

Measuring heart rate using

computer vision techniques on

Android based mobile phone

MSc Project report

Author:

Weihua Lin

ID: H00141698

Supervisors:

Dr Deepayan Bhowmik

Prof Andrew Wallace

Vision lab

Institute of Sensors, Signals and Systems

School of Engineering and Physical Sciences

Heriot-Watt University

August 2014

2

Declaration
I, Weihua Lin, confirm that this work submitted for assessment is my own and is

expressed in my own words. Any uses made within it of the words of other authors in

any form (e.g. ideas, equations, figures, text, tables, programs) are properly

acknowledged at any point in their use. A list of the references employed is included.

Signed: ..

Date: ..

3

Acknowledgements

I would like to thank my supervisor Dr. Deepayan Bhowmik and Prof Andrew

Wallace for the patient guidance and continuous support he has provided through the

course of my study at Heriot-watt University. His extensive research experience and

vision has been the source of inspiration throughout my work.

I am especially indebted to Sthapit Saurav for the in-depth discussions which have

made significant contribution to this work. I wish to extend my thanks to my friends

and for their valuable comments and support for my experiment.

 I would like to express my gratitude to Yu Fu, my husband for his care, continued

support and encouragement. He has always been the source of inspiration for me.

My special thanks to my parents for their love and understanding.

I acknowledge the support of the Engineering and Physical Research Council

through ‘Project Rathlin’, grant references EP/K009931/1 (Programmable embedded

platforms for remote and compute intensive image processing applications).

4

Contents

Acknowledgements ... 3

Contents .. 4

Glossary .. 7

Abstract ... 8

Introduction ... 9

1.1 Context .. 9

1.2 Description of the Project .. 10

1.3 Dissertation Overview ... 11

Literature Review.. 13

2.1 Photoplethysmography (PPG) ... 13

2.2 Measurement Hear Rate by Video .. 14

2.3 Concrete Example Review .. 15

2.3.1 Example Regarding Brightness... 15

2.3.2 Example Regarding ICA ... 16

2.3.3 Example Regarding CIE LUV .. 17

2.4 Smart phone ... 19

2.5 Chapter Summary .. 20

Algorithmic Learning.. 21

3.1 A Cascade of Boosted Classifier ... 21

3.2 Independent Component Analysis (ICA) .. 22

3.2.1 Pre-processing: Whitening .. 24

3.2.2 Joint Approximate Diagonalization of Eigenmatrices (JADE) 24

3.3 Fast Fourier Transform (FFT) ... 25

3.4 Chapter Summary .. 26

Application Design ... 27

4.1 Requirements Analysis .. 27

4.1.1 Functional Requirements .. 27

4.1.2 Non-Functional Requirements .. 28

4.2 Data flow diagram (DFD) ... 28

4.3 Software Architecture .. 32

4.4 Chapter Summary .. 33

System implementation ... 34

5.1 The Device of the Project .. 34

5

5.2 Development Environment .. 34

5.3 Image Capturing .. 35

5.4 RGB Traces Collection.. 36

5.5 RGB Traces Processing ... 38

5.6 Chapter Summary .. 40

Results and Discussion ... 41

6.1 Testing Method .. 41

6.2 Analysis Method .. 42

6.3 Testing Result .. 43

6.4 Chapter Summary .. 46

Conclusions and Future Work ... 47

7.1 Project Conclusions ... 47

7.2 Future Work .. 48

Bibliography ... 50

Appendix A ... 53

6

List of Figures
Figure 1 Flow chart of HR measurement .. 14

Figure 2 Steps of recovering the blood volume pulse by RGB [7] 16

Figure 3 The processing of detection HR by CIE LUV [8] 18

Figure 4 Cascade of classifiers with N stages [20] .. 22

Figure 5 The cocktail part problem [18] ... 23

Figure 6 The top-level of DFD ... 29

Figure 7 The second level of DFD .. 30

Figure 8 The third level of DFD ... 31

Figure 9 The structure of the software .. 32

Figure 10 RGB traces collection method ... 36

Figure 11 Analysis RGB traces .. 39

Figure 12 The pulse oximeter. That was used to measurement pulse rate in our

project for validation .. 42

Figure 13 The application of our project. ... 42

Figure 14 Experimental Setup ... 42

Figure 15 Correlation and Differences between HR by monitor and HR by

application, for participants sitting still ... 44

Figure 16 Correlation and Differences between HR by monitor and HR by

application, for participants move naturally .. 45

List of Tables
Table 1 Analyses of HR detecting Methods ... 15

Table 2 Correction methods of face segmentation errors 37

Table 3 The accuracy rate of system ... 46

7

Glossary

HR Heart Rate

HRV Heart Rate Variability

RHR Resting Heart Rate

PPG Photoplethysmography

ANC Adaptive Noise Cancellation

ICA Independent Component Analysis

ROI Region of Interest

RGB Red, Green and Blue

CIE

LUV

A color space adopted by the International Commission on

Illumination (CIE)

OpenCV Open Computer Vision

JADE The Joint Approximate Diagonalization of Eigenmatrices

GPU Graphics Processing Unit

CCD Charge-Coupled Device

PC Personal Computer

CPU Central Processing Unit

BSS Blind Source Separation

bpm Beat Per Second

RAM Random-Access Memory

DFD Data Flow Diagram

SDK Software Development Kit

UI User Interface

API Application Programming Interface

JNI Java Native Interface

RMSE Root Mean Squared Error

FPS Frames Per Second

SD Standard Deviation

http://en.wikipedia.org/wiki/Color_space
http://en.wikipedia.org/wiki/International_Commission_on_Illumination
http://en.wikipedia.org/wiki/International_Commission_on_Illumination

8

Abstract

Non-contact and non-invasive measurements of heart rate (HR) can provide more

convenience and comfortable assessment experience. In this project, a mobile phone

with camera is used as a remote monitor for HR, based on its powerful processing and

video recordings capabilities. This approach bases on PhotoPlethysmoGraphy (PPG),

a technology can sense the cardiovascular pulse wave by observing light variations on

the skin. The camera of mobile phone is used to recording the human face, and using

face tracking technologies for face detection in order to collect optic information of

face skin. Independent component analysis (ICA) technology is applied to decompose

the optic information into independent components, from which the HR frequency can

be extracted

The accuracy of measurement of HR against a HR sensor is evaluated by using

correlation and Bland-Altman analysis. The mean ± standard deviation (SD) of the

differences between pulse measurements from our application and from other sensor

is -0.78 ± 2.83 when the participants were sitting still and -1.4 ± 3.62 in the presence

of motion artifacts. The correlation coefficient (r = 0.9313, 0.911 respectively)

demonstrated a high correlation between the two measurements. Aforementioned

mathematic analysises show a good accuracy of our application.

Key Word: hear rate (HR), PhotoPlethysmoGraphy (PPG), mobile phone,

independent component analysis (ICA)

9

Chapter 1

Introduction

1.1 Context

As one of the simplest cardiovascular parameters, resting heart rate (RHR), has

attracted lots of attention due to that high heart rate has been considered as a

cardiovascular risk factor [1, 2]. RHR has been proved as a prediction factor of heart

disease such as coronary disease and myocardial infarction, as well as diabetes

mellitus or hypertension [1]. Moreover, elevated RHR has been demonstrated that it

boost the risk of death in different subgroups, for instants, hypertensive, coronary

disease patients and even the general population [1, 3]. Various methods for

monitoring hear rate (HR) have been proposed, including electrocardiogram, contact

sensors and non-contact measurements [4]-[8]. However, in some cases the range of

application the contact sensors will be limited. For example, in the case of real-time

monitor, the contact sensors can disturb the daily life of the patient. Moreover,

adhesive gelling or chest traps were required in some contact sensors that can lead to

discomfort and skin irritation.

Non-contact and remote measurements of the physiological parameters can be

realized by Doppler radars technology. Non-contact method of detect heartbeats using

Doppler radars has proposed in [4] and this technology can also be used to detect

respiration signals [5]. Likewise, thermal infrared imaging technique was used to

detect stress by collecting physiological data on human faces [6]. More recently,

Digital cameras and webcams are used to measurements the HR [7] and heart rate

variability (HRV) to detect mental stress [8]. This method bases on

PhotoPlethysmoGraphy (PPG), a technology can be employed to sense the

cardiovascular pulse wave by observing light variations on the skin.

10

In recent years, smart phones are becoming more powerful and more popular,

which also have been explored as devices in healthcare applications. As smart phones

have innate advantage such as inexpensive, portable, multipurpose and ubiquitous, it

can be widely used for applications in home-based personal care.

Currently, the method non-contact and remote measurement HR using time-lapse

image are almost implemented on computers, which with the limitation of poor

mobility and can be only carried out at laboratory environment. Moreover, most

approaches are not real-time processing, experiment videos need to be recorded firstly,

and then the videos are processed by computer to get the HR. In some references [9,

10], smart phones have been employed to detect HR by collecting finger colour

changes [9, 10]. In these cases, a white light should emit diode and the next camera in

the mobile phone is using for reflection-mode bio-optical sensor. The PPG

information then can collect by putting finger on the diode and the camera. But the

method is contact and lack of expansibility. Moreover, it is difficult to combine with

other application or to extend with new capabilities.

In order to fill the reach gap, in this project, we develop an application on the smart

phone, which can be used for real-time non-contact, motion-tolerant and automated

HR detecting.

1.2 Description of the Project

This project is to develop a dedicated application on the smart phone platform,

which can be used for non-contact, motion-tolerant and automated HR detecting. This

application bases on PPG, face tracking and Blind source separation technology. The

camera of mobile is used to recording the human face, and using face tracking for

facial detection in order to collect optic information of face skin. Blind source

separation technology is employed to decompose the optic information into

independent components. Then the HR frequency can be extracted from the

independent components.

