
 
 
 

 

Sheffield Hallam University 
 

 
 

An FPGA based real-time image 
classification system 

 
Deepayan Bhowmik 

 
 
 

M.Sc. in Electronics and Information Technology 
2005-06 

 
 
 
 
 
 

First supervisor: Dr. Bala P. Amavasai 
Second supervisor: Mr. Tim J. Mulroy 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This thesis is submitted in partial fulfilment  

of the requirements for the degree of 

Masters of Science 

in Electronics and Information Technology, School of Engineering, 

Sheffield Hallam University 



An FPGA based real-time image classification system 

1 

 
 
Acknowledgement 
  
 My sincere thanks and regards should go to my supervisor Dr. Bala 

Amavasai who was a constant source of inspiration and director throughout this 

project even before starting it. I am also grateful to my second supervisor Mr. 

Tim J. Mulroy. I acknowledge the support of EPSRC Nanorobotics project 

GR/S85696/01. My special thanks should go to Dr. Clay Gloster, RARE project, 

Howard University, Washington, USA to allow me to use his VHDL code for 

floating point division.         

 This thesis is dedicated to my parents for their continuous support. I also 

extend my acknowledgement to all friends in Sheffield. Last but not the least, I 

express my sincere gratitude to Machine Vision Lab researchers, lab technician 

Mr. Misko and all those who have directly or indirectly contributed to the 

completion of this project work. 

 

 

 

 
 

Publication 
 

[1] Deepayan Bhowmik, Bala P. Amavasai, T. J. Mulroy, “Real-time object 

classification on FPGA using moment invariants and Kohonen neural 

networks”, Proceedings of the IEEE SMC UK-RI Chapter Conference 2006 

on Advances in Cybernetic Systems, September 7-8, Sheffield, UK, ISSN 

1744-9189 

 



An FPGA based real-time image classification system 

2 

Abstract 
 
  Machine vision is an integral part of machine intelligence. The primary 

focus of any machine vision system is to recognise and classify objects in the 

surrounding area. The concept of Artificial Intelligence has been deployed in 

number of machine intelligence application keeping in mind the fact that a 

machine will one day be able to imitate a human being. It is also applicable for 

an object recognition task.  

  In this thesis we address the issue of object classification using a 

different approach. Our objective of object classification can be divided into two 

parts, namely image processing and recognition, or classification of processed 

image.  The image processing stage is handled by a moment calculation of the 

captured images. An Artificial Neural Network is implemented in the 

recognition or object classification stage. The main constraint of this work is to 

reduce the response time and make the system as fast as possible in order to 

fulfill real-time objectives. The use of dedicated hardware is probably one of the 

possible solutions. Hence we make use of reconfigurable hardware like Field 

Programmable Gate Array (FPGA).       

  In this thesis, the use of moment invariants and Kohonen neural 

networks for real time object classification is addressed. The implementation of 

such a scheme using a reconfigurable hardware FPGA (Field Programmable 

Gate Array) device is described. In the image processing stage, the Hu’s moment 

invariants algorithm has been implemented in hardware and the issues 

surrounding this implementation is discussed. Following the image processing 

stage, a neural network is employed for the classification stage. By using the 

Kohonen unsupervised neural network the system is essentially self-supervised 

and it is able to perform an all parallel neural computation for classification 

purposes. A discussion of the concept and real simulation results are provided. 



An FPGA based real-time image classification system 

3 

 

 

Contents  

 

 

Chapter 1: Introduction…….…………………………………………………………..7 

1.1 Introduction………………………………………………………………………..7 

1.2 Background……………….………………………………………………………..7 

1.3 Motivation…………………….………………………………………………........8 

1.4 Thesis Description……………………………………………………………..... ..9 

1.5 Program of work………………………………………………………………….10 

1.6 Deliverables……………………………………………………………………….10 

1.7 Thesis Foundation………………………………………………………………..11 

1.7.1 Time/Schedule………………..………………………………………11 

1.7.2 Technical Limitations……..…………………….……………………11 

1.7.3 Potential Hazards……………..……………………………………...12 

1.8 Report Guideline………………………………………………………………….12 

 

 

Chapter 2: Literature Survey………………………….…………..………………….13 

2.1 Introduction………………………………………………………………….….13 

2.2 General Discussion…………………….…………………………………….…13 

2.3 Relevant Past Work……………………......…………………………………...14 

2.4 Summary………………………………………………….…………………......16 

 

 



An FPGA based real-time image classification system 

4 

Chapter 3: Theoretical Discussion…………………………….……………………17 

3.1 Introduction....................................................................................................…...17 

3.2 Hu’s Moment Invariant…………………………………..….…….……………17 

3.3 Kohonen Artificial Neural Network………………………….……………….19 

3.4 K-means Clustering………………………………………………………….….23 

3.5 FPGA……………………………………………………………………………...24 

3.6 IEEE 754 floating point format.……………...…………………………………26 

3.7 Summary…………………………………………………………………………28 

 

 

Chapter 4: Methodology and Algorithmic development……………………….29 

4.1 Introduction……………………………………………………………….……29 

4.2 Moment invariant computation………………………………………………29 

4.3 Training of the system……………………………………………………..…..32 

4.4 Classification Mode…………………………………………………………….34 

4.5 General Discussion on VHDL coding………………………………………...35 

4.6 Explanation of VHDL Code…………………………………………………...36 

4.7 Discussion on MATLAB Coding of Training Algorithm……….………….40 

4.8 Summary………………………………………………………………..………41 

 

 

Chapter 5: Discussion.............................................................................................…...42 

5.1 Introduction............................................................................................................42 

5.2 Result and Timing Analysis………………………….…………………………42 

       5.2.1 Moment Calculation………………………………………………..42 

       5.2.2 Training of the System……………………………………………..43 

5.2.3 Classification Mode……………………………………………………..….....44 

5.3 Analysis & Discussion for Real Time object classification ………………….44 

5.4 Summary ……………………………...................................................................45 



An FPGA based real-time image classification system 

5 

Chapter 6: Conclusion and Future Work............................................................…...46 

6.1 Discussion………………………………………………………….……………..46 

6.2 Conclusion………………………………………………………………………..46 

      6.2.1 Why FPGA……………………………………………………….....47 

      6.2.2 Implementation of ANN on FPGA……………………………….47 

      6.2.3 Potential Pros and Cons…………………………………………...47 

6.3 Future Work……………………………………………………………………....48 

      6.3.1 Online Training……..……………………………………………...48 

      6.3.2 System Integration with Camera Interface………………………49 

6.4 Summary ………………. …………………………………………………..…….49 

 

Reference & Bibliography……………..…………………………………………….50 

 

 Appendix A: VHDL Source Code 

 

Appendix B: MATLAB Source Code 

 

Appendix C: Memory Initialisation file  

 

Publication 

 

 

 

 

 
 
 



An FPGA based real-time image classification system 

6 

 
 
Chapter 1: Introduction  
 

 
1.1 Introduction 

 The requirement for the recognition and classification of objects in real-

time is important for many real world tasks, especially in robotics and industrial-

type applications. A dedicated hardware for this purpose is highly. The use of of 

artificial neural network for classification allows the system to adapt to the 

environment. The aim of the thesis is to explore the possibility of developing a 

dedicated hardware for image processing and by using artificial neural network 

to make it adapt to the environment. The following issues have been addressed 

during the course of this project: 

 The use of moment invariants for image classification  

 Hu’s moment invariant 

 The use of Artificial Neural Network (ANN) as efficient mode of 

image classification 

 Kohonen Neural Network as self-adaptive learning system 

 The use of Field Programmable Gate Array (FPGA) for designing 

hardware 

 Timing analysis as a constraint of real-time application 

 

1.2 Background 

 The greatest challenge in current times, of any algorithm and circuitry, is 

speed. The idea of dedicated hardware for a specific type of application is to 

handle complexity with better time response. One of the ways to implement and 

test a circuit is to map and synthesis the algorithm in FPGA (Field Programmable 



An FPGA based real-time image classification system 

7 

Gate Array). The domain of application of FPGAs has traditionally been in 

digital logic and digital signal processing (DSP). DSP-type problems are easily 

mapped to FPGAs due to the fact that most DSP functions are made up of sum-

of-product type operations that consist of simple logic. Since images are 

essentially 2-D signals, image processing algorithms have also been widely 

implemented on FPGA. 

