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Abstract - In this paper, the use of moment invariants 

and Kohonen neural networks for real time object 

classification is addressed. The implementation of such 

a scheme using a reconfigurable hardware FPGA 

(Field Programmable Gate Array) device is described. 

In the image processing stage, the Hu’s moment 

invariants algorithm has been implemented in 

hardware, and the issues surrounding this 

implementation is discussed. Following the image 

processing stage, a neural network is employed for the 

classification stage. By using the Kohonen unsupervised 

neural network the system is essentially self-supervised 

and it is able to perform an all parallel neural 

computation for classification purposes. A discussion of 

the concept and real simulation results are provided. 

Keywords: Moment invariants, FPGA, real-time, object 

recognition, Kohonen self-organising maps. 

   

1 Introduction 

 The requirement for the recognition and 

classification of objects in real-time is important for 

many real world tasks, especially in robotics and 

industrial-type applications. A variety of blob and shape 

based algorithms exist, but many of these do not meet 

real-time constraints. 

 In recent times, with the advent of sophisticated 

software tools, the use of Field Programmable Gate 

Arrays (FPGAs) has changed from being simply a glue-

logic type component to a vehicle for complete 

delivered solutions. FPGAs are made up of 

programmable logic components and programmable 

interconnects. Unlike other technologies, that force the 

programmer or designer to make critical decisions in the 

early part of development, FPGAs allow the 

development of the application to be adapted and 

improved over time. Developing FPGA solutions is 

comparable to developing solutions in software (rather 

than hard-coding).  

 This paper, describes an attempt to implement an 

object classification paradigm that is able to classify 

objects in real-time using an FPGA solution. The 

process makes use of two well studied algorithms in the 

area of machine vision and neural networks, namely Hu 

[1] moment invariants and Kohonen unsupervised neural 

networks. The computation of moment invariants has 

been implemented in hardware. The Kohonen neural 

network algorithm is divided into two parts, namely 

training mode, and detection mode. Currently the 

training of the system is performed using MATLAB. 

The result of the training is used for object classification 

and this has been implemented (and simulated) on an 

FPGA device.  

 

2 Background 

 The domain of application of FPGAs has 

traditionally been in digital logic and digital signal 

processing (DSP). DSP-type problems are easily 

mapped to FPGAs due to the fact that most DSP 

functions are made up of sum-of-product type operations 

that consist of simple logic. Since images are essentially 

2-D signals, image processing algorithms have also been 

widely implemented on FPGA. 

 The implementation of higher level machine vision 

algorithms that consist of a number of decision making 

stages is more limited. This is largely due to the limited 

number of directly mapped arithmetic functions 

available and the complexity in designing algorithms 

that are able to adapt or optimise online, since FPGA 

designs are often static. Parameterising the algorithms 

and using external memory to store these parameters can 

overcome this problem.  

 In recent times Hirai et. al. [2] have designed 

complete single-task vision systems on FPGA, with the 

objective of detecting the position and orientation of 

distinctly visible planar objects. Their system consisted 

of three parts, namely the computation of image gravity 

centre, the detection of object orientation using radial 

projection and the computation of the Hough transform, 

albeit discrete. They reported being able to process 

images at a rate of around 200 fps, far more than the 

standard frame-rate of  a PAL camera. 

 In a separate study, Arribas and Maciá [3] 

implemented the Santos-Victor paradigm to compute 



motion fields for use in robot guidance applications. The 

technique required the computation of optical flow 

fields in real-time. The flow fields were computed using 

both standard differential and correlation methods. 

 Recent approaches have been made towards the 

implementation of real-time object recognition using 

reconfigurable hardware. Most of these systems have 

been implemented using multiple FPGA boards or 

similar devices together with a sequential computer, due 

to the limited number of gates available on each device. 