11

Over all, the main contributions and novelties and the advantage of this project are

highlighted as following:

1. The develop platform is smart phone. Smart phones are inexpensive, portable,

multi-purpose supporting and becoming nearly ubiquitous, which can be

widely used for applications in home-based personal care.

2. Our system is a real-time application. It can be conveniently carried out for

real-time monitor without disturbing the daily life of the patient.

3. The face detecting is used in our project, which make our application with the

capability of capturing the face automatically.

4. The application has a good scalability. It can be easily combined with new

features, such as facial expression recognition to detect human emotion and

stress, or extend to measurement multi people’s HR at the same time.

1.3 Dissertation Overview

The remainder of this dissertation is organized as following, which is also the

reflection of develop procedure of our application.

 In chapter 2, we will discuss the project background with the foundations of

cardiac pulse measurements using by PPG technology. We will introduce how to

use the PPG technology. Then a widespread literature review, which researches

the similar projects, will be carried out and their method will be analyzed in the

following part.

 In chapter 3 we will discuss a statistical technique, the independent component

analysis (ICA), which attempts to reveal the independent source signals from a

set of observed mixtures. The how the ICA works and the JADE based

implementations of ICA will be analysed.

 In chapter 4, the design of the application will be discussed. We will analyse the

requirements of the application, including functional requirements and

12

non-functional requirements. Then the data flowchart, a graphical description of

data through a system, of our application is displayed. Using the data flow

diagram, the architecture of the software is designed. The structural of the

program and behavioural organisation is explained.

 We will explore implement our project in Chapter 5. Equipment and the

development environment will be discussed. Then we will give an overview of

the different module development. This will includes the implementation of the

arithmetic, the multiprocessing development and the use of java native interfaces

to call dynamic library.

 In the following chapter 6, we will describe the test program. The application is

tested and the measurement result will compare with the result obtained from

monitor using Bland-Altman method. The robustness of our system for HR

measurements in the presence of motion artifacts were also evaluated

 In the last chapter, we summarize the process of project. Besides a final

conclusion of this project, an overview of possible future work will also be given

in this chapter.

13

Chapter 2

Literature Review

The project background with the foundations of cardiac pulse measurements using

by PPG technology will be discussed in this chapter. A widespread literature review,

which research the similar projects, will be carried on and their method will be

analysed in the following part.

2.1 Photoplethysmography (PPG)

The PPG, a low-cost and portable technique that can measure blood volume

changes through collecting the variations in reflected or transmitted light, is used for

non-invasively physiological measurements [11]. The worthy information regarding

to the cardiovascular system can be provided by this optic technique, for example the

blood pressure, blood oxygen saturation, HR, HRV and cardiac output [11]. Recently,

The PPG technique attracts lots of research interest again due to the developments of

digital cameras and software data analysis tools. Some researchers have used digital

cameras to detect HR by PPG technique using normal surrounding light as the

lighting source [7, 8, and 12]. The PPG was also used on smart phone to monitor

physiological varying [9, 10].

However, it is known that PPG is quite sensitive to motion artefact, and

overcoming the motion artefact is treated as the most challenging problems for PPG

technologies [7, 11]. Furthermore, it is ineffective using linear filtering with cut off

frequencies due to the frequency band of noise is the same with the physiological

signal of interest. Adaptive noise cancellation (ANC), which employs accelerometers

as a noise reference, is proposed to reduce the affection of motion artefact [13].

Similarly, ICA, which is used for discovering the independent source signals, has

been employed to decrease motion artefacts in PPG measurements [7]. Some other

14

researchers chosen the CIE LUV colour to reduce fluctuations due to light variation or

head movements [8].

2.2 Measurement Hear Rate by Video

In most references [7, 8, 12], the main equipment is camera for recording the

videos and personal computer (PC) for image processing. The participants need to

seat in front of the camera at a distance of around 0.5 meter for about a minute.

The general steps can be shown by the following figure.

Figure 1 Flow chart of HR measurement

The general principle and procedure of the measurement can be described as

following.

Firstly, face tracker is used for face detection in the video and setting the

measurement region of interest (ROI) for each frame. In most literatures [7, 8],

cascade of boosted classifier with Open Computer Vision (OpenCV) is widely used

for face detecting. Then the algorithm isolates skin pixels (the ROI) which contain the

PPG signal from the original frame.

Secondly, the optic information in the ROI is extracted. Various optic parameters

were used, such as red green and blue (RGB) colour model [7], the International

Commission on Illumination (CIE LUV) [8] colour space and brightness [12].

Finally, the optic information is processed to get the HR. Different technologies

are used to get cardiac pulse, including ICA for decreasing motion artefacts [7], spline

interpolation for correcting and regulating the measured illumination [12], Continuous

Face
tracking

and setting
the ROI

Extract and
process the

optic
information

RGB

CIE LUV

Brightness

Anysis to
get the HR

15

Wavelet Transform for removing trends and high frequency noise [8], and fast Fourier

transform (FFT) to get the power spectrum [7].

2.3 Concrete Example Review

In this section, we will review some concrete cases regarding PPG detection in

detail. The feature of these examples has shown in the Table 1. In [12],

a charge-coupled device (CCD) camera is needed, and there is no great advantage.

While the case in [8] has some great advantage like motion-tolerant and automatic,

but the accuracy of the approval cannot be guaranteed. However, the example in [7]

not only has the motion-tolerant and automatic advantage, but also the guaranty the

accuracy.

Author Equipment Method & Technology Advantage

Takano C, Ohta Y [12] CCD camera

PC

Brightness,

Spline interpolation,

Low pass filter,

Non-contact

Poh M Z, McDuff D J,

Picard R W [7]

Webcam

Laptop

Face detection

ICA

FFT

RGB

Non-contact

Motion-tolerant

Automatic

High accuracy

Bousefsaf F, Maaoui C,

Pruski A [8]

Webcam

PC

Face detection

Skin detection

CIE LUV

Wavelet transform

Non-contact

Motion-tolerant

Real-time

Automatic

Table 1 Analyses of HR detecting Methods

2.3.1 Example Regarding Brightness

The approach in [12], the changes of brightness were employed. Firstly the ROI

needed be set as a rectangular area in cheek image. Then assemble the average

16

brightness information of ROI at intervals of about 200 MS. After that spline

interpolation is employed to interpolate and regulate the brightness data into those

with interval of 100 MS. The following processing includes first-order derivative, a

low pass filter of 2 Hz, and Auto-Regressive spectral analysis. Then the peaks of

heartbeat and breathing can be observed by the wavelet transform and the AR

modelling.

However, in this case the person who was detecting HR need stationary because of

the ROI is fixing. Moreover, the conditions of lighting must be strictly controlled due

to the auto iris function on the camera, leading to limited environments.

2.3.2 Example Regarding ICA

In [7], the RGB colour model is chosen and ICA is used to decrease motion

artefacts in this example and the general steps are shown in figure 2.

Figure 2 Steps of recovering the blood volume pulse by RGB [7]

Firstly face tracker is employed for face detection in the video and setting the

measurement region of interest (ROI) in each frame. The coordinates of face location

can be obtained by OpenCV, and the face detection based on a cascade of boosted

17

classifier. Then the ROI is set with the full height and centre 60% width of face box to

wipe off the face segmentation mistakes in order to prove well performance of

system.

Secondly, they separated the ROI into the RGB channels and get the RGB

measurement value for each frame by averaging over all pixels in the ROI to form the

raw RGB traces.

The following processing, including normalizing, ICA and FFT, is performed by a

30 s moving window with 1 s increment. Normalizing the raw RGB traces aims to

obtain the zero-mean and unit variance normalized traces. Then the joint approximate

diagonalization of eigenmatrices (JADE), one method of ICA, is used to decompose

the normalized RGB into three independent source signals. Finally, the power

spectrum of the second component source signal is obtained by the FFT. Then a peak

match the HR frequency can be seen, which is closely agree with the reference that

finger blood volume pulse signal, in the operational range [0.75, 4] Hz.

In this case, the participants can move their body or head slowly due to the

robustness of the proposed methodology. The ICA technology also can increased the

level of correlation, the result showed high accordance with finger sensor result the

average of the different is -0.05 ± 2.29 bpm when the participants were motionless

and 0.64 ± 4.59 bpm while motion artifacts.

2.3.3 Example Regarding CIE LUV

In [8], the CIE LUV colour space is used to reduce fluctuations. They point that the

PPG information will be more sensitive when using the U component the indicator of

red to green colour, that is result of Oxy and feaeration haemoglobin have a better

absorption coefficient in the wavelength of green colours. The processing the system

is illustrated in figure 3.

18

Figure 3 The processing of detection HR by CIE LUV [8]

Firstly, a cascade of boosted classifier is employed on each frame to detect the face.

Then set the pan and tilt parameters for tracking the face with the passing of the time.

Secondly, skin detection is applied on the face to extract the skin pixels, and set these

pixels as ROI. At the same time RGB information is changed to LUV information.

After that the U component value of every frame is obtained by spatial averaging the

U component of all pixels in the ROI. Then the raw signal source is formed by a set of

frames. The raw signal source is operated by a Wavelet Transform filtering to deplete

high frequency noise and trends. Then instantaneous HR trace can be computed by

detecting peaks.

In this example, CIE LUV colour space is used to reduce fluctuations. This is

based on the feature of PPG information that is more easy reaction on the U

19

component. However, the paper did not accuracy test to compare with any other HR

sensor, so we do not know the performance of the system.

2.4 Smart phone

These methods in the above examples all run in PC or laptop, and some algorithm

computational complexity greatly, like ICA, FFT and face detection. So the device of

our project should have camera and powerful computation.

