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Figure 1: We accelerate the shading of acquired materials by selectively shading pixels (white pixels in (d)) using bandwidth prediction (b),
and adapting across pixels the number of samples used in the integration to the estimated illuminant variance (c). Our technique makes it
possible to interactively render acquired materials while editing the geometry (material: red-metallic-paint).

Abstract

Shading complex materials such as acquired reflectances in multi-
light environments is computationally expensive. Estimating the
shading integral involves sampling the incident illumination inde-
pendently at several pixels. The number of samples required for this
integration varies across the image, depending on an intricate com-
bination of several factors. Adaptively distributing computational
budget across the pixels for shading is therefore a challenging prob-
lem. In this paper we depict complex materials such as acquired
reflectances, interactively, without any precomputation based on
geometry. We first estimate the approximate spatial and angular
variation in the local light field arriving at each pixel. This local
bandwidth accounts for combinations of a variety of factors: the
reflectance of the object projecting to the pixel, the nature of the
illumination, the local geometry and the camera position relative
to the geometry and lighting. We then exploit this bandwidth in-
formation to adaptively sample for reconstruction and integration.
For example, fewer pixels per area are shaded for pixels project-
ing onto diffuse objects, and fewer samples are used for integrating
illumination incident on specular objects.

1 Introduction

Real materials can exhibit subtle and rich shading effects, such as
colors changing depending on the viewing direction. While ac-
quired real-world reflectance data are publicly available, their re-
alistic depiction under environmental lighting conditions is slow.
Photorealistic shading involves costly numerical integration per
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pixel over multiple incident directions.

For some applications, such as shape design (Figure 1), interactive
feedback of material appearance is desirable. The need to allow
dynamically changing geometry poses the first challenge to interac-
tive shading. In addition, it is important that the shading is realistic.
That is, consistent with its final appearance after post-design offline
rendering, which is often physically-based.

A gamut of approaches partially address this problem. At one end,
fast algorithms focus on editable geometry with simple material
models. Other algorithms strive to depict a variety of effects such
as global illumination. The latter approach typically requires the
precomputation of radiance transfer (including visibility), thus pre-
venting geometry editing [Sloan et al. 2002]. The combination of
editable geometry and realisticly portraying complex materials such
as acquired bidirectional reflectance distributions (BRDFs) is still
an open research problem and is the focus of this paper. We achieve
this combination at the cost of global illumination and visibility.

Simulating material-appearance under environmental illumination
is costly. It requires the estimation of an integral of the incident
illumination at each pixel modulated by the material’s reflectance
function. For this, the integrands are typically sampled. The sam-
pling rate depends on the material: diffuse materials require many
samples over incident directions, but exhibit low variation between
neighboring pixels; specular materials require fewer samples over
incident directions but cause large variation across nearby pixels.

We leverage theoretical results in frequency domain light trans-
port [Durand et al. 2005] to systematically exploit the relation be-
tween sampling in image-space (reconstruction) and sampling for
shading (integration). For reconstruction, we propose a new mul-
tiresolution algorithm. For integration, we predict the required
number of samples. Our prediction may be used in conjunction with
any sampling strategy for numerical integration. The gain due to
our prediction is complementary to the benefit from efficient sam-
pling strategies [Clarberg et al. 2005].

In this paper, we introduce the concept of computing and storing
the maximum local frequencies of the radiance field. We propose
a practical representation of local variation—local bandwidth—
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along with a fast algorithm to compute it. We use this information
to adapt sampling rates for reconstruction and integration during
rendering. Our rendering algorithm consists of two steps. First, for
each pixel, we compute estimates of the spatial and angular band-
width. This information is stored, hierarchically, in a buffer having
the same size as the picture generated. In a second step, this infor-
mation is used for sampling the image. Few pixels are shaded in
smoothly varying areas of the image and the number of samples for
shading the pixels is adapted according to the predicted variance.
The final image is rendered using the scattered shaded pixels using
an upsampling step.

Our contributions are the following:

1. Rapid bandwidth computation: we quickly (about 8ms) pre-
dict local variation in the image due to reflected illumination.

2. Multiresolution shading: our multiresolution deferred-
shading algorithm uses the local frequency information for
efficient sampling. We adaptively sample for reconstruction
(shading only some pixels) and for integration (number of
light samples for each shaded pixel)

3. Adaptive multisampling anti-aliasing: we only compute sub-
pixel shading for those pixels where the predicted image-
space frequency is greater than 1 pixel−1.