However the implementation of higher level machine vision algorithms 

(with ANN optimisation) that consist of a number of decision making stages is 

somewhat limited. This is largely due to the limited number of directly mapped 

arithmetic functions available and the complexity in designing algorithms that 

are able to adapt or optimise online, since FPGA designs are often static. The 

latter problem can be overcome by parameterising the algorithms and using 

external memory to store these parameters. 

 

1.3 Motivation 

 Machine vision is one of the most interesting and current research areas 

where researchers are trying to develop intelligent machine. The primary focus 

of machine vision in industry is to classify objects as quick as possible. Real-time 

classification is important for many real world and industrial applications 

especially in robotics. A variety of blob and shape based algorithms exist, but 

many of these do not meet real-time constraints. 

In recent times, with the advent of sophisticated software tools, the use of 

Field Programmable Gate Arrays (FPGAs) has changed from being simply a 

gluelogic type component to a vehicle for complete delivered solutions. FPGAs 

are made up of programmable logic components and programmable 

interconnects. Unlike other technologies, that force the programmer or designer 

to make critical decisions in the early part of development, FPGAs allow the 

development of the application to be adapted and improved over time. 



An FPGA based real-time image classification system 

8 

Developing FPGA solutions is comparable to developing solutions in software 

(rather than hard-coding). 

The use of ANN is quite interesting to improve the timing performance of 

the system. However the Van-Neuman computer architecture (the normal 

computer processor used now-a-days e.g. Pentium series from Intel) does not 

directly support the construction of parallel ANNs. As far as ANN is concerned, 

it performs activities are performed in parallel on each neuron and that is where 

a sequential computer lacks. A neuro-chip based processor might solve the 

problem. But for a specialized application like object classification, probably a 

dedicated hardware is more useful. And here comes the concept to use of FPGA 

in this purpose.  

 The above discussion is the main motivation of this project. The project 

tries to explore the opportunity how suitable a FPGA board is to perform an 

object classification with the application of ANN.   

 

1.4 Thesis Description 

 This thesis, describes an attempt to implement an object classification 

paradigm that is able to classify objects in real-time using an FPGA solution. The 

process makes use of two well studied algorithms in the area of machine vision 

and neural networks.  

Hu [1] moment invariants is one of the well proven algorithm for 2-D 

image processing using a non-orthogonal central moments. Seven Hu descriptors 

is unique given a specific pattern or shape. 

  Kohonen [2] unsupervised neural network is a popular self-organising 

unsupervised learning Neural Network. It is very useful for data classification 

with an all parallel computation. A K-means clustering algorithm can classify 

and give identity to a self organizing unsupervised system.  

The computation of moment invariants has been implemented in 

hardware. However the Kohonen neural network algorithm is divided into two 



An FPGA based real-time image classification system 

9 

parts, namely training mode, and detection mode. Currently only training of the 

system is performed using MATLAB. The result of the training is used for object 

classification and this has been implemented (and simulated) on an FPGA 

device. 

 

1.5 Programme of work 

At the beginning of the project the work programme has been decided. 

The project follows the work program as a guide line. Following is the work 

program for the project. 

a) Algorithm development for 2-D image recognition (Hu’s moment 

invariant chosen here) 

b) Algorithm optimisation using Artificial Neural Network (ANN) 

c) Proposed ANN optimisation: Kohonen Neural Network 

d) Implementation of Hu’s moment invariants in FPGA 

e) Hardware realization using VHDL coding  

f) VHDL implementation of Kohonen ANN 

g) Initial training of the system by MATLAB 

h) Simulation and testing of VHDL code 

i) Development and simulation the Stratix FPGA board in Altera 

Quartus software 

j) Timing analysis for next pahse 

 

1.6 Deliverables 

The deliverables from this project are listed as follows 

a) A real time 2-D object classification with very small response time 

b) An implementation of Hu’s moment invariant in FPGA board 

c) An implementation of artificial neural network in FPGA board 

d) An algorithm optimisation for image processing using ANN 



An FPGA based real-time image classification system 

10 

e) Dedicated hardware for real time image classification 

 

1.7 Thesis Formulation 

 This section discusses constraints such as schedule, technical limitations, 

possible hazards etc. and develops a work plan for the entire thesis. 

 

1.7.1 Time/Schedule 

Table 1.1 shows the Gantt chart of the thesis time line. 

 

Table 1.1: Gantt chart of the project time line 

 

1.7.2 Technical Limitations 

This section focuses on various limitations of the thesis as listed below  

 Difficulty on hardware realization of sequential algorithm 

 Handling floating point arithmetic in VHDL, specially multiplication and 

division operation 

 Handling function and process statements in VHDL 

 Large compilation and simulation time made the experiment time longer 

 

 



An FPGA based real-time image classification system 

11 

1.7.3 Potential Hazards 

The precautions that were strictly followed during the entire project period 

were  

 An erect sitting posture was maintained while working on the computer 

 Breaks were taken at regular intervals to avoid cramps and sprains that 

can be caused due to sitting in front of the computer for long hours 

 Hazards related for handling electronic equipment like FPGA (i.e. electro 

static discharge, ground problem etc) 

 Hazards related to main power supply 

 

1.8 Thesis organisation 

The thesis has been written in the same way the project has been carried 

out. Chapter 2 discusses the background of the work. Details of literature review 

and discussion of similar kind of work has been described here. Chapter 3 is 

basically the discussion of theories namely Hu’s moment invariant, Kohonen 

Artificial Neural Network etc. Based on these well proven theories the next part 

of the project was carried out. Algorithmic development & implementation is 

probably the main feature of the project. All details about the methodology and 

Algorithmic development are written in chapter 4. So far the thesis frames the 

idea and suggested the implementation method. Chapter 5 shows the results 

after simulation and does the timing analysis of the same. Finally chapter 6 

concludes the project and suggests some future work.    

 

 

 

 

 



An FPGA based real-time image classification system 

12 

 

 

Chapter 2: Literature Survey 
 

 
2.1 Introduction 

 The chapter focuses on the previous work by other researchers in the area 

of this thesis. The literature survey discusses the image classification method on 

FPGA board and related hardware using Artificial Neural Network concept. In 

an overall view, the main limitation faced by researcher in the field is the 

hardware capacity of the FPGA board. However number people have developed 

an integrated system combined with a computer. 

  

2.2 General Discussion 

The domain of application of Field Programmable Gate Arrays has 

traditionally been in digital logic and digital signal processing. Digital Signal 

Processing type problems are easily mapped to FPGAs due to the fact that most 

Digital Signal Processing functions are made up of sum-of-product type 

operations that consist of simple logic. Since images are essentially 2-D signals, 

image processing algorithms have also been widely implemented on FPGA.  

The implementation of higher level machine vision algorithms that consist 

of a number of decision making stages is more limited. This is largely due to the 

limited number of directly mapped arithmetic functions available and the 

complexity in designing algorithms that are able to adapt or optimise online, 

since FPGA designs are often static. Parameterising the algorithms and using 

external memory to store these parameters can overcome this problem. 

Another limitation with FPGA is to handle floating point arithmetic. The 

signal processing calculations are sometimes quite complicated and deal with 



An FPGA based real-time image classification system 

13 

lots of floating point number. The precision of floating point values is also 

important in this regards. The researchers in the field have always faced 

difficulty dealing with floating point arithmetic. In case of floating point 

calculation IEEE 754 format is followed and the arithmetic with IEEE 754 is 

different from a normal arithmetic calculation. This is probably the reason why 

hardware design engineers use to hate floating point numbers where as software 

engineers love to play with floating points.    

Floating point can be described in IEEE 754 single precision (32 bit) or a 

double precision (64 bit) or even with an extended single precision (43 bit). As 

the floating points increase complexity of the design, often it is preferred to deal 

with single precision number. The next section discussed about different 

approach followed and explored by previous researchers in this area. 