However, Mobile processing capabilities and memory specifications are speedily

advancing making more processor-intensive applications possible. For example, Sony

Xperia Z1 compact included a Qualcomm Anapdragon 800 2.2GHz quad-core data

processing unit (CPU), 2GB random-access memory (RAM) and an award-winning G

Lens. The Samsung Galaxy S4 has two processors including a quad-cord 1.9 GHz

Krait 300 CPU and an Adreno 320 GPU, 13MP camera and 32 GB internal storage.

This renders modern smartphones can process many tasks that were done on laptops

or desktops such as playing full high-definition videos, editing pictures and play 3D

games. However, compared with the PC platform, the mobile phone platform has

many limitations such as computational power and input modalities. Moreover, the

GPU has become into a greatly powerful co-processor. With the emergence of

programmable GPU, application developers used the GPU to moderate the burden

form CPU. So if necessary the GPU can be applied to accelerate in order to realize the

real-time application in our project.

Moreover, smartphone ownership has been reported sharp growth and Android has

become the most popular development. According to Go-Gulf.com (2012) [24], there

are over 1.08 billion people use smartphone in the world. ABI Research (2013) [25]

claimed that by the end of 2013 the total number of the active smartphones will reach

1.4 billion and 57% of this base will use Android. This means more and more people

use their phones as primary types of communication. Additionally,

20

Besides, the smartphone have been investigated as a device in healthcare

applications [10]. This is due to cell phone are getting more advanced with higher

processing power and greater resolution on their cameras. Recently, smart phone was

also to monitor physiological varying by using the PPG technology [9]. Mobile phone

can accurately detect physiological parameter, consider its ability to assemble and

process the difference colour signals. Similar, smart phone is employed to analysis

HR and HRV by recording finger tips [10]. However, this application is contact and

lack of expansibility. The approach only simply recording finger tips to collect PPG

information then detect physiological parameter, but it is difficult to combine with

other application or to extend with new capabilities.

Smart phones are becoming more powerful and more popular, leads to they are not

only phones but also processor. Moreover, smart phones are inexpensive, portable,

multi-purpose supporting and becoming nearly ubiquitous, which can be widely used

for applications in home-based personal care.

2.5 Chapter Summary

In this chapter, the foundation of PPG technology was discussed and various

concrete methods were analysed. Some complicated algorithm, such as a cascade of

boosted classifier applied to detect face, ICA used to decrease motion artefacts in PPG

measurements and FFT employed to obtain the power spectrum, will be analysed in

the following chapter.

21

Chapter 3

Algorithmic Learning

In last chapter, we have analysed various concrete methods of measurement HR.

The approach in [7] was adopted due to the advantages of high accuracy, non-contact

and motion-tolerant. In this chapter, we will study the complicated algorithm in this

method, includes the cascade of boosted classifier, ICA and FFT.

3.1 A Cascade of Boosted Classifier

Booting, a general method, which can be used to improve the performance of

learning algorithm by reduce the error of “weak” algorithm [27]. It is through the

repeated operation of a given weak learning algorithm on varieties of distributions

over the training data, and then combining classifier produced by the weak learner for

a combined classifier.

A cascade of classifiers is a degraded decision tree [26]. It uses a group simple

classifier can be constructed which reject many of the negative sub-windows while

detecting almost all positive instances (figure 4). In each stage, a classifier will be

trained using boosting to build a weighted voted. Each stage acts as a filter, rejecting a

grand number of easy cases, and passing the hard cases to the next stage. The stages

become progressively more expensive, but are used progressively less often. Globally

the computation cost decreases dramatically.

22

Figure 4 Cascade of classifiers with N stages [20]

In our project, the classifier is used to frontal faces detecting. In each stage, it will

decide if the region of interest contains a face, only events labelled as yes are passed

to the next stage else the area is rejected. In order to identify the positive matches of

different sizes, the dimensions of the area of interest is changed sequentially.

3.2 Independent Component Analysis (ICA)

ICA, a statistical technique that attempts to uncover the independent source signals

from a set of observed mixtures, is used for settling the blind source separation (BSS)

[14, 15]. BSS aims to recover unobserved signals from a set of observations that

assumed to be linear mixtures of the some underlying sources. The “blind” property

of the BBS relates to the fact that nothing is known about the source signals and no

information is available about the way they were mixed. The “cocktail party problem”

can interpret the BBS very well [18]. In this model, a group of microphones ranged in

a cocktail party room, in which people are talking simultaneously, records sound that

is mixture of people’s voice in the room (figure 5). The BBS is used to separate out

each voice into its own signal from the recording obtained from all microphones, to

remove pollution from any other person's voice, and completely match the original

sound.

23

Figure 5 The cocktail part problem [18]

There are several approaches of BSS and we only focus on ICA, one simple form

of BSS. In order to resolve the BSS problem, ICA assumes the original signals are

stationary and non-Gaussian random variables and they are statistically independent

of each other. The following equation was assumed the ICA situation:

 (1)

Here, the random vector A denotes the observed signals, the random vector S is

representing the original source signals, and the Matrix A is the linear transformation

matrix which mixes the source signal.

Then, after estimating the matrix A, the independent component can be obtained

by multiplying with the inverse matrix, call M, of A:

 (2)

Where is an evaluation of vector which involving the potential source signals.

The distribution of a sum of independent random variables is closer to Gaussian than

24

any of the original variables, in accordance with the Central Limit Theorem.

Therefore, in order to reveal the independent sources, must maximize the non-

Gaussian of . We focus on the JADE, one implementations of ICA [16]. In the

next part, we will discuss the implementations of ICA.

3.2.1 Pre-processing: Whitening

Before the ICA processing, some pre-processing work, such as whitening the

observed variables should be carried out to make the ICA estimation simpler and

better conditioned. The principle of whitening is to transform a set of random

variables into several new uncorrelated random variables and all with zero-mean and

uniform variance. This pre-processing simplifies the statistical signals and reduces

the search for W into a search for an orthogonal matrix which will maintain the

irrelevance of the variables and maintain each variable has unit variance.

3.2.2 Joint Approximate Diagonalization of Eigenmatrices

(JADE)

The aim of JADE is to find a transformation matrix , which used to get the

estimate source signal S transformed from the whitened observations Z [19]. The first

step is using the statistics of the observation source signal to generate a set of matrices.

The second step is to calculate the orthogonal transformation matrix B which can

diagonalize the total set of matrices at the same time.

The join fourth-order cumulate of the whitened observation signals is the statistics

used by JADE, and the joint fourth-order cumulate is composed of a set of four,

zero-mean random variables, given by

 ()

 { } { } { } { } { } { } { }

http://en.wikipedia.org/wiki/Variance

25

(3)

The principle of JADE is to create a set of matrices which are symmetric. For these

matrices, the form ‘s own joint fourth-order cumulants are treated

as the diagonals. Besides, the form ‘s own joint fourth-order

cumulants, where at least one of , is different from the other three, are treated as

the off-diagonals. The next step is “Joint Diagonalization”. A single matrix, which

can simultaneously diagonalizes all of the above cumulant matrices, is built by using

Jacobi rotations. Actually the diagonalization in JADE will be impossible, and the

goal of JADE is to obtain the best approach theoretical result.

The foundation of JADE algorithm is illuminated by the Algorithm 3.2, which is

given by Dan Brandt in [19].

Algorithm 3.2 The JADE Algorithm

Require: z is the whitened observation vector of n random variables

Ensure: s is the vector of independent source signals

1: Generate a set of cumulant matrices from the z observations

2: repeat

3: for every pair of rows 𝑖 and 𝑗 𝑖 ≠ 𝑗 do

4: Find the Jacobi rotation that will minimize the sum of the 𝑖𝑗 and 𝑗𝑖 elements

in all cumulant matrices

5: If the rotation angle is above some threshold, perform the rotation

6: until no rotations or max number of sweeps performed

7: The unmixing matrix, B, is the product of all the performed Jacobi rotations

8: 𝑠 ← 𝐵𝑧

3.3 Fast Fourier Transform (FFT)

The Fourier transform (FT) is a mathematical transformation employed to

transform signals between time domain and frequency domain [28]. In practice, the

26

transforms often occurs within discrete samples of a signal, and the transform happens

for only a discrete set of frequencies. For our project, the RGB information from

frames is discrete. This computational method is referred to as Discrete Fourier

transform (DFT). The Fast Fourier Transform (FFT) is the fast algorithm for

implementing the DFT.

The DFT transform formula is given:

 [] ∑ []

 (4)

Where f[k] denoted the N samples of f(t), F[n] is the DFT of the sequence f[k]. The

F[n] is respond to information about the nth frequency “bin”. It corresponds to a Hertz

frequency of

 .

There are two effects introduced into the computation of the DFT aliasing and

leakage [28]. The DFT values will be corrupted by aliasing, if the sample frequency is

smaller than the high-frequency components in the underlying function. This aliasing

effect can be reduced by sampling faster. Secondly, if we truncate a function then

make it periodic, the resulting function is going to have additional frequency

components in it that were not in the original function, due to the change from end to

end. The only way this does not happen is if the signal is periodic with respect to the

number of samples already.

3.4 Chapter Summary

This chapter discussed the ICA which is a statistical technique that attempts to

uncover the independent source signals from a set of observed mixtures. After

studying the main algorithm, we will discuss how the algorithm and the detecting HR

method be used in our project. The next chapter the design of the application will be

illuminated.

27

Chapter 4

Application Design

In this chapter, the design procedure of the application will be discussed. Firstly,

the requirements of the application, includes functional requirements and

non-functional requirements, will be analysed. Then the data flowchart, a graphical

description of data through a system, of our application will be displayed. According

to the data flow diagram, the architecture of the software will be designed. The

structural of the program and behavioural organisation will be explained finally.