4. Reflectance bandwidth-estimation: we estimate local band-
width of arbitrary reflectance functions.

1.1 Related Work

Deferred shading: unlike common rendering methods on the GPU,
Deferred shading postpones shading until occlusions are resolved
in image space (see, e.g. [Deering et al. 1988]). It is more effi-
cient for computationally expensive shaders, but incompatible with
multi-sampling anti-aliasing methods [Fatahalian et al. 2010]. Our
algorithm allows adaptive sampling with complex materials and in-
coming light, and sub-linear multi-sample anti-aliasing.

GPU rendering of complex materials: Heidrich and Seidel [1999]
interactively rendered simple BRDFs with environment maps by
pre-filtering the environment map. Interactively rendering arbitrary
BRDFs has also been done using separable approximations [Kautz
and McCool 1999], homeomorphic factorization [Latta and Kolb
2002], spherical harmonics compactness properties [Kautz et al.
2002] and spectral properties [Ramamoorthi and Hanrahan 2002].
Wavelet encoding of BRDFs [Claustres et al. 2007] also provides
real time rendering of acquired data by taking advantage of the
sparsity of the wavelet representation and low rank of the reflec-
tion operator. Recently Wang et al. [2009] proposed a real-time
rendering technique based on a spherical Gaussian approximation
of the BRDF. Our main contribution is accurate shading of acquired
materials while only shading a subset of the pixels.

Analysis of light transport: Durand et al. [2005] study the proper-
ties of the Fourier spectrum of the local light field around a central
ray. They derive transformations that propagate these spectra. Sub-
sequent work has provided interesting applications of this theory,
including simulation of motion blur [Egan et al. 2009] and depth of
field [Soler et al. 2009]. In related work, [Ramamoorthi et al. 2007]
extended the Fourier analysis to gradients. These works provide key
insights and understanding of the variation in light transport. They
however do not provide any practical mechanism by which the fre-
quency content can be efficiently propagated to image space in real
time. Propagating sampled spectra [Soler et al. 2009] is costly. On
the other hand, Egan et al. [2009] derive formulae for transforma-
tions to the 3D lightfield (space and time) assuming only diffuse
objects. Our approach builds upon these works, but we propose a
rapid method to only estimate maximum variation along space and
angle, rather than the entire spectra.

Multiresolution screen-space algorithms: techniques render
by heuristically shading pixels at varying levels of coarseness,
then upsampling. Multiresolution splatting for indirect illumina-
tion [Nichols and Wyman 2009] and hierarchical image space ra-
diosity [Shopf et al. 2009] use a fast virtual point light source ap-
proach for indirect illumination. They hierarchically combine ras-
terized images using bilateral upsampling [Kopf et al. 2007; Du-
rand et al. 2005]. Similar techniques include computing interactive
lighting from dynamic area light sources [Nichols et al. 2010], and
indirect illumination in glossy scenes [Soler et al. 2010; Nichols
and Wyman 2010]. Light gathering methods can be improved
using GPU-friendly interleaved sampling [Segovia et al. 2006].
Ritschel et al. [2009] achieve global illumination on GPU. They
do not fully take advantage of the bandwidth of the reflectance or
illumination.

Precomputed transport: Precomputed approaches compress or
represent the transport operator in an alternative basis [Sloan et al.
2002; Ramamoorthi 2009]. Although they can depict rich mate-
rials [Sun et al. 2007] their primary goal is to precompute effects
such as soft-shadows and global illumination as a function of the
illumination. They require that the geometry remains static. In
comparison to these algorithms, we are restricted to first bounce
radiance without global illumination or visibility for shadows, but
allow interactive editing of the geometry.

None of the approaches described above achieves realistic mate-
rial depiction on dynamically editable geometry. The focus of this
paper is to derive such an algorithm, without any precomputation
based on geometry.