For instance, Neema et. al. [6] have used multiple DSP 

processors and a sequential computer for their 

Automated Image Recognition system. Yasin et. al. [7] 

have demonstrated an effective FPGA prototype for  iris 

recognition. However, the system itself is not 

completely hardware based, since images are pre-

processed using MATLAB, and FPGAs are only used 

for the recognition part. In their design, the authors 

make use of multilayer perceptrons (MLPs) for 

classification. The numbers of neurons are limited due 

to hardware constraints and hence the computation 

complexity had to be reduced for implementation on an 

FPGA board. Jean et. al. [8] implemented a system to 

accelerate the recognition process in infra-red images 

using an FPGA device. However once again, the system 

is dependent on a separate computer and in order to 

reduce complexity, the mathematical calculations have 

been performed with full precision integer values instead 

of floating point operations.  

 Neural networks are an ideal example where the 

use of FPGAs can offer an advantage. This is due to the 

fact that the operations carried out are largely parallel. A 

number of efforts have been made for mapping neural 

networks onto hardware. For example Aibe et. al. [9] 

implemented a probabilistic neural network in FPGA 

hardware which exhibited a parallel architecture. 

 

3 Methodology 

3.1 Object classification 

 The method of describing 2-D objects using 

moment invariants is well studied. Hu descriptors are 

based on non-orthogonalised central moments that are 

invariant towards rotation, translation and scale. Hu 

descriptors are thus computed from normalised 

centralised moments up to the third order, and consist of 

seven moments in total. The seven formulae given in (1) 

are normally used for algorithmic implementation. 
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 The derivation of these seven invariants and the 

computation of η is available in [1], and so will not be 

described here. The combination of these seven Hu 

descriptors is unique given a specific pattern or shape. 

Hence it can be used in conjunction with a matching 

scheme to uniquely identify the object being input to the 

system. Computing these descriptors is straightforward 

and fast, and hence it is widely used in the area of real-

time vision in robotic applications [4].  

 Directly comparing the seven descriptors of an 

object against values in a stored database is an obvious 

method of classifying an incoming object. However, 

artefacts such as noise and camera focus can affect the 

outcome of classification, albeit marginally.  

 In the case of large numbers of data classes, 

artificial neural networks (ANNs) have been found to be 

quicker than traditional search methods. Neurons in an 

ANN can operate in parallel to provide a further 

increase in speed. By training a classifier on multiple 

instances of an object in a variety of poses, it is possible 

to improve the quality of the classifier. In this paper we 

propose the use of a Kohonen ANN to cluster the 

objects online for storage in a reference database. 

 The Kohonen ANN is essentially a self-organising 

unsupervised mapping system that can map input 

vectors of arbitrary length onto a lower dimension map. 

It is frequently described as a sheet-like neural network 

array. Patterns that are close together in Euclidean space 

will remain close in the final map, and are topologically 

ordered. The learning process of Kohonen ANNs 

optimises the mapping until the weight change becomes 

negligible. 

 Initially, all the neurons were mapped in a two 

dimensional space. Each neuron consists of seven 

weight vectors that are initialised with a random value. 

The seven Hu moment invariants are the input vector for 

the system, and the seven weights of the individual 

neuron are related to seven inputs vectors of the 

Kohonen ANN. Instead of the Euclidean distance 

measure, the Manhattan distance measure is used to ease 

and simplify the complexity of the computation and this 

has been found to give a reliable result.   

  The Kohonen training method clusters the neurons 

with similar weight vectors. The identification and 

numbering of the clusters is then performed using a 

clustering algorithm. This clustering algorithm allocates 

an identification number to each set of classes. 

 The training algorithm has been programmed in 

MATLAB whereas the detection of the object has been 

implemented in hardware. Since the current architecture 

of the Kohonen ANN only allows for classification in 

hardware, currently, the process of  implementing 



onboard training on hardware is being studied and 

implemented. 

 

Figure 1: the Altera EP1S80 development board 

   When detecting objects on the FPGA device using 

the Kohonen ANN, the parallel neurons are initialised 

with proper weight values following the training phase. 