4.1 Requirements Analysis

In software engineering, requirements analysis is the process that determining the

needs and user expectations for software, which is critical to the success of the project.

In this procedure, the functionalities of the application, the measure process and the

interface need be defined. This procedure can further divided as functional

requirements and non-functional requirements. The functional requirements define the

behaviour of the system, for example technical details, data manipulation and

processing, calculations and other specific functionality of the system. While the

non-functional requirements define how a system is supposed to be, which can be

evaluated in terms of efficiency and robustness .et.ac.

4.1.1 Functional Requirements

The functional requirements of the project can be described as following:

1. The program can detect the HR of participant in a short time (30 s) using camera

2. The participant can choose which camera to be used, when the smart phone has

several cameras.

3. The program can detect the face and track the face automatically.

28

4. The face detecting process begins automatically when starting up the application

5. The measurement HR process can be set when start and end is.

6. The value of HR should be shown in the detecting window corner.

7. The whole value of HR in the detecting time should be shown in a graph, when

the detecting is end

8. The whole value of HR can be saved with a given name.

4.1.2 Non-Functional Requirements

The non-functional requirements of the project can be depicted as following:

1. The whole measure processing need run in real-time, and the rate of the frame is

about fifteen frames per second.

2. The application works in normal lighting conditions.

3. The software should guarantee the accuracy, even the participant slowly moving

their heads, doing some facial expression and talking.

4. The software works well, and there is not any unexpected behaviour or system

error like system crashes.

5. The interface is accessible by screen, for example the outputs and the menu items

can be shown and be operation in the screen.

6. The operation and the menu should be easy to understand.

4.2 Data flow diagram (DFD)

The DFD focuses on the data processing aspects, and it describes what kind of

input and output information of system, where the data come from and where to go,

what kind of data will be stored and where to store. They are considered as a

preliminary step often employed for creating a system overview which can serve for

tailor-making.

In this section we use the Microsoft Visio to build the DFD. The DFD has three

levels: the top-level diagram (Level 0) and lower level diagrams (level 1 and level 2).

29

The main activity of the system is detecting HR. So the top-level diagram is given in

figure 6. In the top-level diagram, we can see the main aim of the system is to detect

HR, and the input data is frames from the camera, the output is HR of participant.

Figure 6 The top-level of DFD

In the second level diagram (figure 7), there are three main processing in our

project including face detection to get the ROI, processing ROI to get RGB

information and analysis the RGB traces to get HR. The input data of the first

processors is frames from camera, and then the output is ROI which is the input data

of the second processor. RGB information for every frame will be yielded after the

second processor. Then these RGB information will be save in list to form RGB traces.

Here is the import point in the system, due to the first two processor processing data

frame by frame and the next processor is processing the data formed from frames in a

30 s moving window with 1 s increment. Thus the time period of the first two

processing should be shorter than that of the frame capturing, and then in our system

the rate of frames at least achieve 15 frames per second. While the time period of the

third processing, analysis the RGB traces to get HR, should be less than one second.

30

Figure 7 The second level of DFD

In the third level diagram shown in figure 8, move detail of the main three

processing can be seen. The processing one can be divided into the two departments:

face detected and setting the ROI. The cascade of boosted classifier we shown in the

last chapter will be used to detected face. The centre 60% width and 60% height of

the face area will be picked on as the ROI. We can see ROI is separated into RGB

channels in the second processing first, and then the RGB information is extracted by

spatially average over all pixels in the ROI. The third processing, the most important

and most complex part, is separated into four steps: normalized, ICA, FFT, getting the

HR. The normalization is to transforms raw RGB traces to normalized raw traces that

has unit variance and is zero-mean. After normalizing, the RGB normalized traces

will be decomposed to three independent signals via ICA. The ICA is employed to

decrease motion artifacts and remove the noise in order to increase the accuracy. The

FFT is applied on the independent source signals to get the power spectrum. A

handling range to [0.75, 3.5] Hz matching to [45, 210] beat per second (bpm) is set in

the power spectrum. The highest of power of the spectrum in the operational range

will be the pulse frequency.

31

Figure 8 The third level of DFD

According to the DFD, the data processing can be organised into two main parts.

One is about the PPG information collection, including face detection, set ROI, get

and save RGB information to form RGB traces. The other refers to analysis the RGB

traces to get HR, consist of normalized RGB traces, ICA, FFT and get the HR.

Moreover, these two phases should be parallel execution. The first one processing

must run following every frame capturing closely. The second processing runs when

the 30s moving window increment second by second. Their periods, the beginning

time and conditions are all different.

32

4.3 Software Architecture

The basic structure of our application will be outlined in this section. The software

will be organised as a hierarchical system. The general hierarchies is given by figure 9,

including the user interface (UI) layer, processing logic layer (include RGBExtraction

and RGBProcessor), data structure layer, data server layer and library layer.

Figure 9 The structure of the software

In the UI interaction layer, two activities and the controller will be involved. In the

android system, the Activity class deals with the task of creating a window in which

the UI can be displayed. The MainActivity and his controller take care of camera

managing, frames capturing, displaying, and the menu managing. The

show-HR-Activity deals with the task of showing the whole HR value in the last time

detection and the interaction of save data.

According to the DFD the data processing can be divided into two relatively

independent parts. Thus the processing logic layer consists of RGBExtraction that

deals with PPG information collection and RGBProcessor that handles the PPG

33

information processing

The data structure layer is related to data definition storage format, like RGB traces

and HR values. The DataServer layer offers some common public operation of data,

such as save data to SD card, change data type and some interface of library. The

library layer including OpenCV library, ICAProcessing , some fundamental function

can be called through this layer.

4.4 Chapter Summary

In this chapter, the design procedure of the application was discussed. According

to the DFD the data processing can divide into two relatively independent parts: PPG

information collection and PPG information processing which is running parallel due

to their periods and conditions are all different. Moreover, the general structure of

system can make up the UI interaction layer, processing logic layer, data structure

layer, data processing services layer and library. In the following chapter, we will

discussed how the program to implement.

34

Chapter 5

System implementation

In the previous chapter, we discussed the procedure of designing this system. In

this chapter, we will explore the implementation of our system. Firstly, we will

outline the equipment and the development environment. Then we will give an

overview of different module developments. This will include the implementation of

the arithmetic, the multiprocessing development and so on.

5.1 The Device of the Project

The smart phone we used in our project is a Sony Xperia Z1s that has a great

camera and powerful processor. The sensor size of camera is 1/2.3’’, as same as the

common sensor size that are used in bridge camera. This smartphone is equipped with

Qualcomm’s quad-core Snapdragon 800 processor with the clock frequency of 2.2

GHz and 2GB RAM. For better image and video displaying, X-Reality Engine and a

5.0 inch Sony Triluminos are used this smart phone.

5.2 Development Environment

The development platform of our application is android system, which is the

world’s most popular operating system for mobile devices. Android is a Linux-based

and open source operating system developed by Google. The Android software

development kit (SDK) is also offered by google which not only provides the

application programming interface (API) libraries to developer, but also developer

tools to build, test, and debug apps for android.

For some imaging processing like face detection and FFT, the Open Computer

Vision (OpenCV) library will be used. OpenCV, which is widely used in both

academia and industry, provides building blocks for computer vison experiments and

35

applications [21]. It is an open-source, cross-platform library that offers high-level

interfaces for capturing, processing, and presenting imaging data.

Our development environment includes the following components:

 Java Development Kit 7 which includes tools for java programming

 Cygwin 1.7.32 that provides Unix-like programming tools on Windows system.

 Android SDK that provides tools for development Android application in Java.

 Android Native Development Kit (NDK) that offers tools for programming

Android application in C++.

 Eclipase that is an integrated development environment

 Some Eclipse plugins include Java Development Tools for Java programming,

C/C++ Development Tools for C/C++ programming and Android Development

Tools for Android programming

 OpenCV for Android SDK that provides OpenCV’s Android version for Java and

C++ libraries.

5.3 Image Capturing

OpenCV abstracts away details about camera hardware and memory allocation.

CameraBridgeViewBase, an abstract class which represents a live camera feed, is

provided by the OpenCV. It can dispatch events to the listener which implements one

of two interfaces: CvCameraViewListener or CvCameraViewListener2. In our project

the listener is an activity, the MainActibity. The listener provide call-backs for

handing the capture of each frame, and for handing the start and stop stream of cream

input. In our project the CvCameraViewListener2 is used, which receives each frame

as an instance that includes image in either RGB colour or Grayscale format.

The number of frames per second (FPS) is fluctuate in our project. It is affected by

the environment like light condition, additionally it depends on the speed of

processing image. In our project, the FPS is guaranteed in rough 15 fps when using

the rear camera, while the FPS can reach about 30 fps use the camera in front.

36

5.4 RGB Traces Collection

After the image is captured, the image is operated as input to get the RGB

information. This phase includes face detection, ROI setting, RGB information

extraction and add the RGB information to RGB traces (figure 10). These processing

mainly refer to two java classes: RGBExtraction and RGBTraces (Data). The

RGBEXtraction class regards to the logic of the RGB information extraction, while

the RGBTraces class refers to RGB traces management.

For the face detection, the CascadeClassifier class in OpenCV library is used to get

the face location. The algorithm of the OpenCV library is a cascade of boosted

classifier which can be either a Haar or a LBP classifer. The pre-trained of the front

face classifier applies the OpenCV trained Data. For face recognition, the classifier

returns the rectangles, which were defined by the coordinates of left-top point with the

height and width, around faces. From this output, one of the rectangles will be

selected and the center 60% width and height of the rectangle will be picked on as the

ROI.