1.2 Overview

In this paper we compute direct reflected radiance, ignoring visibil-
ity and global illumination. The radiance arriving at each pixel p
after one-bounce direct reflection at a point x is

Lp =

∫
Ωx

Li(ω) ρ(x, ω, ωx→p) ω.n(x) dω. (1)

Here ωx→p denotes the direction from x to the eye through pixel
p, n(x) is the normal at x, Li is radiance from distant illumination,
Ωx is the set of incident directions on the hemisphere above the
local tangent plane, and ρ is the reflectance function. This integral
is typically estimated using Monte Carlo estimators as an average
of Np illumination samples:

Lp ≈
G

N p

Np∑
i=1

Li(ωi)

g(ωi)
ρ(x, ωi, ωo) ωi.n(x) (2)

where the ωi ∈ S2 are random incidence directions distributed ac-
cording to the importance function g(ωi) and G is the importance
function integrated over Ωx.

We accelerate rendering by changing two aspects of typical ap-
proaches. First, we avoid shading every pixel, thus computing the
integral only at pixels with large local variation. At other pixels,
we upsample the estimate from neighboring shaded pixels (Sec-
tion 3.2). Second, for each pixel p where the integral is estimated,
we adaptively choose Np according to the predicted variance of
the shading integrand (Section 2.3). We present a multiresolution
shading algorithm (Section 3) that exploits the calculated band-
widths. For each frame, we first compute the image space band-
width and sampling density using the input material, screen-space
normals, depth and curvature (G-buffers). Next, starting from the
coarsest resolution, we shade only pixels whose screen-space band-
width corresponds to the current resolution, and upsample previ-
ously shaded pixels with an anisotropic kernel.
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Figure 2: Flatland illustration of local bandwidth propagation.
Our idea is to only propagate local bandwidth information (dot-
ted rectangles). Then, using local bandwidth along a few (typically
16) incident directions at R, we estimate the local image variation
at p and use it to determine image-space sampling rates (see Eq. 6).

2 Real-time bandwidth estimation

Our key idea is to only propagate maximum local variation (band-
width) about light paths. See Figure 2 for an example of bandwidth
propagation in Flatland. We then use this information to adaptively
sample the image, the shading integral and achieve efficient multi-
sample antialiasing.

2D bandwidth We analyze the local lightfield using the
parametrization proposed by Durand et al. [2005]. While their
parametrization is in 4D, we define the bandwidth of the local light-
field as a 2D vector with the maximum non-zero Fourier frequen-
cies in the spatial and angular components. For robustness we use
a quantile (the 95th percentile) of the power spectra rather than the
absolute maximum. For non-bandlimited signals, we store an arbi-
trarily large value until the final calculation in image-space, where
we clamp to the maximum representable frequency, which depends
on the extent of anti-aliasing chosen. We denote the bandwidth
using ν ≡ [νs νa]T so that the rectangle with opposite corners
(−νs,−νa) and (νs, νa) contains the 2D spatio-angular spectrum
of the local light field around a central ray (Figure 3).

Using the results of Durand et al. [2005], we derive simple linear
transformations undergone by ν for each step of the transport pro-
cess (see Figure 4). We describe how to derive sampling rates using
the bandwidth information. Finally, we explain how to estimate the
variance of the shading integrand for adaptive sampling.

2.1 Computing one-bounce 2D bandwidth

At the light: the bandwidth of the local light field leaving light
sources depends on the geometry and emission of the light sources.
For distant illumination, νs is zero and νa is directly computed from
the environment map (see Section 2.4 for details).

Fourier
transform

Projection
to 2D

2D

95% of energy

4D local lightfield

Figure 3: Left: 4D local lightfield parametrization adopted by Du-
rand et al. [2005]. Right: 2D parametrization introduced by Soler
et al. [2009]. We define local bandwidth ν ≡ [νs νa]T (black dot)
so that 95% of the spectral energy lies in the dotted rectangle.

4D ray space Fourier domain
Transport (free space) spatial shear angular shear

Occlusion product convolution (spatial)
Curvature angular shear spatial shear

BRDF convolution (angular) product
Texture product convolution (spatial)

Figure 4: Review of spectral operations from [Durand et al. 2005].

Td =

[
1 0

−d 1

]
Px =

[
1

cos θx
0

0 1

]
Pi =

[
cos θi 0

0 1

]
S =

[
1 0

0 −1

]
Cc =

[
1 c

0 1

]
Bt,ρ ν ≡

[
νs + t

min(ρ, νa)

]
Figure 5: Matrix operators on 2D bandwidth.