 

2.3 Relevant Past Work 

In recent times Hirai et. al. [2] have designed complete single-task vision 

systems on FPGA, with the objective of detecting the position and orientation of 

distinctly visible planar objects. Their system consisted of three parts, namely the 

computation of image gravity centre, the detection of object orientation using 

radial projection and the computation of the Hough transform, albeit discrete. 

They reported being able to process images at a rate of around 200 fps, far more 

than the standard frame-rate of a PAL camera. 

 In a separate study, Arribas and Maciá [3] implemented the Santos-Victor 

paradigm to compute motion fields for use in robot guidance applications. The 

technique required the computation of optical flow fields in real-time. The flow 

fields were computed using both standard differential and correlation methods. 

 Recent approaches have been made towards the implementation of real-

time object recognition using reconfigurable hardware. Most of these systems 

have been implemented using multiple FPGA boards or similar devices together 



An FPGA based real-time image classification system 

14 

with a sequential computer, due to the limited number of gates available on each 

device. 

 For instance, Neema et. al. [6] have used multiple Digital Signal Processing 

processors and a sequential computer for their Automated Image Recognition 

system. They have described the model-based development of a real-time, 

embedded Automated Image Recognition (AIR) system. The idea behind a 

distributed processing using multiple Digital Signal Processing board is to 

implement a system capable of processing high sampling rate and large input 

images. DSP processors are used here to handle the complexity of the applied 

Discrete-classifier correlation filter algorithm. However the full system 

integration is only possible with a sequential computer along with the DSP 

boards.  

 In another paper, Yasin et. al. [7] have demonstrated an effective FPGA 

prototype for iris recognition. However, the system itself is not completely 

hardware based, since images are preprocessed using MATLAB, and FPGAs are 

only used for the recognition part. In their design, the authors make use of Multi 

Layer Perceptrons (MLPs) for classification. The numbers of neurons are limited 

due to hardware constraints and hence the computation complexity had to be 

reduced for implementation on an FPGA board. 

 Jean et. al. [8] implemented a system to accelerate the recognition process 

in infra-red images using an FPGA device. However once again, the system is 

dependent on a separate computer and in order to reduce complexity, the 

mathematical calculations have been performed with full precision integer values 

instead of floating point operations. 

 Y. Y. Chung et. al. [10] describes and implemented a partially conected 

neural network by Giga-Ops Spectrum G800 FPGAs based custom computer for 

a high speed neural network based classifier which can be used real time 

application. Again the custom computer consists multiple (up to 32) Xilinx logic 



An FPGA based real-time image classification system 

15 

chips. They demanded that the system can provide a very high speed classifier 

for real time image recognition purpose. 

 Neural networks are an ideal example where the use of FPGAs can offer 

an advantage. This is due to the fact that the operations carried out are largely 

parallel. A number of efforts have been made for mapping neural networks onto 

hardware. For example Aibe et. al. [9] implemented a probabilistic neural 

network in FPGA hardware which exhibited a parallel architecture. 

   

2.4 Summary 

 A brief literature review has been carried out in this chapter.  The main 

focus is on use of FPGA for the implementation of image processing algorithm 

and Artificial Neural Network. Researcher has tried to implement a parallel and 

dedicated hardware in order to improve the speed over a sequential computer. 

But the main limitation faced by almost everybody is the number of gates 

available in FPGA. Number of times either people used multiple boards and a 

sequential computer to overcome this limitation. Interestingly everybody tries 

reconfigurable hardware namely Field Programmable Gate Arrays to design a 

dedicated hardware due the high cost of manufacturing a customised chip. The 

interests of researcher’s show that the real-time image recognition is one of most 

lucrative and interesting field for FPGA application.  

 

 

 

 

 

 

 

 

 



An FPGA based real-time image classification system 

16 

 
 
Chapter 3: Theoretical Discussion 
 

 
3.1 Introduction 

  The aim of this chapter is to discuss the theory of the implemented 

concept and algorithms of the project. The project is clearly separated in two 

different parts namely moment calculation and object classification. The moment 

classification is based on Hu’s Moment Invariants where as the object 

classification part has been dealt with Kohonen Artificial Neural Network. Both 

the algorithms are well proven and quite popular in its won field. The K-means 

clustering algorithm discussed here is useful for object classification in training 

mode. A brief discussion about Field Programmable Gate Array (FPGA) and 

Atera Stratix board is then carried out. One of the main issues faced during the 

VHDL coding was floating point arithmetic. A brief description on floating point 

arithmetic hardware, specially the details about IEEE 754 format might be useful 

at this stage.  

    

 

3.2 Hu’s Moment Invariant 

 In the field of image processing specially in machine vision and related 

fields, image moments are popular as it has some unique property or 

interpretation [16]. The moments are basically certain particular weighted 

averages (moments) of the image pixels’ intensities or function of other moments. 

Moments can describe the object efficiently after segmentation.  



An FPGA based real-time image classification system 

17 

 One of the well studied methods of describing 2-D objects using moment 

invariants is Hu’s moment invariant or descriptors [1]. The regular moment of a 

shape in an M by N binary image is defined in equation 3.1: 

  











1

0

1

0

),(
N

j

N

i

qp

pq jifjiu                        (eqn. 3.1) 

 

Where f(x; y) is the intensity of the pixel (either 1 or 0) at the coordinates (x; y) 

and p+q is said to be the order of the moment. 

The calculation is a function of the distance between shape pixels. So the origin 

measurements are taken relative to the shapes centroid (x’; y’) to remove 

translational variability. The coordinates of the centroid are determined using the 

equation above as described in equation 3.2: 

00

10'
u

u
i      and    

00

01'
u

u
j              (eqn. 3.2) 

 
Now the relative moments are calculated with respect to the central 

moments and the same is described in equation 3.3 











1

0

1

0

),()'()'(
N

j

N

i

qp

pq jifjjiiu                                  (eqn. 3.3) 

 
Normally individual moment values do not have the descriptive power to 

uniquely represent arbitrary shapes, nor do those posses the required invariance 

characteristics, but, sets of functions based on these moments can be determined 

which do [17]. Hu derived a set of seven rotational invariant moment functions 

which form a suitable shape representation (or vector). Hu descriptors are based 

on non-orthogonalised central moments that are invariant towards rotation, 

translation and scale. Hu descriptors are thus computed from normalised 

centralised moments up to the third order, and consist of seven moments in total. 

The seven formulae given in equation set 3.4 to 3.10 are normally used for 

algorithmic implementation.  



An FPGA based real-time image classification system 

18 

I1 = η20 + η02                                                      (eqn. 3.4) 
 
I2 = (η20 − η02)2 + (2η11)2                                                                            (eqn. 3.5) 
 

 
I3 = (η30 − 3η12)2 + (3η21 − η03)2                                     (eqn. 3.6) 
 
 

I4 = (η30 + η12)2 + (η21 + η03)2                                    (eqn. 3.7) 
 

I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2] + (3η21 − η03)(η21 + η03)[3(η30 + 
η12)2 − (η21 + η03)2]                    (eqn. 3.8) 
 

 

I6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2 + 4η11(η30 + η12)(η21 + η03)]              (eqn. 3.9) 
 
I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2] − (η30 − 3η12)(η21 + η03)[3(η30 + 
η12)2 − (η21 + η03)2]                    (eqn. 3.10) 

 

The derivation of these seven invariants and the computation of η is 

available in [1], and so will not be described here. The combination of these seven 

Hu descriptors is unique given a specific pattern or shape. Hence it can be used 

in conjunction with a matching scheme to uniquely identify the object being 

input to the system. Computing these descriptors is straightforward and fast, and 

hence it is widely used in the area of real-time vision in robotic applications [18]. 

 

3.3 Kohonen Artificial Neural Network 

Kohonen Artificial Neural Network is a popular unsupervised learning 

neural network. The Kohonen ANN is essentially a self-organizing unsupervised 

mapping system that can map input vectors of arbitrary length onto a lower 

dimension map. It is frequently described as a sheet-like neural network array. 

Patterns that are close together in Euclidean space will remain close in the final 

map, and are topologically ordered. The learning process of Kohonen ANNs 

optimizes the mapping until the weight change becomes negligible [11]. 



