

Real-time object classification on FPGA using moment

invariants and Kohonen neural networks
Deepayan Bhowmik, Balasundram P. Amavasai and Timothy J. Mulroy

Microsystems and Machine Vision Laboratory

Materials and Engineering Research Institute

Sheffield Hallam University, Pond Street, Sheffield S1 1WB, United Kingdom
deepayan.bhowmik@yahoo.com,{b.p.amavasai, t.j.mulroy}@shu.ac.uk

http://www.shu.ac.uk/meri/mmvl

Abstract - In this paper, the use of moment invariants

and Kohonen neural networks for real time object

classification is addressed. The implementation of such

a scheme using a reconfigurable hardware FPGA

(Field Programmable Gate Array) device is described.

In the image processing stage, the Hu’s moment

invariants algorithm has been implemented in

hardware, and the issues surrounding this

implementation is discussed. Following the image

processing stage, a neural network is employed for the

classification stage. By using the Kohonen unsupervised

neural network the system is essentially self-supervised

and it is able to perform an all parallel neural

computation for classification purposes. A discussion of

the concept and real simulation results are provided.

Keywords: Moment invariants, FPGA, real-time, object

recognition, Kohonen self-organising maps.

1 Introduction

 The requirement for the recognition and

classification of objects in real-time is important for

many real world tasks, especially in robotics and

industrial-type applications. A variety of blob and shape

based algorithms exist, but many of these do not meet

real-time constraints.

 In recent times, with the advent of sophisticated

software tools, the use of Field Programmable Gate

Arrays (FPGAs) has changed from being simply a glue-

logic type component to a vehicle for complete

delivered solutions. FPGAs are made up of

programmable logic components and programmable

interconnects. Unlike other technologies, that force the

programmer or designer to make critical decisions in the

early part of development, FPGAs allow the

development of the application to be adapted and

improved over time. Developing FPGA solutions is

comparable to developing solutions in software (rather

than hard-coding).

 This paper, describes an attempt to implement an

object classification paradigm that is able to classify

objects in real-time using an FPGA solution. The

process makes use of two well studied algorithms in the

area of machine vision and neural networks, namely Hu

[1] moment invariants and Kohonen unsupervised neural

networks. The computation of moment invariants has

been implemented in hardware. The Kohonen neural

network algorithm is divided into two parts, namely

training mode, and detection mode. Currently the

training of the system is performed using MATLAB.

The result of the training is used for object classification

and this has been implemented (and simulated) on an

FPGA device.

2 Background

 The domain of application of FPGAs has

traditionally been in digital logic and digital signal

processing (DSP). DSP-type problems are easily

mapped to FPGAs due to the fact that most DSP

functions are made up of sum-of-product type operations

that consist of simple logic. Since images are essentially

2-D signals, image processing algorithms have also been

widely implemented on FPGA.

 The implementation of higher level machine vision

algorithms that consist of a number of decision making

stages is more limited. This is largely due to the limited

number of directly mapped arithmetic functions

available and the complexity in designing algorithms

that are able to adapt or optimise online, since FPGA

designs are often static. Parameterising the algorithms

and using external memory to store these parameters can

overcome this problem.

 In recent times Hirai et. al. [2] have designed

complete single-task vision systems on FPGA, with the

objective of detecting the position and orientation of

distinctly visible planar objects. Their system consisted

of three parts, namely the computation of image gravity

centre, the detection of object orientation using radial

projection and the computation of the Hough transform,

albeit discrete. They reported being able to process

images at a rate of around 200 fps, far more than the

standard frame-rate of a PAL camera.

 In a separate study, Arribas and Maciá [3]

implemented the Santos-Victor paradigm to compute

motion fields for use in robot guidance applications. The

technique required the computation of optical flow

fields in real-time. The flow fields were computed using

both standard differential and correlation methods.

 Recent approaches have been made towards the

implementation of real-time object recognition using

reconfigurable hardware. Most of these systems have

been implemented using multiple FPGA boards or

similar devices together with a sequential computer, due

to the limited number of gates available on each device.