Transport through free space: since transport through free space
results in an angular shear of the local light field’s spectrum [Du-
rand et al. 2005], the transported bandwidths can be written as Tdν
for transport by a distance of d (see Figure 2), where Td is defined
in Figure 5.

Reflection: in the frequency analysis framework, reflection is real-
ized in four steps [Durand et al. 2005]:

1. Re-parametrization of the incident lightfield into the frame of
the reflecting surface. This is a spatial scale by cos θi of the
spectrum, followed by a spatial curvature shear of length c
in the frequency domain (c is the Gaussian curvature of the
surface expressed in m−1);

2. The product with the incident cosine, which is an angular con-
volution in Fourier space with a Bessel function;

3. The angular convolution of the light field with the BRDF is
a band-limiting product in the frequency domain, while the
spatial product by the texture is a convolution by the spectrum
of the texture in the Fourier domain.

4. Re-parametrization along the outgoing direction. This is a
mirror reflection in the spatial domain, followed by a spatial
curvature shear of length −c and a spatial scale of 1/ cos θx.

We translate these operations into matrix operations onto the band-
width vector ν of the incident local light field (see Figure 5). The
reparametrization (first and last steps) are simply scaling (Pi and
Px) and shearing (Cc and C−c) matrices applied to ν. Mirror
reparametrization is multiplication by matrix S. The reflectance
function bandlimits angular frequencies based on its own angular
bandwidth ρ while the convolution with local texture augments the
spatial bandwidth by the bandwidth t of the texture. We denote this
using the operator Bt,ρ. We neglect the effect of the product by
the incident cosine, which only adds a small constant to the angular
frequency.

We quickly precompute angular and spatial bandwidths of the re-
flectance distribution (and texture) (Section 2.4). This computation
is applicable to any type of reflectance function (analytical BRDFs,
acquired BRDFs or artistic shaders).

The overall transformation undergone by incident bandwidths dur-
ing reflection can thus be represented by a reflection operator R
over the bandwidth vector:

R = Px C−c S Bt,ρ Cc Pi (3)

The bandwidth around a light path arriving at pixel p after one-
bounce of a single ray from the light is

νi = Td′ R Td ν
i
l (4)

Here d is the distance from the light source to the bouncing point
on the surface, d′ is the distance from the surface to the image plane
and νil is the bandwidth while originating at the light source along
direction ωi.
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Figure 6: Combining bandwidth estimates from sampled incident
directions. Middle: Applying a max overestimates sampling rates
(1 pixel−1 almost everywhere on the sphere). Right: Our approach
(eq. 5) predicts view-dependent sampling rates. Left: Final result.

2.2 Image-space bandwidth and sampling rate

The bandwidth at pixel p depends on the choice of ωi sampled at
x. That is the 2D bandwidth ν at pixel p is a combination of the
individual bandwidths νi along the sampled directions.

We compute the 2D bandwidth at each pixel ν as a weighted av-
erage of the sampled incident illumination Li(ωi) at x, reflectance
and the 2D bandwidths of the associated one-bounce paths νi:

ν =

[
νs
νa

]
=

1
nb∑
j=1

Li(ωj)

nb∑
i=1

νiLi(ωi) ρ(ωi, ωx→p) ωi.nx.

(5)
Although the bandwidth at each pixel is estimated using multiple
samples, a small choice of nb is sufficient (see fig 13). Using a
max operation in place of the sum in equation 5 does not capture
view-dependent effects. For example, bandwidth after reflection
from a specular sphere would be equally high regardless of viewing
or light direction (see fig 6). We account for the material, relative
orientation of illumination and view, and local geometry.

The required sampling rates at the image plane are twice the local
image-space bandwidth (Nyquist criterion) bp (in pixel−1):

bp = νa max

[
fx
W
,
fy
H

]
, (6)

where fx and fy are the horizontal and vertical fields of view, and
the rendered image is W ×H pixels.

2.3 Adaptive sampling for shading

The variance σ2
p(ωi) of the shading integrand about a single illumi-

nation direction ωi, at a point x that projects to pixel p, is

σ2
p(ωi) = E(χ2

iµ
2
i )− E(χiµi)

2 ≤ E(χ2
i ) = E(L̂2

i ⊗ ρ̂2)

where χi = Li(ωi)ρ(ωi, ωx→p), µi = ωi.nx, E(X) denotes the
expected value of X , f̂ denotes the Fourier transform of f and ⊗
denotes convolution. The second equality is a consequence of Par-
seval’s theorem (see, e.g. [Oppenheim and Schafer 1999]). The
convolution is in the angular domain. Further, E(L̂2

i ⊗ ρ̂2) ≤
(νia + νiρa) χ2

i , where νia is the angular component of νi, and νiρa
is the local angular bandwidth of the reflectance function.