An FPGA based real-time image classification system 

19 

The Kohonen Neural Network is consists of a Kohonen map which has a 

single layer of neurons. All input vectors are connected to each neuron in the 

map. Kohonen map can be arranged in different topologies namely rectangular 

and hexagonal. A neuron map of rectangular shape is quite popular as shown in 

figure 3.1. The weight vector connected to each neuron is represented by (wji). 

The learning algorithm is determined by the Euclidean distance between an 

input vector and the corresponding weights of each neuron. The weights 

associated with the neuron which provides the smallest Euclidean distance is 

considered as the winning node. Then the weights associated with the winning 

neurons are updated. This weight update method has done in such a way that 

the winning neuron becomes representative of a specific pattern or class.  

 

 

Figure 3.1: A Kohonen network 

 Though the winning node is main point of interest, in practice the weights 

associated with the neighborhood region of the winning node has also updated 

in a similar fashion. This method is quiet useful to specify a region of the 

x1    x2    x3     x4    x5 ……... xn  Input feature vector  

wji 

A neuron                           Kohonen Map 



An FPGA based real-time image classification system 

20 

Kohonen map to be associated with different pattern or class. Figure 3.2 has 

shown a complete idea about the winning node and its neighborhood region.  

 

 

Figure 3.2: A Kohonen network with winning node and neighbourhood region 

 The normal method to deal with Kohonen map is to initialize weights of 

the neurons and standard neighborhood region. The initial weight values are 

chosen randomly with a value between 0.45 and 0.55. A neighborhood size of 5 is 

fair enough for a Kohonen map of 10 x 10 neurons.  

 The inputs data is mostly normalize for the application. Normally this 

normalization method varies in different application. All input data are given to 

the Kohonen map to all neurons.  

 The next step is to determine the Euclidean distance between the weight 

vector and the input vector of each neuron. Equation 3.11 represents the 

Euclidean distance measurement equation. Basically this computes the Euclidean 

The winning neuron 
 
A neighbourhood 
neuron 
 
 
The neighbourhood 
region 
 
 
 
 
 
 

Kohonen Map 



An FPGA based real-time image classification system 

21 

distance )( jd  between the input pattern (x) and the network connection weights 

ijw  of each neuron. The connection to jth neuron from ith input feature of the 

pattern is represented by the suffix ij. As described earlier the winning node or 

winning neuron will be the neuron associated with the smallest Euclidean 

distance. Equation 3.11 computes the value of )( jd  for jth neuron with each input 

pattern has N elements. 

 

Euclidean distance: 





1

0

2)(
N

i

ijij wxd         (eqn. 3.11) 

 

Where xi is the input to i and wij is the weight from input node i to output 

node j. 

 For simplicity of the calculation sometimes Euclidean distance calculation 

can be replaced by Manhattan distance. This is basically the summation of the 

absolute distances )( jd  measured between the input vector xi and the weight 

vector wij.  The Equation 3.12 represents the mathematical form of Manhattan 

distance calculation. 

 

Manhattan distance (“L1 Norm”): 



k

i

ii yx
1

||                      (eqn. 3.12) 

 

 Now the weights of the neurons in the Kohonen map needs to be updated. 

The neuron corresponding to the minimum distance is the winning node. The 

weights of the winning node and the neighbourhood region around the winning 

node are updated with the following update rule referred in Equation 3.13: 

 

))()()(()()1( nwnxnnwnw ijiijij      10  Nifor              (eqn. 3.13) 

 



An FPGA based real-time image classification system 

22 

 Where )1( nwij  is the updated weight, )(n is the learning rate and the term 

)( iji wx   represents the error. The value of the learning rate normally lies 

between 0 and 1 and it controls convergence speed and stability. The value of the 

learning rate is normally determined experimentally. The learning process is 

iterative and continues until the network has converged satisfactorily.  At the 

same time at predefined intervals the learning rate and the neighborhood size 

are gradually reduced. Normally a monitoring process has employed at regular 

intervals for the performance of the network. A network is said to be converged 

when the patterns of the same category active neurons in the same regions of the 

Kohonen map [11]. 

   

3.4 K-Means Clustering   

 Clustering is an unsupervised learning technique which allows a set of 

recorder data to be partitioned into two or more group [11]. The idea has been 

illustrated in figure 3.3 

 

 

Figure 3.3: The role of clustering algorithm 

The K-means algorithm clusters the objects based on attributes into k 

partitions [15]. The goal of this algorithm is to determine the k means of data 

generated from Gaussian distributions. The object attributes are asumed to be in 

 

 

 

 
A 

 

 

 

 

 
B 

 

Clustering 
Algorithm 



An FPGA based real-time image classification system 

23 

a vector space. It tries to minimize total intra-cluster variance which can be 

represented by the equation 3.14  

   
 


k

i Sj

ij

i

xV
1

2||                               (eqn. 3.14) 

 Where there are k clusters Si, i = 1, 2... k and μi is the centroid or mean point 

of all the points ij Sx 
. 

 The k-Means algorithm starts by partitioning the input points into k initial 

sets, either at random or using some heuristic data and calculates the mean point 

or centroid [15]. A new partition is then formed by associating each point with 

the closet mean. The algorithm is then repeated until convergence which is 

obtained when the points now longer switch between clusters.  

 

3.5 Field Programmable Gate Array (FPGA) 

 A Field Programmable Gate Array (FPGA) is a reconfigurable hardware 

which containing programmable logic and programmable interconnects [14]. A 

combinational or sequential logic can be programmed with the help of basic gate 

functions. The FPGAs are capable of handling a hardware implementation of 

simple or complex mathematical function and formulae. In most of the FPGAs 

the programmable logic components (commonly called logic elements [LE]) 

consists of basic gates like AND, OR, XOR etc. and also include memory element 

like a simple flip-flop or more complex block of memories.   

 The programmable interconnects with proper hierarchy allows logic 

elements (LE) of the FPGA to be interconnected as required by the hardware 

designer. The logic elements and the interconnections among them can be 

programmed after the manufacturing process by the designer. A custom made 

design is possible depending on the application requirement. And hence it is 

called field programmable and so the FPGA can perform whatever logical 

function is needed.  Though FPGAs are slower than a application specific 



An FPGA based real-time image classification system 

24 

integrated circuit (ASIC) and some more pros, designer prefer to use an FPGA 

because of their reconfiguration facility (probably easy to fix a bug) and lower 

non-recurring cost. 

 Now-a-days FPGAs have a very wide range of application field including 

DSP, software defined radio, aerospace, defence systems, ASIC prototyping, 

medical imaging, computer vision, bio-informatics etc. [14]. FPGAs especially 

find applications in any area or algorithm that can make use of the massive 

parallelism offered by their architecture. 

 

 

Figure 3.4: the Altera EP1S80 development board 

 The FPGA hardware used in this thesis is the Altera Stratix EP1S80 (by 

EPSRC Nanorobotics project GR/S85696/01), shown in Figure 3.4. The EP1S80 

device from Altera Corp. is one of the largest 0.13-micron FPGA devices 

available. This board consists of 79,040 logic elements (LEs), 7.2 Mbits of 

embedded RAM, and 1,238 user I/Os. This board is a powerful development 

platform for digital signal  Funded processing (DSP) designs, and features the 

Stratix EP1S80 device in the fastest speed grade (-6) 956-pin package. It consists 

of two 12-bit 125-MHz A/D converters, two 14-bit 165-MHz D/A converters, 

single ended or differential inputs and single-ended outputs, 2 MBytes of 7.5-ns 



An FPGA based real-time image classification system 

25 

synchronous SRAM configured as two independent 36-bit buses, 64 Mbits of 

flash memory, dual seven-segment display, one 8-pin dipswitch, three user-

definable pushbutton switches, one 9-pin RS-232 connector, two user-definable 

LEDs, on-board 80-MHz oscillator and a single 5-V DC power supply. For 

debugging interfaces, two Mictor-type connectors for Hewlett Packard (HP) logic 

analyzers and several 0.1- inch headers are available. 