For instance, Neema et. al. [6] have used multiple DSP

processors and a sequential computer for their

Automated Image Recognition system. Yasin et. al. [7]

have demonstrated an effective FPGA prototype for iris

recognition. However, the system itself is not

completely hardware based, since images are pre-

processed using MATLAB, and FPGAs are only used

for the recognition part. In their design, the authors

make use of multilayer perceptrons (MLPs) for

classification. The numbers of neurons are limited due

to hardware constraints and hence the computation

complexity had to be reduced for implementation on an

FPGA board. Jean et. al. [8] implemented a system to

accelerate the recognition process in infra-red images

using an FPGA device. However once again, the system

is dependent on a separate computer and in order to

reduce complexity, the mathematical calculations have

been performed with full precision integer values instead

of floating point operations.

 Neural networks are an ideal example where the

use of FPGAs can offer an advantage. This is due to the

fact that the operations carried out are largely parallel. A

number of efforts have been made for mapping neural

networks onto hardware. For example Aibe et. al. [9]

implemented a probabilistic neural network in FPGA

hardware which exhibited a parallel architecture.

3 Methodology

3.1 Object classification

 The method of describing 2-D objects using

moment invariants is well studied. Hu descriptors are

based on non-orthogonalised central moments that are

invariant towards rotation, translation and scale. Hu

descriptors are thus computed from normalised

centralised moments up to the third order, and consist of

seven moments in total. The seven formulae given in (1)

are normally used for algorithmic implementation.

 I1 = η20 + η02

I2 = (η20 − η02)
2
 + (2η11)

2

I3 = (η30 − 3η12)
2
 + (3η21 − η03)

2

I4 = (η30 + η12)
2
 + (η21 + η03)

2

I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2
 − 3(η21 + η03)

2
] +

(3η21 − η03)(η21 + η03)[3(η30 + η12)
2
 − (η21 + η03)

2
]

I6 = (η20 − η02)[(η30 + η12)
2
 − (η21 + η03)

2
 + 4η11(η30 +

η12)(η21 + η03)]

I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2
 − 3(η21 + η03)

2
] −

(η30 − 3η12)(η21 + η03)[3(η30 + η12)
2
 − (η21 + η03)

2
]

(1)

 The derivation of these seven invariants and the

computation of η is available in [1], and so will not be

described here. The combination of these seven Hu

descriptors is unique given a specific pattern or shape.

Hence it can be used in conjunction with a matching

scheme to uniquely identify the object being input to the

system. Computing these descriptors is straightforward

and fast, and hence it is widely used in the area of real-

time vision in robotic applications [4].

 Directly comparing the seven descriptors of an

object against values in a stored database is an obvious

method of classifying an incoming object. However,

artefacts such as noise and camera focus can affect the

outcome of classification, albeit marginally.

 In the case of large numbers of data classes,

artificial neural networks (ANNs) have been found to be

quicker than traditional search methods. Neurons in an

ANN can operate in parallel to provide a further

increase in speed. By training a classifier on multiple

instances of an object in a variety of poses, it is possible

to improve the quality of the classifier. In this paper we

propose the use of a Kohonen ANN to cluster the

objects online for storage in a reference database.

 The Kohonen ANN is essentially a self-organising

unsupervised mapping system that can map input

vectors of arbitrary length onto a lower dimension map.

It is frequently described as a sheet-like neural network

array. Patterns that are close together in Euclidean space

will remain close in the final map, and are topologically

ordered. The learning process of Kohonen ANNs

optimises the mapping until the weight change becomes

negligible.

 Initially, all the neurons were mapped in a two

dimensional space. Each neuron consists of seven

weight vectors that are initialised with a random value.

The seven Hu moment invariants are the input vector for

the system, and the seven weights of the individual

neuron are related to seven inputs vectors of the

Kohonen ANN. Instead of the Euclidean distance

measure, the Manhattan distance measure is used to ease

and simplify the complexity of the computation and this

has been found to give a reliable result.

 The Kohonen training method clusters the neurons

with similar weight vectors. The identification and

numbering of the clusters is then performed using a

clustering algorithm. This clustering algorithm allocates

an identification number to each set of classes.