We adapt the number of shading samples Np at each pixel to be
proportional to the sum of the bandwidths, weighted by the illumi-
nation and reflectance values, along sampled directions ωi:

Np ∝
nb∑
i=1

(νia + νiρa) χ2
i . (7)

Figure 7: Input environment map and its local angular bandwidth
computed using a 2D wavelet decomposition.

The sum is a conservative approximation of the variance of the in-
tegrand. nb = 16 provides acceptable quality (see Figure 13).

The summations over incident directions (Equations 5 and 7) indi-
cate that we implicitly account for the relative alignment (phase) of
the illumination and reflectance. Previous approaches that neglect
phase cannot predict variation due to view-dependent effects.

2.4 Illumination and BRDF bandwidth computation

We perform bandwidth computations on the fly, except for the an-
gular bandwidth of the reflectance functions, νρa, which we pre-
compute and store. In this paper, we only demonstrate separable
reflectance: q spatially-homogeneous angular reflectance distribu-
tion along with a texture. However, all the derivations for band-
width hold for spatially-varying BRDFs.

Distant illumination: the local 2D bandwidth of distant illumina-
tion along ω: ν(ω) = [0, νa(ω)]T . The local angular bandwidth,
νa(ω), can be computed either using a windowed Fourier trans-
form centered at L(ω) or using wavelets. We chose to use wavelets
and compute bandwidth by measuring the first level in the wavelet
pyramid at which coefficients involved in the computation of L(ω)
get larger than a chosen threshold (see appendix for details). In
practice, L is mapped onto an image that we process using the dis-
crete wavelet transform (Figure 7). The wavelet hierarchy level h is
converted into angular bandwidth using νa(ω) = 2π

2hλmax
, where

λmax is the maximum eigenvalue of the Jacobian for the mapping
of spherical coordinates onto the image plane. This approach al-
lows to compute instant angular bandwidth in real time on GPU for
environment maps, and is not prone to windowing artifacts. In all
our experiments, we used 2D Daubechies wavelets of order 4.

Texture (spatial): the spatial bandwidth is extracted using the same
approach, this time accounting for the Jacobian of the mapping onto
the surface so that the bandwidth is correctly expressed in inverse
meters.

Reflectance (angular): for each incident direction in the local tan-
gent frame, we compute the angular bandwidth map of the outgoing
BRDF lobe. We use the same technique as for distant illumination
and apply 2D wavelet transforms on the slices. We store the re-
sult for each lobe of the BRDF in a large texture. For the general
case of 4D reflectance data we use 16 × 16 input directions and a
16 × 16 image for each reflectance lobe, packed into a 10242 tex-
ture. Since the maximum expressible bandwidth depends on res-
olution, we compute the bandwidth for higher-resolution angular
slices and reduce it to 16 × 16. We experimented with principal
component analysis for compression of the BRDF bandwidth but
did not observe any improvement in quality or performance.

2.5 Implementation roadmap

Practical implementation is simple (although the theory is not): for
each pixel, compute the image bandwidth using Equation 5 and 6,
and the number of samples for the shading integrand using Equa-
tion 7. Both are summations over nb = 16 incoming directions
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Reflectance

Predicted illumination 
variance

Predicted screen-space
bandwidth

Figure 8: Our rendering pipeline: at each frame, we first render G-Buffers. From these, we compute an additional bandwidth buffer that
stores image space bandwidth and shader integrand variance maps. The former is stored in a multiresolution pyramid. During rendering of
the final image from coarse to fine scale, depending on our bandwidth and variance predictions, pixels are either explicitly shaded (numerical
integration) or upsampled from parent pixels.

ωi. For each ωi, the local 2D bandwidth νi is given by Equations 3
and 4, using the matrices listed in Figure 5. These matrices require
the curvature c, normal n, the incident and outgoing angles (θi and
θo), the precomputed spatial and angular bandwidth of the mate-
rial (resp. t and ρ) for the current pixel and direction ωi, and the
precomputed bandwidth of the light source νil in direction ωi.