 

3.6 IEEE 754 Floating Point Format 

 IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) is the most 

common representation for real numbers in computers. IEEE 754 specifies four 

formats for representing floating-point values: single-precision (32-bit), double-

precision (64-bit), single-extended precision (≥ 43-bit, not commonly used) and 

double-extended precision (≥ 79-bit, usually implemented with 80 bits) [12]. The 

main IEEE standard is described under the title of IEEE Standard for Binary 

Floating-Point Arithmetic (ANSI/IEEE Std 754-1985), and it is also known as IEC 

60559:1989, Binary floating-point arithmetic for microprocessor systems 

(originally the reference number was IEC 559:1989) [12]. 

 This part of the thesis will describe the normal formats used in 32 bit 

single precision floating point number. Normally IEEE 754 numbers have three 

basic components: 

 Sign 

 Exponent 

 Mantissa 

Usually the Mantissa is composed of the fraction and an implicit leading digit 

[13]. 

 There are two basic number formats in IEEE 754: single precision and 

double precision. Table 3.1 shows the formats for single and double precision 

floating point numbers. The number of bits for each filed are shown below where 

as bit ranges are in square brackets.  



An FPGA based real-time image classification system 

26 

 

 Sign Exponent Fraction 

Single Precision 1[31] 8[30-23] 23[22-0] 

Double Precision 1[63] 11[62-52] 52[51-0] 

Table 3.1: IEEE 754 floating point number format  

 

The sign bit represents the sign of the number. 0 denotes the positive 

number, where as a 1 denote a negative number. 

 The next field is the exponent field which needs to be represented both 

positive and negative exponents. For this purpose a bias is added to the actual 

exponent to get the stored exponent. A bias value of 127 is added for a single 

precision number (8 bit) and a double precision number (11 bit exponent) has a 

bias of 1023. For example a stored value of 167 indicates an exponent of (167 - 

127) or 40 in single precision value. On the other hand an exponent of 5 means 

that (127 + 5) or 132 is stored in the exponent field in a single precision value. 

 The Mantissa represents the precision bits of the floating points. The 

Mantissa normally has an implicit bit and 23 fraction bits for a single precision 

number or 52 fraction bits for a double precision number.  The floating point 

numbers are typically stored in normalized form to put the radix after the first 

non-zero digit. In a base 2 binary number has only possible non-zero number ‘1’ 

and thus the IEEE 754 format does the optimization by assuming a leading digit 

of 1 where it is not represented explicitly. So the Mantissa has effectively 24 bit 

resolution by way of 23 fraction bits.  

 There are some special cases available in IEEE 754 format and those are 

listed below for reference only: 

 Zero 

 NaN (Not a Number) 

 Demoralized number 

 



An FPGA based real-time image classification system 

27 

 

3.7 Summary 

 This chapter here has discussed about the related theory of the 

implemented algorithm. The algorithm is mainly based on two popular and well 

studied theories namely Hu’s moment invariant and Kohonen Neural network. 

The theories discussed here tried to give a general overview rather than a detail 

derivation or analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



An FPGA based real-time image classification system 

28 

 
 
Chapter 4: Methodology and 

Algorithmic Development  
 

 
4.1 Introduction 

Methodology and Algorithmic Development have been discussed and 

described in this chapter. The basic system diagram of the complete architecture 

of the proposed vision system is shown in Figure 4.1. As mentioned previously, 

classifying of objects consists of two modes, the training mode and the 

classification mode. The Otsu thresholder is commonly used to automatically 

binarise images by optimising a threshold level.  

The whole implementation procedure has been divided in 3 parts:  

i) Moment invariant computation, 

ii) Training of the system  

iii) Classification mode. 

 

4.2 Moment Invariant Computation 

In this mode, sample 2-D objects (patterns) are captured via a composite 

camera. The gray-valued image is then thresholded and the binarised values are 

presented to the system. The Hu descriptors that represent the pattern in the 

image are then extracted.  

Floating point calculations have been achieved by using the Altera 

Megacore library or by using the author’s own floating-point implementation. 

Implementation in hardware has been achieved using VHDL code with Altera 

Quartus II software.  



An FPGA based real-time image classification system 

29 

 

Figure 4.1: Training and classifying objects (the proposed system) 

 

 To ease and reduce computation, the moment computation is simplified 

by replacing all floating point powers with its nearest integer values. This has 

been experimentally observed to produce good results.  

 Virtually all the operations of the algorithm have been mapped in parallel. 

This parallel operation significantly increases the speed of the system. Single 

Altera Stratix FPGA 

camera Analogue 
capture card 

ADC 

Otsu's  
automatic  
thresholder 

Extraction of 
Hu's moment 

invariants 

Kohonen 
neural network 
for clustering 

32Mb Flash memory  
for system values 

and known classes 

2Mb SRAM for  
new object and  
temporary data 

Final  
classification 

To LED display and/or 
control loop 

Training 
path 
Classification 
path 



An FPGA based real-time image classification system 

30 

precision floating point values have been used for all computation and conform 

to the IEEE 754 standard. 

  

Figure 4.2: Algorithm for moment calculation. 

 As this work is a proof of a concept implementation, the input image matrix 

is hardcoded in VHDL. The computed seven moments have been used in the 

next stage of the system either for training (in the training mode) or classification 

(detection mode). The algorithm for the moment computation is shown in figure 

4.2. The input data is iterated through in a sequential manner and then the 

different moment values have been calculated. After obtaining all moments the 

computation of the µ parameters (essentially high order moments) are computed 

in parallel mode. The µ values are required to compute η as shown in equation 

[3.4 to 3.10]. The final seven Hu moment invariants are calculated and passed on 

to the next phase. 

Input to the system 

Moment Calculation 

 Calculation 

η Calculation 

Hu Calculation 



An FPGA based real-time image classification system 

31 

4.3 Training of the System 

 

Figure 4.3: Algorithm for Kohonen training and clustering 

   

Input: Hu’s invariant 

Initialise weight vector 

Calculate Manhattan Distance for each 
neuron 

Find the winning node 

Update weights of winning node and 
neighbourhood region 

Apply next set of input 

Error < threshold 

Store updated weight vector for all 
neurons 

No 

Yes 

k-Means clustering to add identification 
tag to each neuron 

Store neuron weight value along with 
identification tag 



An FPGA based real-time image classification system 

32 

  The training of the Kohonen ANN is currently implemented in 

MATLAB but the generated weight vectors are used in hardware. The proposed 

system is organised as follows. The Kohonen neural network will self-organise 

around the descriptors. The map that is produced is then stored onto non-

volatile flash memory, so that it may be used later during the classification. The 

algorithm for the training part is shown in figure 4.2. A 2-dimensional neuron 

map is mapped with a random weight initialisation (The random weights are 

between 0.45 and 0.55). Seven weights are associated with each neuron. The 

input parameters are then fed to the ANN to find the Manhattan distance 

(Equation 4.1) for each neuron. The Manhattan distance is given as: 

 

Manhattan distance (“L1 Norm”): 



k

i

ii yx
1

||                   (eqn. 4.1) 

 The neuron corresponding to the minimum distance is the winning node. 

The weights of the winning node and the neighbourhood region around the 

winning node are updated with the following update rule: 

 

))()()(()()1( nwnxnnwnw ijiijij             10for  Ni               (eqn. 4.2) 

 Where )1( nwij  is the updated weight, )(n is the learning rate and the term 

)( iji wx   represents the error. The value of the learning rate normally lies 

between 0 and 1 and it controls convergence speed and stability. The learning 

process is iterative and continues until the network has converged satisfactorily.  

 To identify the different sets of neurons, a k-Means clustering algorithm is 

applied and one identification tag is attached to each neuron. The Manhattan 

distance measurement is applied again for clustering purpose. The k-Means 

clustering algorithm has been discussed in chapter 3.  



An FPGA based real-time image classification system 

33 

4.4 Classification Mode   

 In classification mode, the weight vector map is first recalled from flash 

memory. Incoming patterns are stored onto the high speed SRAM in order to 

increase performance. The new pattern is then matched against the patterns 

stored on the Kohonen map and a final classification is produced. As described 

earlier a set of eight parallel neurons have been used for the detection of an 

unknown object. After obtaining the moment invariants of the unknown images 

it is passed to the inputs of the neurons. The Manhattan distance is then 

measured for each neuron. The minimum distance is now detected and the 

associated neuron with the minimum distance is declared as the winning node. 