Figure 10 RGB traces collection method

37

However, there are some errors about face segmentation that will affect the

performance of the algorithm. For example no faces were detecting in some frames,

sometimes many faces were detecting in one frame, different faces were detecting in

adjacent frames and multiply boxes were detecting for the same face. Some correction

is necessary to improve the performance of our application. If no faces were detected

the coordinates of face from the preview frame will be used. If one face or multiple

faces were detected, the top-left point distance and the central point distance between

boxes from this frame and previous frame will be compared. If the smallest distance

was smallest than the threshold value, the face coordinates which were the closest to

the coordinates of forward frame were be selected; if not the face coordinates of the

previous frame will be used. The following table display the errors and the correction

methods.

Face Segmentation Error Correction Method

No faces were detecting The face coordinates from the forward frame will be

used

Many faces were detecting The face coordinates, which were the closest to the

coordinates from the preview frame, were selected

Different faces were

detecting in adjacent

frames

If the distance between the face coordinates and the face

coordinates from the previous was larger than the

threshold, the face coordinates of the forward frame will

be used. If not, it will be considered the faces were

detecting in adjacent frames were the same face, and the

face coordinates in this will be used in normal.

Multiple boxes were

detecting for the same face

Compare the top-left point distance and the central point

distance between boxes from this frame and previous

frame, the box which has smallest distance will be

selected

Table 2 Correction methods of face segmentation errors

38

Then the ROI is divided into the RGB channels, and the RGB information values

for each frame are acquired by averaging over all pixels in the ROI. Then the RGB

information and the time of frame capturing will be added the RGB traces list and the

time information list.

5.5 RGB Traces Processing

According to our designing, the phase one and the phase two must be parallel due

to their periods and conditions are all different. Moreover, the second phase

processing is time-consuming. If the parallel execution technology is not used, the

rate of collection data in the first phase cannot be guaranteed. Multithreading is a

technology enabled multiple threads to be within the context of a single process,

which is a widespread programming and execution model. These threads share the

resources of process, but are capable of executing independently. The phase one is

executed in the main thread, while the phase two executed in anther thread which will

be notified to process when the condition are met. The input data of the phase two is

RGB traces formed from RGB information for 30 s. Thus at the beginning, this thread

will be in waiting state until the RGB traces of 30 s formed. Additionally, the 30 s

moving window that perform the phase two increases in 1 second, therefore when the

thread finished processing data and the new data in 1 second did not collection, the

thread will change their state to waiting until the new data finished collection and

notified the thread. Here we use a task queue to save which period of data have been

finished collection and wait to be processed. When new data formed, the time

information will add to the queue and notify the thread to work. Then the thread can

get the time information from the queue, and when the queue is empty the thread will

be waiting.

The RGB traces processing is shown in figure 11, including normalized the raw

RGB traces, decompose the RGB traces into three independent components using

ICA and the fast Fourier transform (FFT) was used on the three independent

39

components. We normalize the raw RGB traces using the following equation:

 𝑖 (5)

Where is the raw RGB traces, i = 1, 2, 3 means red, blue and green traces

respectively, is the mean of and is the standard deviation of . The

normalization makes sure that
 has unit variance and zero-mean.

Figure 11 Analysis RGB traces

After normalizing, the data will be decomposed into three independent signals via

ICA. We implement the ICA algorithm in C, and then it is compiled to dynamic

library. The Application calls the ICA code via Java Native Interface (JNI). JNI

defines a method for managed code written in the Java to interact with native code

written in C/C++. It supports for loading code from dynamic shared libraries. This

will be a little cumbersome, but it is reasonably efficient. We found the ICA

implement in C is more efficient and time-saving than implement in Java. When the

application calls the ICA written in Java, the period of phase two of processing is far

more than 1 second. However, according the DFD the period of the phase two must

be less than 1 second for the aim of real time. Thus we implement ICA in C for more

efficient.

40

After ICA, the power spectrum is obtained by using the FFT on the independent

signals. An operational scope to [0.75, 3.5] Hz matching to [45, 210] beat per second

(bpm) is set in the power spectrum. The highest of power of the spectrum in the

operational range will be the pulse frequency. A threshold for maximum change in

HR between continuous measurements is used to reject artifacts to improve the

performance of system. In our project the threshold is 12 bpm, and if the different

between the result of current HR and the value of last HR went beyond the threshold,

we will rejected the current HR value and search the next highest power frequency in

the operational range. The last HR value will be retained if no frequency peaks were

located.

5.6 Chapter Summary

The application development process and the development environment were

explored in this chapter. Firstly, we outlined the equipment and development

environment. Secondly, we described the development process of our project,

including image capturing, RGB information collection and RGB traces processing.

After completion of the implementation, the allocation will be tested and evaluate in

the following chapter.

41

Chapter 6

Results and Discussion

In this chapter, we will analysis the correlation by suing Bland-Altman plots. First,

we will outline our test method and introduce the analysis method. Then the result of

HR measurements at rest and the result of HR measurements during motion will be

outlined.

6.1 Testing Method

We invited 20 participants (17 males, 3 females) for our experimental. Our

samples of participants involve different genders, ages and skin colours (Asians,

Africans and European). For all experiments, a pulse oximeter, which can be used for

measuring the pulse rate and the oxygen concentration in the blood by putting the

figure in the device (figure 12), was applied to be used as the reference Then we,

compared the result from our application with the reference from the pulse oximeter.

The experimented were carried out in the laboratory, and the light source covers

different amounts of sunlight lighting and is stable. The figure 14 displayed how the

experimental executed. The participants were asked to seat at a table in front of a

smart phone at a distance of rough half meter from the camera. The measure operation

was carrying out in two phases. During the first detecting, participants were requested

to sit statically, while for the second phases, participants were requested to move

naturally but to avoid large or fast movement.

42

Figure 12 The pulse oximeter. That was used to measurement pulse rate in our project for validation

Figure 13 The application of our project.

Figure 14 Experimental Setup

6.2 Analysis Method

A Bland-Altman plot, which is a method of data plotting, is used in analysing the

agreement between two different measurements [22]. This approach indicates that any

43

two different approaches that are designed to measure the same parameter should

have good correlation when a set of samples are chosen such that the property to be

determined varies considerably. A high correlation for any two methods designed to

measure the same property could thus in itself just be a sign that one has chosen a

widespread sample. High correlation does not automatically mean that there is good

agreement between the two methods. The Bland–Altman method figures the mean

and standard deviation (SD) of the difference between two measurement methods, and

95% limits of agreement as the mean difference (1.96 SD). It is expected that the 95%

limits include 95% of differences between the two approaches of measurement.

A scatter plot uses Cartesian coordinates to display values for two variables for a

set of data. It is often used to show whether a relationship exists between two sets of

data [23]. The data is displayed as a collection of points, each having the value of one

variable determining the position on the horizontal axis and the value of the other

variable determining the position on the vertical axis.

In our project, the correlation and the differences between measure result from our

application and the pulse oximeter device were plotted against the averages of both

systems. We calculated the mean and SD of the differences, and 95% limits of

agreement (). Additionally, the root mean squared error (RMSE),

correlation coefficients and spearman rho value were calculated for both systems.

6.3 Testing Result

When the participants were sitting still, 763 pairs of measurements from 20

participants were tested by Bland-Altman analysis (figure 15). The left plot of figure

15 is a scatter plot. The measurement pairs were display as collection of points. If the

values of pair are the same, the points will locate on the red straight line. The points

from our test lie along a straight line () that indicated a high

correlation between the two measurements. The correlation coefficient represents the

strength of a relation between two variables [23]. The value range of r is from +1 to -1,

44

where 1 is total positive correlation, 0 means no correlation, and -1 represents total

negative correlation. The plot shows that the correlation coefficient r of our project

highly reaches to 0.9313, and the RMSE only 2.8 bpm. The Bland-Altman plot is

shown on the right of figure 15. The mean bias ̅is -0.78 bpm with 95% limits of

agreement -6.3 to 4.8.

Figure 15 Correlation and Differences between HR by monitor and HR by application, for participants

sitting still

The robustness of our system for HR measurements in the presence of motion

artifacts was also evaluated. During these experiments, the participants can free to

move their head including nodding the head, looking up and down, and tilting the

head sideways, but to avoid large or fast movement. Moreover, the participants can

make various facial expressions, talk or laugh during testing.

From the Bland-Altman analysis of 628 pairs of measurements from 20

participants (figure 16), we can see the accuracy still good. The RMSE is a little bit

higher than the still case, reaching 3.4 bpm. The correlation coefficient r slightly falls,

but it is still high, reaching 0.911. The mean bias ̅increases to -1.4 bpm with 95%

50 60 70 80 90
50

55

60

65

70

75

80

85

90 n=763

RMSE=2.8 bpm

r=0.9313

rho=0.9207

y=0.928x+4.54

HR by moniter (bpm)

H
R

 b
y
 a

p
p
lic

a
ti
o
n
 (

b
p
m

)

50 60 70 80 90
-20

-15

-10

-5

0

5

10

15

20

Mean HR by moniter & HR by application (bpm)

H
R

 b
y
 a

p
p
lic

a
ti
o
n
 -

 H
R

 b
y
 m

o
n
it
e
r

(b
p
m

)

4.8 (+1.96SD)

-0.78 [p=1.3e-13]

-6.3 (-1.96SD)

RPC: 5.6 bpm (7.6%)

Correlation and Difference in Heart Rate

HR

45

limits of agreement -8.5 to 5.7. High correlation coefficient values were obtained for

bath participants sitting still and move naturally.