3 Hierarchical shading algorithm

Our rendering algorithm consists of three steps (see Figure 8): (1)
a geometry pass that renders G-buffers; (2) a bandwidth buffer is
filled with image-space bandwidth and the number of integration
samples to use per pixel; (3) a one-pass multiresolution shading
step, interleaved with upsampling.

Rendering G-Buffers is a classical geometry pass where we store
normals, depths and material ID into a set of screen-space buffers.
G-Buffers do not need to be hierarchically built (mip-mapped) in
our method, which avoids typical numerical problems faced dur-
ing averaging of normals and depth. We build a multi-resolution
pyramid only for the bandwidth buffer.

3.1 Bandwidth buffer initialization

The bandwidth buffer contains two different values: the local
image-space bandwidth and the number of samples to be used for
shading each pixel. These are computed using the G-Buffers (Equa-
tions 6 and 7). Although these estimations involve numerical inte-
gration, they are several orders of magnitude faster than the actual
shading, since a coarse sampling is sufficient (Figure 13). Rather
than storing bp (see Equation 6) in the bandwidth buffer, we store

min( blog2

1

bp
c, min( log2(W ), log2(H) ) ) (8)

which is the pyramid resolution at which pixel p needs to be shaded,
accounting for the local variation at p. The floor operation ensures
that the Nyquist sampling rate is respected. Note that storing bp di-
rectly in the bandwidth buffer leads to identical results, and this op-
timization simplifies tests for deciding the pyramid resolution while
shading each pixel.

In a second step, the bandwidth buffer itself is mip-mapped using
a min filter, so that at a given level in the hierarchy, the value for
a pixel conservatively decides whether sub-pixels should be com-
puted at this level. We do the same for the variance estimate using
a max filter.

for all points p at level L do
if bw(p) < L then

compute w0, ..., w3

c(p)←
∑
k wkc(pk)

else if bw(p) == L then
shade(p)

p

1

39

3

Figure 9: Upsampling interpolation scheme. Left: Pseudocode for
the computation of one level. Right: relative weights αi for parent
pixels of pixel p at the next level.

3.2 Shading and up-sampling

We render the image hierarchically, progressively from coarse to
fine. At a given resolution (say 2k × 2k), we examine the band-
width buffer and shade the pixels for which the bandwidth buffer
pyramid contains the current coarseness resolution k. For pixels
whose bandwidth buffer entries are less than the current resolution
(i.e.< k), we bilaterally upsample from neighbors at the preced-
ing level of coarseness (2k−1 × 2k−1), only accounting for pixels
that are already computed. The parents’ values are averaged with
coefficients

wi = gz(z − zi)ga(p− pi)αi
where z (resp. zi) are the depths of the shaded (resp. parent) pixels,
and gz is a Gaussian that cancels out pixels of irrelevant depth, and
αi are bilinear weights (Figure 9). The last term ga is an anisotropic
2D Gaussian defined as

ga(v) = e−vTMv with M = RTφ

[
1 0
0 cos θ

]
Rφ

where φ is the angle of the screen-projected normal at the sur-
face, and θx the angle between the normal and the view direction.
This enables efficient anisotropic filtering aligned with the highest
and lowest screen-space frequencies, since bp

cos θ
and bp estimate

the minimum and maximum directional screen-space bandwidth
around current pixel.

We continue this process over successive levels, until we reach the
finest resolution where we shade all remaining pixels. Pseudo-code
for the algorithm is presented in Figure 9.

3.3 Shading computation

For each shaded pixel we read the number of samples Np from the
bandwidth buffer. We estimate reflected radiance (Equation 2) by
importance sampling the BRDF lobe for the current view direction.
In our implementation, we read Np samples randomly, from mul-
tiple precomputed vectors of importance samples that are stored in
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500

1000

 1e+08  2e+08  3e+08
Total nb of shading samples

Time (ms)

Buddha (2 materials)

Dragon

Bunny 100

500

1 4 9 16
Nb of samples for MSAA (log/log)

Linear
sub-linear, x0.7

Us

Time (ms)

Figure 10: Left: Rendering times are linear in the number of shad-
ing samples for various models. Right: Rendering time against
number of samples for antialiasing (blue) in log scale. Our algo-
rithm scales sub-linearly (with an exponent of 0.7) for antialiasing.

