radios
may be severely degraded, leading to unreliable
wideband sensing results in each cognitive radio.

Future cognitive
radio networks will

be required to 
perform wideband
sensing when the

sparsity basis is not
known. In this 

context, a challeng-
ing issue is to study
“blind” sub-Nyquist

wideband sensing
algorithms.
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In this situation, future cognitive radio networks
should employ cooperative strategies for improv-
ing the reliability of wideband sensing by exploit-
ing spatial diversity. Actually, in a cluster-based
cognitive radio network, the wideband spectra as
observed by different cognitive radios could
share some common spectral components, while
each cognitive radio may observe some innova-
tive spectral components. Thus, it is possible to
fuse compressive measurements from different
nodes and exploit the spectral correlations
among cognitive radios in order to save the total
number of measurements and thus the energy
consumption in cellular networks. Such a data
fusion-based cooperative technique, however,
will lead to a heavy data transmission burden in
the common control channels. It is therefore
challenging to develop data fusion-based cooper-
ative wideband sensing techniques subject to a
relaxed data transmission burden. An alternative
is to develop decision fusion-based wideband
sensing techniques if each cognitive radio is able
to detect wideband spectrum independently.
Due to the limited computational resource in
cellular networks, the challenge that remains in
the decision fusion-based cooperative approach
is how to appropriately combine information in
real time.

CONCLUDING REMARKS

In this article, we first address the challenges in
the design and implementation of wideband
spectrum sensing algorithms for the cognitive
radio-based next generation cellular networks.
Then we categorize the existing wideband spec-

trum sensing algorithms based on their sampling
types, and discuss the pros and cons of each cat-
egory. Moreover, motivated by the fact that
wideband spectrum sensing is critical for reliably
finding spectral opportunities and achieving
opportunistic spectrum access for next genera-
tion cellular networks, we present a brief survey
of the state-of-the-art wideband spectrum sens-
ing algorithms. Finally, we present several open
research issues for implementing wideband spec-
trum sensing.
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