Figure 16 Correlation and Differences between HR by monitor and HR by application, for

participants move naturally

From the Bland-Altman analysis, we can see the accuracy of measurements of HR

is good. The mean ± standard deviation (SD) of the differences between heart rate

measurements from our application and sensor is -0.78 ± 2.83 when the participants

were sitting still and -1.4 ± 3.62 in the presence of motion artifacts. Linear regression

indicated a high correlation between the two measurements across the two evaluated

conditions (r = 0.9313, 0.911, respectively). Table 3 shows the accuracy rate from the

reference [7] and our system. The mean of difference from our application is larger

than that from the reference [7], but the SD of difference from our application is better

than that from the reference [7].

40 50 60 70 80 90
40

50

60

70

80

90 n=628

RMSE=3.4 bpm

r=0.911

rho=0.8643

y=0.864x+8.73

HR by moniter (bpm)

H
R

 b
y
 a

p
p
lic

a
ti
o
n
 (

b
p
m

)

40 50 60 70 80 90

-20

-10

0

10

20

Mean HR by moniter & HR by application (bpm)

H
R

 b
y
 a

p
p
lic

a
ti
o
n
 -

 H
R

 b
y
 m

o
n
it
e
r

(b
p
m

)

5.7 (+1.96SD)

-1.4 [p=2.4e-21]

-8.5 (-1.96SD)

RPC: 7.1 bpm (9.6%)

Correlation and Difference in Heart Rate

HR

46

 Reference [7] Our application

 ̅ when Still -0.05 ± 2.29 -0.78 ± 2.83

 ̅ when motion 0.64 ± 4.59 -1.4 ± 3.62

Table 3 The accuracy rate of system

6.4 Chapter Summary

In this chapter, the application was testing and the measurement result was

compared with the result of a monitor using Bland-Altman. The robustness of the

proposed methodology for HR measurements in the presence of motion artifacts was

also evaluated. The accuracy of our application in measuring HR is good.

47

Chapter 7

Conclusions and Future Work

7.1 Project Conclusions

In this project we have developed a dedicated application on the smart phone

platform, which can be used for non-contact, motion-tolerant and automated HR

detecting. This application bases on PPG, face tracking and Blind source separation

technology. The application process images captured from camera to collect the optic

information of face skin. Then we analysed the optic information to obtain the HR. In

our project we use the ICA to reduce the efficient of motion artefact. The ICA

assumed that the observed signals were linear mixtures. However, the optic

information reflected from face varies nonlinearly due to the motion of head. We give

a short time (30s) window for ICA, thus a liner model should provide a reasonable

local approximation. The result of the testing shown that this approach can achieve

high accuracy, The mean ± standard deviation (SD) of the differences between heart

rate measurements from our application and sensor along with the 95% limits of

agreement -0.78 ± 2.83 when the participants were sitting still and -1.4 ± 3.62 in the

presence of motion artifacts. Linear regression indicated a high correlation between

the two measurements across the two evaluated conditions (r = 0.9313, 0.911,

respectively).

However, there are several limitations of this project. Firstly, the motion artifacts

in our test were slow and small movements, for instance, nodding the head, looking

up and down, tilting the head sideways, talking and laughing. When the motion

occurred suddenly or quickly, the result will be affected seriously due to large change

of the baseline of the RGB signal cause by the motion. Additionally, the automatic

face tracker can bring movement artifact. Even the participants sited still, the

localized ROI also fluctuates that is another source of artifacts. In our application, we

48

have a choice to set the ROI localized fixed. Then the artifacts caused by face tracker

can be removed, but the participants should keep still during the testing to remain the

face in the ROI localized. Secondly, our experiments were executed at the library with

the illumination relatively strictly and moderation. Thirdly, the performance of the

application is influenced by the faces detecting. In the face detecting stage, the

application identified a number of false positives in the image clips due to background

complicated. Finally, the pulse frequency information can be match in one of ICA

component, but there is no ordering of the ICA components. Our project captures the

highest power of the spectrum in all three ICA components to obtain the HR.

However, when the power of other ICA components is larger than the pulse power,

the HR detecting will be failed.

7.2 Future Work

Our project has shown that mobile phone cameras have the potential to capture the

PPG signal and measurement HR. The PPG signal provides the worthy information

regarding to the cardiovascular system, for example the blood pressure, blood oxygen

saturation, HR, HRV and cardiac output. Thus the mobile phone can be developed as

monitor for several physiological variables. It brings great convenience to users. It is

easy for users to carry a physiological monitor anywhere.

The performance of the application is influenced by the faces detecting. The face

tracker of our application was trained with the OpenCV frontal face classifier. When

the background is too complicated, the detecting of face may be false. Skin detection

can be used to improve the detection rates.

The application need to test in different lighting condition to reveal the relationship

between the illuminations and the performance of our technique. Then the following

research can focus on improving the robustness of our technique in different

illuminations.

49

The application can be improved by mobile phone architecture such as multi core

and GPU. The application contains some complex and time-consuming process, for

example some image processing and some complicated algorithm ICA. Image

processing and ICA are all large amount of data operation, which can be accelerated

by using GPU technology.

javascript:void(0);

50

Bibliography

1. S. Cook, M. Togni, M. C. Schaub, P. Wenaweser, and O. M. Hess, “High heart rate: a

cardiovascular risk factor?” Eur. Heart J. 27(20), 2387–2393 (2006).

2. Arsenos P, Gatzoulis K, Dilaveris P, et al. “Arrhythmic sudden cardiac death: Substrate,

mechanisms and current risk stratification strategies for the post-myocardial infarction

patient”. Hellenic J Cardiol, 2013, 54: 301-315.

3. Böhm M, Swedberg K, Komajda M, et al. “Heart rate as a risk factor in chronic heart failure

(SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled

trial”. The Lancet, 2010, 376(9744): 886-894.

4. Vasu V, Heneghan C, Arumugam T, et al. “Signal processing methods for non-contact cardiac

detection using Doppler radar”. Signal Processing Systems (SIPS), 2010 IEEE Workshop on. IEEE,

2010: 368-373.

5. Gu C, Li R, Li C, et al. “Doppler radar respiration measurement for gated lung cancer

radiotherapy”. Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS),

2011 IEEE Topical Conference on. IEEE, 2011: 91-94.

6. Yuen P, Hong K, Chen T, et al. Emotional & physical stress detection and classification using

thermal imaging technique. 2009.

7. Poh M Z, McDuff D J, Picard R W. “Non-contact, automated cardiac pulse measurements using

video imaging and blind source separation”. Optics Express, 2010, 18(10): 10762-10774.

8. Bousefsaf F, Maaoui C, Pruski A. Remote assessment of the heart rate variability to detect mental

stress. Proceedings of the 7th International Conference on Pervasive Computing Technologies for

Healthcare. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering), 2013: 348-351.

9. Scully C, Lee J, Meyer J, et al. Physiological parameter monitoring from optical recordings with a

mobile phone. Biomedical Engineering, IEEE Transactions on, 2012, 59(2): 303-306.

10. Jonathan E, Leahy M. Investigating a smartphone imaging unit for photoplethysmography.

Physiological measurement, 2010, 31(11): N79.

11. Allen J. Photoplethysmography and its application in clinical physiological measurement.

Physiological measurement, 2007, 28(3): R1.

51

12. Takano C, Ohta Y. Heart rate measurement based on a time-lapse image. Medical engineering &

physics, 2007, 29(8): 853-857.

13. Poh M Z, Swenson N C, Picard R W. Motion-tolerant magnetic earring sensor and wireless

earpiece for wearable photoplethysmography. Information Technology in Biomedicine, IEEE

Transactions on, 2010, 14(3): 786-794.

14. Cardoso J F. Blind signal separation: statistical principles. Proceedings of the IEEE, 1998, 86(10):

2009-2025.

15. Comon P. Independent component analysis, a new concept?. Signal processing, 1994, 36(3):

287-314.

16. Cardoso J F. High-order contrasts for independent component analysis. Neural computation, 1999,

11(1): 157-192.

17. What is independent component analysis: A demo. Online at

http://www.cis.hut.fi/projects/ica/icademo.

18. A. Hyv¨arinen and Shubhendu Trivedi. Blind source separation in magnetic resonance images.

Online at

http://onionesquereality.wordpress.com/2010/01/30/blind-source-separation-in-ma

gnetic-resonance-images/.

19. Brandt D. Investigation of GPGPU for Use in Processing of EEG in Real-time. Rochester Institute

of Technology, 2010.

20. Lienhart R, Maydt J. An extended set of haar-like features for rapid object detection. Image

Processing. 2002. Proceedings. 2002 International Conference on. IEEE, 2002, 1: I-900-I-903 vol.

1.

21. Howse J. Android Application Programming with OpenCV. Packt Publishing Ltd, 2013.

22. Martin Bland J, Altman D G. Statistical methods for assessing agreement between two methods of

clinical measurement. The lancet, 1986, 327(8476): 307-310.

23. Lee Rodgers J, Nicewander W A. Thirteen ways to look at the correlation coefficient. The

American Statistician, 1988, 42(1): 59-66.

http://www.cis.hut.fi/projects/ica/icademo
http://onionesquereality.wordpress.com/2010/01/30/blind-source-separation-in-magnetic-resonance-images/
http://onionesquereality.wordpress.com/2010/01/30/blind-source-separation-in-magnetic-resonance-images/

52

24. GO-Gulf.com (2012). Smartphone Users Around the World – Statistics and Facts [online].

Available from: http://www.go-gulf.com/blog/smartphone/ (Accessed 20 March 2014)

25. ABI Research(2013). 45 Million Windows phone and 20 million BlackBerry 10 Smartphones in

Active Use at Year-end; Enough to Keep Developers Interested [online]. Available from:

https://www.abiresearch.com/press/45-million-windows-phone-and-20-million-blackberry

(Accessed 20 March 2014)

26. Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. Computer

Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer

Society Conference on. IEEE, 2001, 1: I-511-I-518 vol. 1.