 The training algorithm has been programmed in

MATLAB whereas the detection of the object has been

implemented in hardware. Since the current architecture

of the Kohonen ANN only allows for classification in

hardware, currently, the process of implementing

onboard training on hardware is being studied and

implemented.

Figure 1: the Altera EP1S80 development board

 When detecting objects on the FPGA device using

the Kohonen ANN, the parallel neurons are initialised

with proper weight values following the training phase.

An unknown image containing an object is captured and

then passed through the Hu’s moment computation

process on the FPGA. Once the seven invariants are

computed, they are treated as the input for the ANN.

Once again a distance measurement procedure is

performed and the neuron associated with minimum

distance is considered as the winning node. The tagged

identification of the winning neuron is considered as the

class of the unknown incoming object.

Figure 2: Training and classifying objects (the proposed

system).

3.2 Hardware mapping

 The FPGA hardware used in this paper is the

Altera Stratix EP1S80
1
, shown in Figure 1. The

EP1S80 device from Altera Corp. is one of the largest

0.13-micron FPGA devices available. This board

consists of 79,040 logic elements (LEs), 7.2 Mbits of

embedded RAM, and 1,238 user I/Os. This board is a

powerful development platform for digital signal

1 Funded by EPSRC Nanorobotics project GR/S85696/01

processing (DSP) designs, and features the Stratix

EP1S80 device in the fastest speed grade (-6) 956-pin

package. It consists of two 12-bit 125-MHz A/D

converters, two 14-bit 165-MHz D/A converters, single-

ended or differential inputs and single-ended outputs, 2

MBytes of 7.5-ns synchronous SRAM configured as two

independent 36-bit buses, 64 Mbits of flash memory,

dual seven-segment display, one 8-pin dipswitch, three

user-definable pushbutton switches, one 9-pin RS-232

connector, two user-definable LEDs, on-board 80-MHz

oscillator and a single 5-V DC power supply. For

debugging interfaces, two Mictor-type connectors for

Hewlett Packard (HP) logic analyzers and several 0.1-

inch headers are available.

The basic system diagram of the complete architecture

of the proposed vision system is shown in Figure 2. As

mentioned previously, classifying of objects consists of

two modes, the training mode and the classification

mode. The Otsu thresholder is commonly used to

automatically binarise images by optimising a threshold

level.

 The whole implementation procedure has been

divided in 3 parts, namely i) Moment invariant

computation, ii) Training of the system & iii)

Classification mode.

i) Moment invariant computation: In this

mode, sample 2-D objects (patterns) are captured via a

composite camera. The gray-valued image is then

thresholded and the binarised values are presented to the

system. The Hu descriptors that represent the pattern in

the image are then extracted. Floating point calculations

have been achieved by using the Altera Megacore

library or by using the author’s own floating-point

implementation. Implementation in hardware has been

achieved using VHDL code with Altera Quartus II

software. To ease and reduce computation, the moment

computation is simplified by replacing all floating point

powers with its nearest integer values. This has been

experimentally observed to produce good results.

 Virtually all the operations of the algorithm have

been mapped in parallel. This parallel operation

significantly increases the speed of the system. Single

precision floating point values have been used for all

computation and conform to the IEEE 754 standard.

Figure 3: Algorithm for moment calculation.

Input to the system

Moment Calculation

µ Calculation

η Calculation

Hu Calculation

Altera Stratix FPGA

camera Analogue
capture card

ADC

Otsu's
automatic

thresholder

Extraction of
Hu's moment

invariants

Kohonen
neural network
for clustering

32Mb Flash memory
for system values

and known classes

2Mb SRAM for
new object and

temporary data

Final
classification

To LED display and/or
control loop

Training
path
Classification
path

 As this work is a proof of a concept

implementation, the input image matrix is hardcoded in

VHDL. The computed seven moments have been used

in the next stage of the system either for training (in the

training mode) or classification (detection mode). The

algorithm for the moment computation is shown in

figure 3. The input data is iterated through in a

sequential manner and then the different moment values

have been calculated. After obtaining all moments the

computation of the µ parameters (essentially high order

moments) are computed in parallel mode. The µ values

are required to compute η as shown in equation (1). The

final seven Hu moment invariants are calculated and

passed on to the next phase.