Model Car body Bunny Buddha Dragon
Reference 2056 1628 2634 1739
Ours: Total 229 419 390 205

Bandwidth calculation 7 8 7 8
Shading integration 216 390 200 182

Figure 11: Computation times (in ms) at 512 × 512 screen reso-
lution: Car body (Fig. 1), Bunny (Fig. 13), Buddha (Fig. 12) and
Dragon (Fig. 16). Our algorithm provides a 4 to 10× speedup com-
pared to a forward-shaded reference of similar quality, depending
on the material and screen occupancy. Bandwidth computation is
fast (< 10 ms) for all scenes.

a texture. Our algorithm is compatible with any importance sam-
pling strategy. In practice, we importance sample the reflectance by
numerical inversion of its cumulative distribution.

We always shade with depth and normal values at the finest level,
since the G-Buffers are not mip-mapped. This is possible because
the bandwidth buffer predicts whether, for any sub-pixel of the cur-
rent level pixel, the computation will yield similar estimates despite
potential variation in the depths, normals and illumination.

4 Results and discussion

All timings reported in this paper were measured on an NVIDIA
GeForce GTX 560 Ti graphics card with 1GB memory. All pictures
and the accompanying video were generated using the acquired ma-
terials from the MERL BRDF database [Matusik et al. 2003].

4.1 Behavior of our algorithm

Computation time: the computation time for our algorithm scales
linearly with the total number of shading samples (Figure 10, left).
The total number of shading samples required depend on the de-
sired image quality, the material and the environment map. Fig-
ure 11 tabulates the computation times for our algorithm to obtain
similar quality as ground truth, for several scenes. It details the cost
of individual steps: the cost of bandwidth computation is indepen-
dent of the scene and the material, and negligible compared to the
overall cost (8 ms, or < 0.33%). Shading estimation consumes
most of the total time (up to 90 %).

Memory cost: The memory footprint of our algorithm on the GPU
is approximately 432 MB at a resolution of 512×512 pixels: 17 MB
for storing the G-buffers (4 RGBA buffers for position, normal, tan-
gent and material ID plus the depth buffer); 2 mip-mapped buffers
(5.5 MB each) for storing the bandwidth (as well as variance) and
for the shading computations with upsampling; 2 RGB buffers of
6 MB for storing the environment map and its bandwidth; and 2
buffers of 196 MB for storing the raw BRDF data and its impor-
tance samples. Increasing the picture resolution only increases the

Figure 13: Effect of the number of sampled directions nb for band-
width computation on time (ms) and quality (PSNR). The data
points in the plots are at nb = 16, 64, 256, 1024. The enlarged
insets are virtually indistinguishable for the different nb. The plots
depict that fast bandwidth computation (nb = 16) is sufficient. Res-
olution: 512× 512. Material: color-changing-paint3.

(a) similar quality (b) Our algorithm (c) similar time
(2639 ms) (1015 ms) (906 ms)

Figure 14: Comparison of our algorithm (b) with a reference for
equal quality (a) and equal time (c). For this scene, we achieve a
2.5× speedup (without antialiasing). Forward-shaded references
use BRDF-importance sampling and a fixed number of shading
samples per pixel. Material: green-metallic-paint.

cost of the G-buffers and mip-mapped buffers. At a picture resolu-
tion of 1024× 1024, their memory cost becomes 112 MB, and at a
resolution of 2048×2048, it becomes 448 MB. This is probably the
maximum for our algorithm with the current generation of graphics
cards.

Validation: Figure 12 compares our predictions with reference
variance and image-space bandwidth. Our predictions are similar in
spatial distribution, and of the same order of magnitude. Our vari-
ance estimate is conservative, as explained in Section 2.3. We com-
puted the reference bandwidth1 using a windowed Fourier trans-
form over the image, with a window size of 32 × 32 pixels. We
computed the reference variance using extensive sampling.

Influence of parameters: the main parameter for our algorithm
is the number of samples we use for the bandwidth estimation, nb
(see Equation 5). Figure 13 shows the influence of varying this
parameter. The results are indistinguishable even in the zoomed-in
insets and the Peak Signal-Noise Ratio stays almost constant for all
values of nb. The rendering time has a small dependency on nb.
We used a small value, nb = 16, for all results in this paper. This
makes sense as nb is only used to estimate the bandwidth and not
for the actual illumination computations.