27. Freund Y, Schapire R E. Experiments with a new boosting algorithm. ICML. 1996, 96: 148-156.

28. Burrus C S S, Parks T W. DFT/FFT and Convolution Algorithms: theory and Implementation John

Wiley & Sons, Inc., 1991.

http://www.go-gulf.com/blog/smartphone/
https://www.abiresearch.com/press/45-million-windows-phone-and-20-million-blackberry

53

Appendix A

Java Code

1. Class of ROIExtraction

/**

* The ROIExtraction used to extraction RGB information form the inputFrame.

* This phase includes face detection, ROI setting, RGB information extraction

* It contains a face detection class for detecting face

* @author Weihua Lin

*/

public class ROIExtraction {

 private static final String TAG = "ROI_Extraction";

 private static final Scalar FACE_RECT_COLOR = new Scalar(0, 255,

0, 255);

 private Mat mRgba;

 private Mat mGray;

 private Mat mFace;

 private Mat mCell;

 private Size mShowSize; //show ROI size

 private File mCascadeFile;//face detector trained file

 private CascadeClassifier mJavaDetector;//face detector

 private float mRelativeFaceSize = 0.2f;

 private int mAbsoluteFaceSize = 0;

 private Rect mPreviousRect;//save the last frame face box position

 private boolean mIsPreviousable;

 private boolean mIsStart;

 private boolean mIsBoxFix;

 private Activity mActivity;

 public ROIExtraction(Activity activity) {

 this.mActivity = activity;

 mPreviousRect = new Rect();

 mIsPreviousable = false;

 mIsBoxFix = false;

 mIsStart = false;

 }

 /**

 * This function initialize the face detector

 * and load training file to train the detector

*/

54

public void initDetector(){

 try{ // load cascade file from application resources

 InputStream is =

mActivity.getResources().openRawResource(R.raw.lbpcascade_frontalface);

 File cascadeDir = mActivity.getDir("cascade",

Context.MODE_PRIVATE);

 mCascadeFile = new File(cascadeDir,

"lbpcascade_frontalface.xml");

 FileOutputStream os = new FileOutputStream(mCascadeFile);

 byte[] buffer = new byte[4096];

 int bytesRead;

 while ((bytesRead = is.read(buffer)) != -1) {

 os.write(buffer, 0, bytesRead);

 }

 is.close();

 os.close();

 mJavaDetector = new

CascadeClassifier(mCascadeFile.getAbsolutePath());

 if (mJavaDetector.empty()) {

 Log.e(TAG, "Failed to load cascade classifier");

 mJavaDetector = null;

 } else

 Log.i(TAG, "Loaded cascade classifier from " +

mCascadeFile.getAbsolutePath());

 cascadeDir.delete();

 }catch (IOException e) {

 e.printStackTrace();

 Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);

 }

 }

 public void prepareStar(final int width,final int height){

 mGray = new Mat();

 mRgba = new Mat();

 mFace = new Mat();

 mCell = new Mat();

 int size = Math.min(width, height);

 size = size/4;

 mShowSize = new Size(size,size);

 }

55

 public void stopFrame(){

 mGray.release();

 mRgba.release();

 mFace.release();

 mCell.release();

 }

 /**

 * This function extract RGB information from image

 * @param inputFrame the image captured from camera contains RGB and gray

image

 * @param currentTime is the time of capturing the image

*/

 public synchronized Mat roiExtract(CvCameraViewFrame inputFrame, long

currentTime) {

 mRgba = inputFrame.rgba();

 mGray = inputFrame.gray();

 int hr = 0; // hear rate

 if (mAbsoluteFaceSize == 0) {

 int height = mGray.rows();

 if (Math.round(height * mRelativeFaceSize) > 0) {

 mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);

 }

 }

 MatOfRect faces = new MatOfRect(); // to save the face detecting result

 if (mJavaDetector != null){

 mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2,

new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size());

}

 Rect[] facesArray = faces.toArray();

 //choose and correct the ROI POS, save the coordinate in the

mPreviousRect

 setTheFaceRect(facesArray);

 //ROI extract

 if(mIsPreviousable){

 int widthAdjust =(int) mPreviousRect.width / 5;

 int heightAdjst = (int) mPreviousRect.height/5;

 Rect roi = new Rect(mPreviousRect.x + widthAdjust,mPreviousRect.y

+ heightAdjst, mPreviousRect.width - widthAdjust *2,

mPreviousRect.height - heightAdjst * 2);

56

 //the center 60% width and full height of the rectangle will be

picked on as the ROI

 mCell= mRgba.submat(roi.y ,roi.y + roi.height, roi.x,roi.x +

roi.width);

 //record the RGB traces

 if(mIsStart){

 final RGBTraces rgbTraces =

(RGBTraces)mActivity.getApplication();

 rgbTraces.AddROI(mCell, currentTime);

 hr = rgbTraces.getlastHR();//get HR

 }

 //show the ROI face in the screen

 mFace =

mRgba.submat(0,(int)mShowSize.width,0,(int)mShowSize.height);

 Imgproc.resize(mCell, mFace, mShowSize);

 Vector<Mat> rgb = new Vector<Mat>();

 Core.split(mFace, rgb);

 //to show R, G, B channel

 Vector<Mat> temp = new Vector<Mat>();

 for(int i = 0; i < 3 ;++i){

 temp.add(Mat.zeros(mShowSize, CvType.CV_8UC1));

 }

 temp.add(3, rgb.get(3));

 for(int i = 0; i < 3; ++i){

 mFace = mRgba.submat(0,(int)mShowSize.width,

(int)mShowSize.height*(i+1),(int)mShowSize.height * (i + 2));

 temp.set(i, rgb.get(i));

 Core.merge(temp,mFace);

 temp.set(i, Mat.zeros(mShowSize, CvType.CV_8UC1));

 }

 //plot the roi

 Core.rectangle(mRgba,roi.tl(), roi.br(), new Scalar(255, 255,

0), 3);

 }

// //plot the box

// for (int i = 0; i < facesArray.length; i++){

// Core.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(),

FACE_RECT_COLOR, 3);

// }

 //show HR

 if(hr != 0){

 Point pos = new Point(mRgba.size().width -

57

200 ,mRgba.size().height -20);

 Core.putText(mRgba, String.format("HR: %d",hr),pos,

 Core.FONT_HERSHEY_PLAIN, 2, FACE_RECT_COLOR, 4);

 }

 return mRgba;

 }

 //choose and correct the ROI POS

 private void setTheFaceRect(Rect[] facesArray) {

 if(facesArray.length == 0) return;

 if(mIsPreviousable && mIsBoxFix) return;

 if(mIsPreviousable == false){

 for(int i = 0; i < facesArray.length; ++i){

 if(facesArray[0].area() >0) {

 mPreviousRect = facesArray[0].clone();

 mIsPreviousable = true;

 return;

 }

 }

 } else {

 //save the min distance and the index

 double minValue = Double.MAX_VALUE;

 int minIndex = 0;

 //the coordinate of the central point in previous face

 Point preCentral = new Point(mPreviousRect.x + 0.5 *

mPreviousRect.width, mPreviousRect.height * 0.5 + mPreviousRect.y);

 for(int i = 0; i < facesArray.length; i++){

 Point central =new Point (facesArray[i].width * 0.5 +

facesArray[i].x, facesArray[i].height * 0.5 + facesArray[i].y);

 //the distance of central point

 double distance =Math.pow((preCentral.x - central.x), 2)

 + Math.pow((preCentral.y - central.y), 2);

 //the distance of left top point

 double tpDistance = Math.pow(mPreviousRect.x

-facesArray[i].x, 2) + Math.pow(mPreviousRect.y -facesArray[i].y, 2) ;

 distance = distance + tpDistance/2;

 if(minValue > distance) {

 minValue = distance;

58

 minIndex = i;

 }

 }//for

 if(minValue < 20000) {

 mPreviousRect = facesArray[minIndex].clone();

 }

 }//else

 }

....

}

2. RGBTraces Class

/**

* The RGBTraces class used to save the information regarding RGBTraces.

* @author Weihua Lin

*/

public class RGBTraces extends Application {

 public static final int protimelong = 30; //time of windows

 private static final String TAG = "RGBTraces";

 private static final String rFilename = "r.txt";

 private static final String gFilename = "g.txt";

 private static final String bFilename = "b.txt";

 private static final String hrFilename = "hr.txt";

 private static final String ltFilename = "lt.txt";

 private static final int fEndPos = 120;

 private List<Double> lRTrace;

 private List<Double> lGTrace;

 private List<Double> lBTrace;

 private List<Integer> icaHR;

 private List<Integer> gHR;

 private int lastfreIndex;

 //Save every second start frame position

 private List<Integer> lFramesTrace;

 private long mStartime;

 private List<Double> lHeartRate;

 //Save need to processing time(eg. 29 means time from 0 to 29)

 private Queue<Integer> qWaitQueue;

 private DataProcessor mHRThread; //do normalizing, ICA, FFT

static { System.loadLibrary("JadeR"); }

 public RGBTraces() {

59

 lRTrace = new ArrayList<Double>();

 lGTrace = new ArrayList<Double>();

 lBTrace = new ArrayList<Double>();

 icaHR = new ArrayList<Integer>();

 gHR = new ArrayList<Integer>();

 lFramesTrace = new ArrayList<Integer>();

 mStartime = 0;

 lHeartRate = new ArrayList<Double>();

 qWaitQueue = new LinkedList<Integer>();

 mHRThread = new DataProcessor();

 mHRThread.start();

 lastfreIndex = 0;