An unknown image containing an object is captured and 

then passed through the Hu’s moment computation 

process on the FPGA. Once the seven invariants are 

computed, they are treated as the input for the ANN. 

Once again a distance measurement procedure is 

performed and the neuron associated with minimum 

distance is considered as the winning node. The tagged 

identification of the winning neuron is considered as the 

class of the unknown incoming object. 

   

 

Figure 2: Training and classifying objects (the proposed 

system). 

3.2 Hardware mapping 

 The FPGA hardware used in this paper is the 

Altera Stratix EP1S80
1
, shown in Figure 1.  The 

EP1S80 device from Altera Corp. is one of the largest 

0.13-micron FPGA devices available. This board 

consists of 79,040 logic elements (LEs), 7.2 Mbits of 

embedded RAM, and 1,238 user I/Os. This board is a 

powerful development platform for digital signal 

                                                           
1 Funded by EPSRC Nanorobotics project GR/S85696/01 

processing (DSP) designs, and features the Stratix 

EP1S80 device in the fastest speed grade (-6) 956-pin 

package. It consists of two 12-bit 125-MHz A/D 

converters, two 14-bit 165-MHz D/A converters, single-

ended or differential inputs and single-ended outputs, 2 

MBytes of 7.5-ns synchronous SRAM configured as two 

independent 36-bit buses, 64 Mbits of flash memory, 

dual seven-segment display, one 8-pin dipswitch, three 

user-definable pushbutton switches, one 9-pin RS-232 

connector, two user-definable LEDs, on-board 80-MHz 

oscillator and a single 5-V DC power supply. For 

debugging interfaces, two Mictor-type connectors for 

Hewlett Packard (HP) logic analyzers and several 0.1-

inch headers are available. 

The basic system diagram of the complete architecture 

of the proposed vision system is shown in Figure 2. As 

mentioned previously, classifying of objects consists of 

two modes, the training mode and the classification 

mode. The Otsu thresholder is commonly used to 

automatically binarise images by optimising a threshold 

level.  

 The whole implementation procedure has been 

divided in 3 parts, namely i) Moment invariant 

computation, ii) Training of the system & iii) 

Classification mode.  

i) Moment invariant computation: In this 

mode, sample 2-D objects (patterns) are captured via a 

composite camera. The gray-valued image is then 

thresholded and the binarised values are presented to the 

system. The Hu descriptors that represent the pattern in 

the image are then extracted. Floating point calculations 

have been achieved by using the Altera Megacore 

library or by using the author’s own floating-point 

implementation. Implementation in hardware has been 

achieved using VHDL code with Altera Quartus II 

software. To ease and reduce computation, the moment 

computation is simplified by replacing all floating point 

powers with its nearest integer values. This has been 

experimentally observed to produce good results.  

 Virtually all the operations of the algorithm have 

been mapped in parallel. This parallel operation 

significantly increases the speed of the system. Single 

precision floating point values have been used for all 

computation and conform to the IEEE 754 standard. 

 

 

Figure 3: Algorithm for moment calculation. 
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 As this work is a proof of a concept 

implementation, the input image matrix is hardcoded in 

VHDL. The computed seven moments have been used 

in the next stage of the system either for training (in the 

training mode) or classification (detection mode). The 

algorithm for the moment computation is shown in 

figure 3. The input data is iterated through in a 

sequential manner and then the different moment values 

have been calculated. After obtaining all moments the 

computation of the µ parameters (essentially high order 

moments) are computed in parallel mode. The µ values 

are required to compute η as shown in equation (1). The 

final seven Hu moment invariants are calculated and 

passed on to the next phase. 

        

 

Figure 4: Algorithm for Kohonen training and clustering 

   

ii) Training of the system: The training of the 

Kohonen ANN is currently implemented in MATLAB 

but the generated weight vectors are used in hardware. 