The identification tag is then simulated and corresponding outputs are activated. 

Figure 4.4 represents the algorithm for classification mode. 

 

 

Figure 4.4: Algorithm for classification mode 

Input: Hu’s invariant and  
Load weight vectors for all neurons 

Manhattan distance computation for each neuron 

Find the winning node with min dist 

Identification tag associated with winning node is the class 
of unknown object 



An FPGA based real-time image classification system 

34 

The complete system response and timing analysis is discussed in the results and 

discussion section. It has been observed that the response time for the system 

yields a good result due to the parallel design.  

 

4.5 General Discussion on VHDL Implementation of Algorithm 

 The project has been coded in VHDL. VHDL is a very powerful high level 

hardware description language. Some problems have been addressed during the 

code implementation. These are described below for future reference. 

o VHDL code normally generates all parallel hardware unlike a sequential 

C / C++ compiler. For implementation of a sequential algorithm, it is 

necessary to handle with the system clock information. A clock transition 

can control the sequential operation. 

o Software engineers probably love to play with floating point numbers. On 

the contrary a hardware engineer does not like to handle floating points. 

IEEE 754 numbering formats are followed to implement a floating point 

number. As off now a floating point calculation is not included in VHDL 

IEEE library. As a result arithmetic operations need to be designed 

separately.  

In this project, maximum calculations are based on floating point values. 

Altera Megacore library provides some of the floating point arithmetic like 

addition, subtraction, multiplication etc. The project used a floating point 

division code from RARE project [19]. Other floating point operations like 

integer to floating conversion etc. are implemented by the author.  

o Use of floating point library from Altera (specially Multiplication DSP 

block) demands more logic elements (LE). Currently the code can not be 

compiled fully in a Stratix board. In stead we used Stratix II environment. 

An optimisation of the code and separate floating point multiplication 



An FPGA based real-time image classification system 

35 

implementation will be useful to accommodate and compile the full code 

in a Stratix board only. 

o In some cases the same hardware block can be used instead of generating 

the hardware every time. This is mainly possible where a sequential logic 

works.  

 

4.6 Explanation of VHDL Code 

  In this part of the thesis the implemented VHDL code has been explained 

briefly. For the testing purpose, images have been predefined in the code. The 

following part of the code has defined a 20x20 matrix of image. 

 ---- 

  pic1(0) <=  "0001111111111111"; 
  pic1(1) <= "0011111111111111"; 
  pic1(2) <= "0010111111111111"; 
  pic1(3) <= "0011111111111111"; 
  pic1(4) <= "0011111111111111"; 
  pic1(5) <= "0011111111111111"; 
  pic1(6) <= "0011011111111111"; 
  pic1(7) <= "0011111111111111"; 
  pic1(8) <= "0111111111111111"; 
  pic1(9) <= "0010111111111111"; 
  pic1(10) <=  "0011111111111111"; 
  pic1(11) <=  "0011101111111111"; 
  pic1(12) <=  "0011111111111111"; 
  pic1(13) <=  "0011111101111111"; 
  pic1(14) <=  "0011111111111111"; 
  pic1(15) <=  "0111111111111111"; 
 ---- 

 The initial calculation is based on the black pixels available on the white 

background. Though normally white pixels are represented by ‘1’ and black by 

‘0’ , here black is represented by ‘1’ and white is ‘0’ for testing purpose. The 

following part of the code has shown the sequential operation of the initial 

calculation and accumulation of moment values. The sequential operation is 

handled by the system clock: 

 process(clk,en_signal,count,en_count,x1,x2,x3,y1,y2,y3,m11,m12,m13……) 
 begin 
  if(clk'EVENT AND clk='1') then --the calculations are based on clock cycle 
   en_count<=en_count+1; 



An FPGA based real-time image classification system 

36 

    
   if(y<16)then 
   if(x<16)then 
    
   if(pic1(y)(x)='1' AND en_count=1)then 
    en_signal<='1'; 
    count<=count+1;           --1 clock cycle is simulated in 10ns 
     
--Calculations start here || Pipeline architecture used here  
 
    y1<=y; 
    x1<=x; 
     
 
--First phase data update, assumed clock cycle 4  
     
    if(count=1)then 
     y2<=y1*y1; 
     x2<=x1*x1; 
      
     m11<=m11+1;  
     m12<=m12+y1; 
     m21<=m21+x1; 
     m22<=m22+x1*y1;  
      
    end if; 
 
--2nd phase data update, assumed clock cycle 8  
      
    -------- 
      
--3rd phase data update, assumed clock cycle 8 
 
   -----------------  
       
  end if; 
   
 end process;   
 

The calculation so far has been done with integer number. To calculate eta 

and Hu’s invariant, we need to have floating point number. A function called 

int2fp.vhd converts integer to 32 bit single precision floating point.  

----------------------------------------------------------------------------------- 
- Integer to IEEE 754 Floating Point format conversion 
----------------------------------------------------------------------------------- 
ENTITY int2fp IS 
 
PORT (input : integer range 0 to 100000; 
     
   fp_op : OUT STD_LOGIC_VECTOR(31 downto 0)); 
 



An FPGA based real-time image classification system 

37 

 
END int2fp ; 
 
 
ARCHITECTURE Behavior OF int2fp IS 
 
signal int_ip : STD_LOGIC_VECTOR(31 downto 0); 
signal sign_bit : STD_LOGIC ; 
signal exponent : STD_LOGIC_VECTOR(7 downto 0); 
signal mentissa : STD_LOGIC_VECTOR(22 downto 0); 
 
BEGIN 
 
 int_ip<=(conv_std_logic_vector(input,32)); 
 
 sign_bit<='0';   
  
 process(int_ip) 
 begin 
  if(int_ip(31)='1')then  
   exponent<=X"9E"; 
   mentissa<=int_ip(30 downto 8); 
    
  elsif(int_ip(30)='1')then 
   exponent<=X"9D";   
   mentissa<=int_ip(29 downto 7); 
    
  -------------- 
  --------------------- 
    
  elsif(int_ip(1)='1')then 
   exponent<=X"80";   
   mentissa(22)<=int_ip(0); 
   mentissa(21 downto 0)<=(OTHERS=>'0'); 
    
  elsif(int_ip(0)='1')then 
   exponent<=X"7F"; 
   mentissa(22 downto 0)<=(OTHERS=>'0'); 
    
  end if; 
   
 end process; 
 
fp_op(31)<=sign_bit; 
fp_op(30 downto 23)<=exponent; 
fp_op(22 downto 0)<=mentissa; 
 
 
END Behavior; 

  



An FPGA based real-time image classification system 

38 

 The next part of the code implements the eta calculation and Hu’s moment 

invariants. The code can be found in the appendix. 

 The next part of the code is for classification mode. All parallel neurons 

are implemented in VHDL: 

---------------------------------------------------------------- 
--   COMPUTATION FOR NEURON 1                          -- 
----------------------------------------------------------------  
 addr1_1<=X"000"; 
 addr1_2<=X"001"; 
 addr1_3<=X"002"; 
 addr1_4<=X"003"; 
 addr1_5<=X"004"; 
 addr1_6<=X"005"; 
 addr1_7<=X"006"; 
 im_type(0)<=X"007"; 
  
  
 mem_read1_1: rom 
 port map (addr1_1,clk,mem1_1); 
 mem_read1_2: rom 
 port map (addr1_2,clk,mem1_2); 
 mem_read1_3: rom 
 port map (addr1_3,clk,mem1_3); 
------- 
----- 
user_add8_6: mega_add 
 port map 
(clk,add8_27,add8_46,dummy_sub_nan,dummy_sub_overflow,distance(7),dummy_sub_underflow); 
 
-------------------------------------------------------------------- 
--   CALCULATION END FOR NEURON 8 
--------------------------------------------------------------------  
 

Finally the shortest distance has been found out in order to find the 

winning node and the corresponding class. The following part of the VHDL code 

performs that operation.  

process(clock,distance(0),distance(1),distance(2),distance(3),distance(4),distance(5),distance(6),dis
tance(7)) 

 begin 
   
 if(clock'EVENT AND clock='1') then --the calculations are based on clock cycle 
   count2<=count2+1; 
------- 
-------- 
 
    temp<=distance(0); 
    index <= 0; 



An FPGA based real-time image classification system 

39 

 
  end if; 
   
  if (count2 = 21) then 
   if (temp > distance(1))then 
    temp<=distance(1); 
    index <= 1; 
   end if; 
  end if; 
---------------------- 
----------------------- 
  if (count2 = 26) then 
   if (temp > distance(6))then 
    temp<=distance(6); 
    index <= 6; 
   end if; 
  end if; 
   
  if (count2 = 27) then 
   if (temp > distance(7))then 
    temp<=distance(7); 
    index <= 7; 
   end if; 
  end if; 
  end if; 
     
 end process; 
 
 mem_read_final: rom 
 port map (im_type(index),clock,test1); 
 
 

4.7 Discussion on MATLAB Coding of Training Algorithm 

 The training of the system has been implemented with MATLAB coding. 