 }

 public void AddROI(final Mat roi, long currentTime){

 Scalar tracts = Core.mean(roi);

 synchronized(lBTrace) {

 lRTrace.add(tracts.val[0]);

 }

 synchronized(lRTrace)#{

 lGTrace.add(tracts.val[1]);

 }

 synchronized(lGTrace) {

 lBTrace.add(tracts.val[2]);

 }

 if(mStartime == 0) {

 mStartime = currentTime;

 lFramesTrace.add(0);

 } else {

 int time = (int) (currentTime - mStartime)/1000;

 //if new second begin, record the position

 //Save every second start frame position

 //lFramesTrace.size means how many seconds has been recorded

 //if time >= lFramesTrace.size means new second begin

 if(time >= lFramesTrace.size()){

 lFramesTrace.add(lBTrace.size() - 1);

 //when the time larger then the window time, every second

increase

 // need to do notify mHRThread

 if(time >= protimelong/* && time < topTime*/){

 Log.i(TAG, "add time to wait queue");

 qWaitQueue.add(time);

60

 mHRThread.isRunning = true;

 if(mHRThread.getState() == Thread.State.WAITING) {

 synchronized(mHRThread){

 Log.i(TAG, "notify the mHRThread");

 mHRThread.notify();

 }

 }

 }

 }

 }

 }

 public void clear()

 {

 lastfreIndex = 0;

 lRTrace.clear();

 lGTrace.clear();

 lBTrace.clear();

 icaHR.clear();

 gHR.clear();

 lFramesTrace.clear();

 qWaitQueue.clear();

 mStartime = 0;

 }

 public void saveRGBData() {

 //chekc the state of SD card

 String sdStatus = Environment.getExternalStorageState();

 if(!sdStatus.equals(Environment.MEDIA_MOUNTED))

 {

 Log.e(TAG, "sd card can not be used");

 return;

 }

 if(lRTrace.isEmpty()) return;

 JSONArray numbers = new JSONArray(lRTrace);

 String jsonString = numbers.toString();

 DataServer.saveData(rFilename, jsonString);

 numbers = new JSONArray(lGTrace);

 jsonString = numbers.toString();

 DataServer.saveData(gFilename, jsonString);

 numbers = new JSONArray(lBTrace);

61

 jsonString = numbers.toString();

 DataServer.saveData(bFilename, jsonString);

 numbers = new JSONArray(icaHR);

 jsonString = numbers.toString();

 DataServer.saveData(hrFilename, jsonString);

 numbers = new JSONArray(lFramesTrace);

 jsonString = numbers.toString();

 DataServer.saveData(ltFilename, jsonString);

 }

 public String getHRvaluse(){

 JSONArray numbers = new JSONArray(icaHR);

 return numbers.toString();

 }

 public List<Integer> getHRlist() {

 return icaHR;

 }

 public int getlastHR(){

 int hr = 0;

 if(!icaHR.isEmpty()){

 hr = icaHR.get(icaHR.size() - 1);

 }

 return hr;

 }

 public void SavaHR(String filename){

 //chekc the state of SD card

 String sdStatus = Environment.getExternalStorageState();

 if(!sdStatus.equals(Environment.MEDIA_MOUNTED)) {

 Log.e(TAG, "sd card can not be used");

 return;

 }

 if(icaHR.size() <= 0) return;

 JSONArray numbers = new JSONArray(icaHR);

 String jsonString = numbers.toString();

 DataServer.saveData(filename + "_hr.txt", jsonString);

 numbers = new JSONArray(gHR);

 jsonString = numbers.toString();

62

 DataServer.saveData(filename + "_ghr.txt", jsonString);

 }

}

3. DataProcessor Class

/**

* The DataProcessor used to process RGB traces.

* It includes normalized the raw RGB traces, decompose the RGB into three

independent source signals using ICA and the fast Fourier transform (FFT)

was used on the three independent source signals.

* @author Weihua Lin

*/

public class DataProcessor extends Thread {

 public boolean isRunning = true;

 @Override

 public void run(){

 Log.i(TAG, "run the mHRThread");

 while(isRunning) {

 Log.i(TAG, "while the mHRThread");

 try{

 if(qWaitQueue.isEmpty()){

 isRunning = false;

 Log.i(TAG, "mHRThread is waiting");

 synchronized(mHRThread) {

 try {

 mHRThread.wait();

 }catch(InterruptedException e) {

 e.printStackTrace();

 }

 }//synchromized

 } else{

 int endtime = qWaitQueue.poll();

 int starttime = endtime - protimelong;

 Log.i(TAG, "starttime is " +

Integer.toString(starttime));

 Log.i(TAG, "endtime is " + Integer.toString(endtime));

 if(starttime < 0 || endtime >= lFramesTrace.size())

 continue;

 int startFrame = lFramesTrace.get(starttime);

 int endFrame = lFramesTrace.get(endtime) - 1;

 Log.i(TAG, "startFrame is " +

63

Integer.toString(startFrame));

 Log.i(TAG, "endFrame is " + Integer.toString(endFrame));

 // normalize the raw RGB traces

 double[][] xsrc = DoNormalize(startFrame, endFrame);

 //-----------------------------------test g trace------

 List<Double> gcom = new ArrayList<Double>();

 doDft(xsrc[2], gcom);

//---

 //ICA

 //DataServer.doICAbyJava(xsrc, xsrc, 3);

 DataServer.doICAbyNative(xsrc, xsrc, 3);

 //fft

 List<Double> com1 = new ArrayList<Double>();

 List<Double> com2 = new ArrayList<Double>();

 List<Double> com3 = new ArrayList<Double>();

 doDft(xsrc[0], com1);

 doDft(xsrc[1], com2);

 doDft(xsrc[2], com3);

 //get HR

 float fHR = getHR(com1,com2,com3,gcom);

 }

 }catch(Exception e) {

 e.printStackTrace();

 Log.e(TAG, "Failed to write. Exception thrown: " + e);

 }

 }

 }

/**

* normalized the raw RGB traces

*/

 private double[][] DoNormalize(int startFrame, int endFrame){

 //do the R

 List<Double> src;

 List<Double> rdst = new ArrayList<Double>();

 synchronized(lRTrace) {

 src = lRTrace.subList(startFrame, endFrame);

 //Log.i(TAG, "r" + src.toString());

 DataServer.doNormalize(src, rdst);

 }

64

 //G

 List<Double>gdst = new ArrayList<Double>();

 synchronized(lGTrace){

 src = lGTrace.subList(startFrame, endFrame);

 DataServer.doNormalize(src, gdst);

 }

 //b

 List<Double> bdst = new ArrayList<Double>();

 synchronized(lBTrace){

 src = lBTrace.subList(startFrame, endFrame);

 DataServer.doNormalize(src, bdst);

 }

 double[][] xsrc = new double[3][];

 xsrc[0] = DataServer.convertDoubles(rdst);

 xsrc[1] = DataServer.convertDoubles(gdst);

 xsrc[2] = DataServer.convertDoubles(bdst);

 return xsrc;

 }

/**

*The Fourier transform was used on the three independent source signals

*/

 private void doDft(double[] ica, List<Double> fft) {

 Mat mat = DataServer.convertToMat(ica, CvType.CV_64FC1);

 Vector<Mat> templist = new Vector<Mat>();

 templist.add(mat);

 templist.add(Mat.zeros(mat.size(), CvType.CV_64FC1));

 Core.merge(templist, mat);

 Core.dft(mat, mat);

 Core.split(mat, templist);

 Core.magnitude(templist.get(0),templist.get(1),templist.get(0));

 double[] temp = new double[templist.get(0).channels()];

 fft.clear();

 for(int i = 0; i < fEndPos; ++i) {

 temp = templist.get(0).get(0,i);//(i, 0);

 fft.add(temp[0]);

 }

 mat.release();

 int size = templist.size();

 for(int i = 0; i < size; ++i)

 templist.get(i).release();

 }

65

 private int getHR(List<Double> com1, List<Double> com2, List<Double>

com3, List<Double> gcom){

 int index = getMax(com1,com2,com3);

 double gmax = Collections.max(gcom.subList(23, 105));

 int gindex = gcom.subList(23, 105).indexOf(gmax);

 int hr = 0;

 if(index >0) {

 hr= (index + 23) * 2;

 icaHR.add(hr);

 gHR.add((gindex + 23) * 2);

 }

 lastfreIndex = index;

 return hr;

 }

/**

*Get the highest power of the spectrum in all three ICA components

*/

 private int getMax(List<Double> com1, List<Double> com2, List<Double>

com3) {

 //frequency [0.75,4] corresponding to [45,240]

 List<Double> sub1 = com1.subList(23, 105);

 List<Double> sub2 = com2.subList(23, 105);

 List<Double> sub3 = com3.subList(23, 105);

 double max1, max2,max3, max;

 int m = 20, index = 0;

 List<Double> temp;

 while(m > 0) {

 max1 = Collections.max(sub1);

 max2 = Collections.max(sub2);

 max3 = Collections.max(sub3);

 index = 0; temp = null;

 if(max1 > max2) {

 max = max1;

 temp = sub1;

 } else {

 max = max2;

 temp = sub2;

 }

 if(max < max3) {

 max = max3;

66

 temp = sub3;

 }

 index = temp.indexOf(max);

 if(lastfreIndex <= 0) break;

 if(index <= 0) {

 index = lastfreIndex;

 break;

 }

 if(Math.abs(lastfreIndex -index) <=6) break;

 temp.set(index, 0.0);

 m--;

 }

 if(m == 0){

 Log.i(TAG, "index is " + Integer.toString(index));

 index = lastfreIndex;

 }

 Log.i(TAG, "index is " + Integer.toString(index));

 return index;

 }

}///class DataProcessor