The proposed system is organised as follows. The 

Kohonen neural network will self-organise around the 

descriptors. The map that is produced is then stored onto 

non-volatile flash memory, so that it may be used later 

during the classification. The algorithm for the training 

part is shown in figure 4. A 2-dimensional neuron map 

is mapped with a random weight initialisation. Seven 

weights are associated with each neuron. The input 

parameters are then fed to the ANN to find the 

Manhattan distance (2) for each neuron. The Manhatten 

distance is given as: 

Manhattan distance (“L1 Norm”): ∑
=

−
k

i

ii yx
1

||        (2) 

The neuron corresponding to the minimum distance is 

the winning node. The weights of the winning node and 

the neighbourhood region around the winning node is 

updated with the following update rule: 

))()()(()()1( nwnxnnwnw ijiijij −+=+ λ                  (3)     

           10for −≤≤ Ni  

where )1( +nwij  is the updated weight, )(nλ is the 

learning rate and the term )( iji wx −  represents the 

error. The value of the learning rate normally lies 

between 0 and 1 and it controls convergence speed and 

stability. The learning process is iterative and continues 

until the network has converged satisfactorily.  

 To identify the different sets of neurons, a k-Means 

clustering algorithm is applied and one identification tag 

is attached to each each neuron. The Manhattan distance 

measurement is applied again for clustering purposse. 

iii) Classification mode: In classification mode, 

the weight vector map is first recalled from flash 

memory. Incoming patterns are stored onto the high 

speed SRAM in order to increase performance. The new 

pattern is then matched against the patterns stored on the 

Kohonen map and a final classification is produced. As 

described earlier a set of sixteen parallel neurons have 

been used for the detection of an unknown object. After 

obtaining the moment invariants of the unknown images 

it is passed to the inputs of the neurons. The Manhattan 

distance is then measured for each neuron. The 

minimum distance is now detected and the associated 

neuron with the minimum distance is declared as the 

winning node. The identification tag is then simulated 

and corresponding outputs are activated. Figure 5 

represents the algorithm for classification mode. 

 

 

Figure 5: Algorithm for classification mode 
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 The complete system response and timing analysis 

is discussed in the results section. It has been observed 

that the response time for the system yields a good result 

due to the parallel design.  

 

  

4 Results and discussion 

The algorithm has been implemented in 

synthesizable VHDL code and a timing analysis has 

been performed. The simulation results exhibit a very 

good system timing performance, and the results indicate 

that the concept design fulfils the requirement for real 

time object recognition.  

 

The timing analysis of Hu’s moment invariant 

calculation is shown in figure 6. The processing of input 

data consumes the most time in this part. For a 20x20 

pixel input image it took an average of 22.47 

milliseconds whereas the rest of the computation of Hu’s 

invariant required approximately 800 nanoseconds to 

complete (refer to table 1). This is due to the number of 

sequential operations performed. If the input variables 

can be processed in parallel, the time response could be 

significantly improved. The floating point calculations, 

however, have been implemented efficiently as can be 

seen from the results.  

 

   During the training phase conducted in MATLAB, 

it has been observed that the classification stage has an 

accuracy of above 85%.  

  

 

 

 The object classification mode indicates a good 

response time with parallel operation. For this 

application, eight neurons are designed to run in parallel, 

providing a response time of 310-360 nanoseconds, as 

shown in figure 7. 

 

Table 1: Average time for different calculations 

Hu’s Moment  

i/p cal other cal total 

Classification 

Mode 

Time 23 ms  800 ns 24 ms 310-360 ns 

  

    

The timing analysis shows that the system requires an 

average of 24 milliseconds (maximum) for the detection 

of an unknown object. This indicates that even with the 

sequential computations in parts of the design, a 

recognition rate of 40 fps is achievable. 