A database of seven Hu’s moments is created using different predefined images. 

More the 75 images have been used for training purpose. This data base has been 

called in the MATLAB program and the training procedure has performed. 

Finally the updated weight values are stored in a separate database. The updated 

weight values of the trained neurons have been used for the classification mode 

which has been implemented in VHDL. The Kohonen Neural network updates 

the weight for neuron and clustering algorithm gives identification of different 

classes.  

 



An FPGA based real-time image classification system 

40 

4.8 Summary 

 This chapter mainly discussed about the algorithmic implementation of 

the project. As a proof of concept predefined images has been used in place of a 

real image. Probably the next phase of the project will overcome this and deal 

with real images. Few problems have been addressed during the VHDL 

implementation. The success of the concept has been proved in the result and 

discussion chapter. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



An FPGA based real-time image classification system 

41 

 
 
Chapter 5: Discussion 
 

 
5.1 Introduction 

 So far the thesis described different aspect of the project namely literature 

survey, theory, implementation etc. This chapter shows the result of the system. 

It also analysed whether the concept is pragmatic. Different pros and cons of the 

exploration and implementation are also reflected here. 

  

5.2 Result & Timing Analysis 

 The algorithm has been implemented in synthesizable VHDL code and a 

timing analysis has been performed. The simulation results exhibit a very good 

system timing performance, and the results indicate that the concept design 

fulfils the requirement for real time object recognition. As the algorithm is 

divided in three parts, the thesis has also analysed the result separately.  

 

5.2.1 Moment Calculation 

 

 

Figure 5.1: Timing analysis of Moment Calculation 



An FPGA based real-time image classification system 

42 

The timing analysis of Hu’s moment invariant calculation is shown in 

figure 5.1. The processing of input data consumes the most time in this part. For 

a 20x20 pixel input image it took an average of 22.47 milliseconds whereas the 

rest of the computation of Hu’s invariant required approximately 1.5 

milliseconds to complete (refer to table 5.1).  

This is due to the number of sequential operations performed. If the input 

variables can be processed in parallel, the time response could be significantly 

improved. The floating point calculations, however, have been implemented 

efficiently as can be seen from the results.  

 

5.2.2 Training of the System 

 

 

Figure 5.2: Predefined test images for two different classes 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 Basic image for class I   Basic image for class II 

 



An FPGA based real-time image classification system 

43 

As said earlier, the training of the system has been performed through a 

MATLAB programme. During the training phase, Hu’s seven moment 

descriptors have been taken as the input vectors and calculated accordingly. In 

this project two types of pre-defined images (shown in figure 5.2) have been 

taken for the training purpose. Around 75 different images of these two classes 

have been prepared for the training purpose. It has been observed that the 

classification stage has an accuracy of 95% (with a classification of 20 unknown 

images of similar kind). 

 

5.2.3 Classification Mode  

 

Figure 5.3: Timing analysis of Object Classification mode 

The object classification mode indicates a good response time with parallel 

operation of trained neurons. For this application, eight neurons are designed to 

run in parallel, providing a response time of 310-360 nanoseconds, as shown in 

figure 5.3. 

 

5.3 Analysis & Discussion for Real Time Object Classification 

 The timing analysis shows that the system requires an average of 24 

milliseconds (average) for the detection of an unknown object. This indicates that 

even with the sequential computations in parts of the design, a recognition rate 

of 40 fps (frames per second) is achievable. 



An FPGA based real-time image classification system 

44 

 

 Hu’s Moment Classification Mode 

i/p cal other calculation total 

Time 23 ms 1.5 ms 24.5 ms 310-360 ns 

Table 5.1: Average time for different calculations 

 

5.4 Summary 

 This chapter discussed about the result obtained during the experiment. It 

also discussed the exploration of the new concept. As a proof concept this project 

has shown a commendable result with a good future prospect with the given 

approach. A continuation of the similar work will be able to make a single board 

FPGA system for a real time image recognition classification with a very good 

time response.    

 
 
 
 
 
 
 
 
 
 
 



An FPGA based real-time image classification system 

45 

 
 
Chapter 6: Conclusion and Future 

Work 
 

 
6.1 Introduction 

 This chapter concludes the thesis and discusses about the possible future 

work that may be carried out. This thesis has addressed various aspects of the 

project. The introduction chapter provided an overview of the work and the 

motivation of the project. The following sections describe the theoretical aspects 

and the algorithm development. Finally the result and discussion completed the 

work.  

 

6.2 Conclusion 

 In this thesis, we have demonstrated a possible solution of classifying 

objects in real-time using an FPGA solution. Object features are represented 

using Hu's moment invariant method, and an onboard Kohonen artificial neural 

network is used for initial clustering. This implementation uses the Altera Stratix 

FPGA device, which has the capability of performing complex mathematical 

operations. The estimated time to recognise an unknown object (20x20 pixels) is 

24 milliseconds. We have shown that the classification of objects can be achieved 

using a single Altera Stratix board. The use of multiple FPGA boards working in 

parallel, however, can enhance system performance. At present, the input pixels 

to the system and the initial moment calculations are performed sequentially. As 

this is the most time consuming aspect of the process, overall system 

performance can be further improved by using a parallel implementation.  

 



An FPGA based real-time image classification system 

46 

6.2.1 Why FPGA 

 The motivation of the project was to build an image recognition and 

classification system with a very good response time. A dedicated and 

customised hardware is always preferred in place of a software running in 

generalize computer. Obviously a stand alone and separate equipment for this 

purpose makes the whole system more robust and reliable, hence the idea of 

using reconfigurable hardware. The FPGAs offers a solution to the need for 

reconfigurable hardware. Normally FPGAs are more cost effective than 

designing a custom made ASIC. Also FPGAs can be reprogrammed to fix a bug 

or upgrade a system. Hence FPGAs are a natural selection of hardware designer. 

 

6.2.2 Implementation of ANN on FPGA 

 Artificial Neural Networks are a powerful tool for machine intelligence. 

The ANN is based on the principle of human neuronal system. The main feature 

addressed by ANNs is the ability to operate in parallel. This feature of the ANN 

speeds up the system as compared to a traditional sequential computer. A true 

parallel system can never be realised in a general purpose sequential computer. 

The only solution is to use a neural-processor or design a dedicated parallel 

hardware.  Hence the idea of use of a FPGA comes again. Hardware designer can 

easily accommodate a truly parallel hardware inside a FPGA. 

  

6.2.3 Potential Pros & Cons 

The project described has tried to explore the opportunities of image 

recognition system in FPGA board. During the experiment a few pros and cons 

have been found out.   

Probably a FPGA solution is one of the best possible solutions to address 

the problem. FPGA can be programmed easily with high level hardware 

description language like VHLD, Verilog, System C etc. A block diagram design 



An FPGA based real-time image classification system 

47 

can also be useful. The FPGA operation can be simulated after the compilation of 

the program. It is easy to debug and test the system with simulation. A complete 

timing diagram gives the opportunity for analysis of the system.  