Figure 4: Algorithm for Kohonen training and clustering

ii) Training of the system: The training of the

Kohonen ANN is currently implemented in MATLAB

but the generated weight vectors are used in hardware.

The proposed system is organised as follows. The

Kohonen neural network will self-organise around the

descriptors. The map that is produced is then stored onto

non-volatile flash memory, so that it may be used later

during the classification. The algorithm for the training

part is shown in figure 4. A 2-dimensional neuron map

is mapped with a random weight initialisation. Seven

weights are associated with each neuron. The input

parameters are then fed to the ANN to find the

Manhattan distance (2) for each neuron. The Manhatten

distance is given as:

Manhattan distance (“L1 Norm”): ∑
=

−
k

i

ii yx
1

|| (2)

The neuron corresponding to the minimum distance is

the winning node. The weights of the winning node and

the neighbourhood region around the winning node is

updated with the following update rule:

))()()(()()1(nwnxnnwnw ijiijij −+=+ λ (3)

 10for −≤≤ Ni

where)1(+nwij is the updated weight,)(nλ is the

learning rate and the term)(iji wx − represents the

error. The value of the learning rate normally lies

between 0 and 1 and it controls convergence speed and

stability. The learning process is iterative and continues

until the network has converged satisfactorily.

 To identify the different sets of neurons, a k-Means

clustering algorithm is applied and one identification tag

is attached to each each neuron. The Manhattan distance

measurement is applied again for clustering purposse.

iii) Classification mode: In classification mode,

the weight vector map is first recalled from flash

memory. Incoming patterns are stored onto the high

speed SRAM in order to increase performance. The new

pattern is then matched against the patterns stored on the

Kohonen map and a final classification is produced. As

described earlier a set of sixteen parallel neurons have

been used for the detection of an unknown object. After

obtaining the moment invariants of the unknown images

it is passed to the inputs of the neurons. The Manhattan

distance is then measured for each neuron. The

minimum distance is now detected and the associated

neuron with the minimum distance is declared as the

winning node. The identification tag is then simulated

and corresponding outputs are activated. Figure 5

represents the algorithm for classification mode.

Figure 5: Algorithm for classification mode

Input: Hu’s invariant

Initialise weight vector

Calculate Manhattan Distance for
each neuron

Find the winning node

Update weights of winning node and
neighbourhood region

Apply next set of input

Error < threshold

Store updated weight vector for all
neurons

No

Yes

k-Means clustering to add
identification tag to each neuron

Store neuron weight value along with
identification tag

Input: Hu’s invariant and
Load weight vectors for all neurons

Manhattan distance computation for each
neuron

Find the winning node with min dist

Identification tag associated with winning
node is the class of unknown object

 The complete system response and timing analysis

is discussed in the results section. It has been observed

that the response time for the system yields a good result

due to the parallel design.

4 Results and discussion

The algorithm has been implemented in

synthesizable VHDL code and a timing analysis has

been performed. The simulation results exhibit a very

good system timing performance, and the results indicate

that the concept design fulfils the requirement for real

time object recognition.

The timing analysis of Hu’s moment invariant

calculation is shown in figure 6. The processing of input

data consumes the most time in this part. For a 20x20

pixel input image it took an average of 22.47

milliseconds whereas the rest of the computation of Hu’s

invariant required approximately 800 nanoseconds to

complete (refer to table 1). This is due to the number of

sequential operations performed. If the input variables

can be processed in parallel, the time response could be

significantly improved. The floating point calculations,

however, have been implemented efficiently as can be

seen from the results.

 During the training phase conducted in MATLAB,

it has been observed that the classification stage has an

accuracy of above 85%.

 The object classification mode indicates a good

response time with parallel operation. For this

application, eight neurons are designed to run in parallel,

providing a response time of 310-360 nanoseconds, as

shown in figure 7.

Table 1: Average time for different calculations

Hu’s Moment

i/p cal other cal total

Classification

Mode

Time 23 ms 800 ns 24 ms 310-360 ns

The timing analysis shows that the system requires an

average of 24 milliseconds (maximum) for the detection

of an unknown object. This indicates that even with the

sequential computations in parts of the design, a

recognition rate of 40 fps is achievable.