 

 

5 Conclusion and future work 

 In this paper, we have demonstrated a possible 

solution of classifying objects in real-time using an 

FPGA solution. Object features are represented using 

Hu's moment invariant method, and an onboard 

Kohonen artificial neural network is used for initial 

clustering. The implementation uses the Altera Stratix 

FPGA device, which has the capability of performing 

complex mathematical operations. The estimated time to 

recognise an unknown object (20x20 pixels) is 24 

milliseconds. We have shown that the classification of 

objects can be achieved using a single Altera Stratix 



board. The use of multiple FPGA boards working in 

parallel, however, can enhance system performance. At 

present, the input pixels to the system and the initial 

moment calculations are performed sequentially. As this 

is the most time consuming aspect of the process, 

overall system performance can be further improved by 

using a parallel implementation.  

 In future work, the onboard training of the 

Kohonen ANN will be addressed. The updated weight 

vectors of the neurons will be stored in the memory of 

the board, and will be made accessible during the 

classification mode. The current constraint of the system 

is the capacity of the FPGA board. By using a larger 

FPGA, the number of neurons can be increased and 

hence more parallel operations can be performed. The 

use of multiple boards for a single system will also 

enhance the system performance.       

 We have demonstrated that it is possible to build a 

full imaging system on a single FPGA board. As a proof 

of concept, the VHDL simulation has been conducted 

using the Altera Quartus II software environment. The 

timing analysis has shown promising results, indicating 

the proof of the system concept.  

 

References 

[1] M-K. Hu, “Visual pattern recognition by moment 

invariants”, IRE Trans. on Information Theory, vol 

8, pp. 179-187, 1962. 

[2] S. Hirai, M. Zakouji and T.Tsuboi, “Implementing 

Image Processing Algorithms on FPGA-based 

Realtime Vision System”, Proc. 11th Synthesis and 

System Integration of Mixed Information 

Technologies (SASIMI 2003), pp. 378-385, 

Hiroshima, April, 2003. 

[3] P.C. Arribas and F.M-H. Maciá, “FPGA 

implementation of Santos-Victor optical flow 

algorithm for real time image processing: an useful 

attempt”, Proceedings of SPIE's International 

Symposium on Microtechnologies for the New 

Millennium 2003 - Conference on VLSI Circuits 

and Systems, pp. 23-32, Canary Islands, Spain, May 

19-21, 2003. 

[4] P.J. Sanz, R. Marin and J.S. Sanchez, "Including 

efficient object recognition capabilities in online 

robots: from a statistical to a Neural-network 

classifier," IEEE Transactions on Systems, Man and 

Cybernetics, Part C, vol.35, no.1, pp. 87- 96, 

February, 2005. 

[5] T. Kohonen,  “Automatic formation of topological 

maps of patterns in a self-organizing system”, 

Proceedings of 2nd Scandinavian Conference on 

Image Analysis, Espoo, Finland, pp. 214--220, 

1981. 

[6] S. Neema, J. Scott, T. Bapty, “Real time 

reconfigurable image recognition system”, 

Proceedings of the 18th IEEE Instrumentation and 

Measurement Technology Conference, 2001. 

Volume 1,  21-23 May 2001, pp. 350 - 355 vol.1 

[7] F. Mohd-Yasin, A.L. Tan, M.I. Reaz, “The FPGA 

prototyping of iris recognition for biometric 

identification employing neural network”, 

Proceedings of The 16th International Conference 

on Microelectronics, ICM 2004. 6-8 Dec. 2004, pp. 

458 – 461 

[8] J. Jean, Liang Xiejun, B. Drozd, K. Tomko, 

“Accelerating an IR automatic target recognition 

application with FPGAs”, Proceedings of Seventh 

Annual IEEE Symposium on Field-Programmable 

Custom Computing Machines, FCCM '99. 21-23 

April 1999, pp. 290 - 291 

[9] N. Aibe, M. Yasunaga, I. Yoshihara, J.H. Kim, “A 

probabilistic neural network hardware system using 

a learning-parameter parallel architecture”, 

Proceedings of the 2002 International Joint 

Conference on Neural Networks, IJCNN '02., 

Volume 3,  12-17 May 2002, pp. 2270 – 2275 