However some problems exist. Apparently simple arithmetic operations 

might be complicated when implanted on FPGA. As an example, the use of 

floating point operation will make the FPGA system complex. In comparison 

with ASICs, FPGAs are generally slower. An interconnect delay sometimes plays 

a significant delay in overall system performance. So far the best available 

FPGAs have their system clocks rated in MHz where as a simple computer has 

system clocks running in the GHz range.  

Now-a-days very advanced FPGAs are available in the market. But still 

numbers of logic elements are not sufficient enough to address certain problems. 

For example we have finally simulated the project in the Stratix II environment 

instead of available Stratix board. By optimising further, we may be able to  

accommodate the system on a single Stratix board. In the case of onboard online 

training which is proposed as future work, this limitation may play a vital role 

and good optimisation is required in order address this factor. 

 

6.3 Future Work 

 The main aim of the project was to build a stand alone system for image 

recognition using a single FPGA board. But due time constraints some of the 

targetted features could not be implemented or explored during this project. 

Hence some future work has been proposed for the next stage of advancement.   

 

6.3.1 Online Training 

 So far the training of the system has been performed using a MATLAB 

program. In future work, the onboard and online training of the Kohonen ANN 

will be addressed. The updated weight vectors of the neurons will be stored in 



An FPGA based real-time image classification system 

48 

the memory of the FPGA board, and will be made accessible during the 

classification mode.  

 

6.3.2 System Integration with Camera Interface 

The camera interface is currently simulated by uploading image data 

directly to the FPGA board. This has been successful as a proof of concept. But in 

order to deploy the system in a real working environment a camera interface is 

required in order to enable it to grab and classify images in real time. The Stratix 

FPGA development board has a number of interface options through high speed 

A/D converter or a RS 232 serial interface.  

 

6.4 Summary 

 The current constraint of the system is the capacity of the FPGA board. By 

using a larger FPGA, the number of neurons can be increased and hence more 

parallel operations can be performed. Further code optimisation is also possible 

and some of the implemented sequential operations can be replaced by parallel 

hardware design. The use of multiple boards for a single system will also 

enhance the system performance. We have demonstrated that it is possible to 

build a full imaging system on a single FPGA board. As a proof of concept, the 

VHDL simulation has been conducted using the Altera Quartus II software 

environment. Analysis from timing diagrams has shown promising results.. 

 

 
 
 
 



An FPGA based real-time image classification system 

49 

 
 
Reference and Bibliography 
 
 

[1] M-K. Hu, “Visual pattern recognition by moment invariants”, IRE Trans. on 

Information Theory,  vol 8, pp. 179-187, 1962. 

 

[2] S. Hirai, M. Zakouji and T.Tsuboi, “Implementing Image Processing 

Algorithms on FPGA-based Realtime Vision System”, Proc. 11th Synthesis 

and System Integration of Mixed Information Technologies (SASIMI 2003), 

pp. 378-385, Hiroshima, April, 2003. 

 

[3] P.C. Arribas and F.M-H. Maciá, “FPGA implementation of Santos-Victor 

optical flow algorithm for real time image processing: an useful attempt”, 

Proceedings of SPIE's International Symposium on Microtechnologies for the 

New Millennium 2003 - Conference on VLSI Circuits and Systems, pp. 23-32, 

Canary Islands, Spain, May 19-21, 2003. 

 

[4] P.J. Sanz, R. Marin and J.S. Sanchez, "Including efficient object recognition 

capabilities in online robots: from a statistical to a Neural-network classifier," 

IEEE Transactions on Systems, Man and Cybernetics, Part C, vol.35, no.1, pp. 

87- 96, February, 2005. 

 

[5] T. Kohonen, “Automatic formation of topological maps of patterns in a self-

organizing system”, Proceedings of 2nd Scandinavian Conference on Image 

Analysis, Espoo, Finland, pp. 214--220, 1981. 

 



An FPGA based real-time image classification system 

50 

[6] S. Neema, J. Scott, T. Bapty, “Real time reconfigurable image recognition 

system”, Proceedings of the 18th IEEE Instrumentation and Measurement 

Technology Conference, 2001. Volume 1, 21-23 May 2001, pp. 350 - 355 vol.1 

 

[7] F. Mohd-Yasin, A.L. Tan, M.I. Reaz, “The FPGA prototyping of iris 

recognition for biometric identification employing neural network”,  

Proceedings of The 16th International Conference on Microelectronics, ICM 

2004. 6-8 Dec. 2004, pp. 458 – 461 

 

[8] J. Jean, Liang Xiejun, B. Drozd, K. Tomko, “Accelerating an IR automatic 

target recognition application with FPGAs”, Proceedings of Seventh Annual 

IEEE Symposium on Field-Programmable Custom Computing Machines, 

FCCM '99. 21-23 April 1999, pp. 290 – 291 

 

[9] N. Aibe, M. Yasunaga, I. Yoshihara, J.H. Kim, “A probabilistic neural network 

hardware system using a learning-parameter parallel architecture”, 

Proceedings of the 2002 International Joint Conference on Neural Networks, 

IJCNN '02., Volume 3, 12-17 May 2002, pp. 2270 – 2275 

 

[10] Yuk Ying Chung, Man To Wong, Neil W. Bergmann, “High speed neural 

network based classifier for Real-time application”, Proceedings of ICSP '98, 

pp. 506 – 509 

 

[11] Dr. R. Saatchi, Handout given in classroom & laboratory session (16-7206-

00S Artificial Intelligence), February - April 2006, Sheffield Hallam University 

 

[12] http://en.wikipedia.org/wiki/IEEE_754 last visited on 14.09.2006 

 

 

http://en.wikipedia.org/wiki/IEEE_754%20last%20visited%20on%2014.09.2006


An FPGA based real-time image classification system 

51 

[13] Hsiao-Fen Fu, IEEE 754 Floating Point, CSCI 313 Tutorial, 

http://ftp.csci.csusb.edu/schubert/tutorials/csci313/w04/HsiaoFenFu_Tuto

rial_IEEE%20754%20Floating%20Point.pdf last visited on 14.09.2006 

 

[14] http://en.wikipedia.org/wiki/FPGA last visited on 14.09.2006 

 

[15] http://en.wikipedia.org/wiki/K-means_clustering_algorithm last visited 

on 14.09.2006 

 

[16] http://en.wikipedia.org/wiki/Image_moments  last visited on 14.09.2006 

 

[17] A. Ashbrook and N. A. Thacker, Tutorial: Algorithms for 2-Dimensional 

Object Recognition, Tina Memo No. 1996-003, Imaging Science and 

Biomedical Engineering Division, Medical School, University of Manchester 

 

[18] P.J. Sanz, R. Marin and J.S. Sanchez, "Including efficient object recognition 

capabilities in online robots: from a statistical to a Neural-network classifier," 

IEEE Transactions on Systems, Man and Cybernetics, Part C, vol.35, no.1, pp. 

87- 96, February, 2005. 

 

[19] http://www.imappl.org/~cgloster/rare/vhdl/ last visited on 14.09.2006 

 

[20] Timothy Masters, “Signal and Image Processing with Neural Networks, A 

C++ Sourcebook”, John Wiley & Sons, Inc., New York, 1994 

 

[21] William Kleitz, Digital Electronics with VHDL quartus II Version, Prentice 

Hall, 2006, New Jersey 

 

 

http://ftp.csci.csusb.edu/schubert/tutorials/csci313/w04/HsiaoFenFu_Tutorial_IEEE%20754%20Floating%20Point.pdf
http://ftp.csci.csusb.edu/schubert/tutorials/csci313/w04/HsiaoFenFu_Tutorial_IEEE%20754%20Floating%20Point.pdf
http://en.wikipedia.org/wiki/FPGA%20last%20visited%20on%2014.09.2006
http://en.wikipedia.org/wiki/K-means_clustering_algorithm%20last%20visited%20on%2014.09.2006
http://en.wikipedia.org/wiki/K-means_clustering_algorithm%20last%20visited%20on%2014.09.2006
http://en.wikipedia.org/wiki/Image_moments
http://www.imappl.org/~cgloster/rare/vhdl/