5 Conclusion and future work

 In this paper, we have demonstrated a possible

solution of classifying objects in real-time using an

FPGA solution. Object features are represented using

Hu's moment invariant method, and an onboard

Kohonen artificial neural network is used for initial

clustering. The implementation uses the Altera Stratix

FPGA device, which has the capability of performing

complex mathematical operations. The estimated time to

recognise an unknown object (20x20 pixels) is 24

milliseconds. We have shown that the classification of

objects can be achieved using a single Altera Stratix

board. The use of multiple FPGA boards working in

parallel, however, can enhance system performance. At

present, the input pixels to the system and the initial

moment calculations are performed sequentially. As this

is the most time consuming aspect of the process,

overall system performance can be further improved by

using a parallel implementation.

 In future work, the onboard training of the

Kohonen ANN will be addressed. The updated weight

vectors of the neurons will be stored in the memory of

the board, and will be made accessible during the

classification mode. The current constraint of the system

is the capacity of the FPGA board. By using a larger

FPGA, the number of neurons can be increased and

hence more parallel operations can be performed. The

use of multiple boards for a single system will also

enhance the system performance.

 We have demonstrated that it is possible to build a

full imaging system on a single FPGA board. As a proof

of concept, the VHDL simulation has been conducted

using the Altera Quartus II software environment. The

timing analysis has shown promising results, indicating

the proof of the system concept.

References

[1] M-K. Hu, “Visual pattern recognition by moment

invariants”, IRE Trans. on Information Theory, vol

8, pp. 179-187, 1962.

[2] S. Hirai, M. Zakouji and T.Tsuboi, “Implementing

Image Processing Algorithms on FPGA-based

Realtime Vision System”, Proc. 11th Synthesis and

System Integration of Mixed Information

Technologies (SASIMI 2003), pp. 378-385,

Hiroshima, April, 2003.

[3] P.C. Arribas and F.M-H. Maciá, “FPGA

implementation of Santos-Victor optical flow

algorithm for real time image processing: an useful

attempt”, Proceedings of SPIE's International

Symposium on Microtechnologies for the New

Millennium 2003 - Conference on VLSI Circuits

and Systems, pp. 23-32, Canary Islands, Spain, May

19-21, 2003.

[4] P.J. Sanz, R. Marin and J.S. Sanchez, "Including

efficient object recognition capabilities in online

robots: from a statistical to a Neural-network

classifier," IEEE Transactions on Systems, Man and

Cybernetics, Part C, vol.35, no.1, pp. 87- 96,

February, 2005.

[5] T. Kohonen, “Automatic formation of topological

maps of patterns in a self-organizing system”,

Proceedings of 2nd Scandinavian Conference on

Image Analysis, Espoo, Finland, pp. 214--220,

1981.

[6] S. Neema, J. Scott, T. Bapty, “Real time

reconfigurable image recognition system”,

Proceedings of the 18th IEEE Instrumentation and

Measurement Technology Conference, 2001.

Volume 1, 21-23 May 2001, pp. 350 - 355 vol.1

[7] F. Mohd-Yasin, A.L. Tan, M.I. Reaz, “The FPGA

prototyping of iris recognition for biometric

identification employing neural network”,

Proceedings of The 16th International Conference

on Microelectronics, ICM 2004. 6-8 Dec. 2004, pp.

458 – 461

[8] J. Jean, Liang Xiejun, B. Drozd, K. Tomko,

“Accelerating an IR automatic target recognition

application with FPGAs”, Proceedings of Seventh

Annual IEEE Symposium on Field-Programmable

Custom Computing Machines, FCCM '99. 21-23

April 1999, pp. 290 - 291

[9] N. Aibe, M. Yasunaga, I. Yoshihara, J.H. Kim, “A

probabilistic neural network hardware system using

a learning-parameter parallel architecture”,

Proceedings of the 2002 International Joint

Conference on Neural Networks, IJCNN '02.,

Volume 3, 12-17 May 2002, pp. 2270 – 2275