1Reference local frequencies cannot be computed exactly (uncertainty
principle).
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(a) Our variance (b) Reference (c) Our bandwidth (d) Reference FFT (e) Our shading (f) False color
estimate variance estimate (64 samples) bandwidth result difference

Figure 12: Validation of predicted variance and bandwidth. (a) our estimate for the variance of the shading integrand (Eq. 7), (b) reference
variance computed using brute-force sampling, (c) our estimate of the image bandwidth, (d) reference image bandwidth (windowed FFT of
reference image), (e) our result, and (f) relative error of (e) with respect to a path-traced reference. Material: color-changing-paint3

Figure 15: Comparison with related work [Wang et al. 2009].
Our algorithm results in pictures that are identical to ground truth,
while [Wang et al. 2009] result in clear differences.

4.2 Comparison to related work

Brute-force rendering: Figure 14 compares our result with a for-
ward shading reference computed using importance sampling and
a fixed number of shading samples per pixel. For this scene, we
achieve a 2.5× speedup due to our adaptive sampling. For simi-
lar computation, the reference yields noisy shading. The extent of
our speed-up depends on the material, the environment map and the
area occupied by the object on screen. Figure 11 tabulates render-
ing times for our algorithm and brute-force rendering for several
scenes. We observe a speed-up of 4× to 10×.

Spherical Gaussian approximation: Figure 15 compares the re-
sults of Wang et al. [2009] with ours and ground truth pictures com-
puted using path-tracing. The authors were kind enough to provide
us with their best images for the materials as well as timings with-
out the precomputed visibility. Our algorithm accurately shades

Antialiasing 16x

Antialiasing 4x

No antialiasing Pixels requested at level 0

Pixels requested at level -1

Pixels requested at level -2Antialiasing 16x

Bandwidth

Figure 16: Adaptive multisample anti-aliasing using bandwidth in-
formation. Aliasing artifacts are visible in the top row of enlarged
insets (55 ms). Our multiresolution algorithm handles antialiasing
seamlessly by adding extra levels to the pyramid (one level for 4×
and two levels for 16×). We only compute shading at the finest
level for the blue pixels in the rightmost column, where the pre-
dicted bandwidth is high. The cost of anti-aliasing is thus reduced:
141 ms for 4×, 390 ms for 16×. Material:gold-paint.

acquired materials. The fast algorithm of Wang et al. results in
a distinctly different appearance from the ground truth, since they
approximate the measured reflectances as a sum of spherical Gaus-
sians.

4.3 Discussion

Adaptive multisample anti-aliasing: Our bandwidth prediction
reduces the cost of multi-sample anti-aliasing by adaptive sampling.
Standard deferred shading evaluate shaders at every sample: 16
samples per pixel costs 16 times more. Our algorithm scales sub-
linearly in the number of samples (see Figure 10, right). We render
the G-buffers at the higher resolution (4 or 16 times the number of
pixels), but compute shading at the appropriate level in the pyramid,
depending on the predicted bandwidth. Antialiasing only requires
a few extra shader evaluations at the finest levels (blue pixels in
Figure 16).

Dynamic geometry, normal and displacement mapping: We
compute bandwidth and variance estimates using only the infor-
mation from the G-buffers (normals, geometry and curvature). Our
algorithm handles dynamic geometry, displacement mapping and
normal maps seamlessly. The accompanying video show our algo-
rithm running on dynamically changing shapes, at 15 fps.

Best and worst case: The rendering cost for our algorithm depends
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on the total number of shading samples that we predict. The most
beneficial cases are therefore when the predicted variance is low (a
specular material) or when the spatial variation is low (a smooth
diffuse surface). In these cases, we achieve large savings in sam-
pling for integration and reconstruction respectively. We do not
save time when both angular variance and spatial frequencies are
high (a bumpy, diffuse surface with high frequency illumination).

Conservative bandwidth estimate: We conservatively predict
bandwidth, choosing suboptimal (excessive) sampling over artifacts
from insufficient sampling. In particular, the min operator of Fig-
ure 5 is always larger than the real bandwidth of the product of the
BRDF and illumination spectra. Similarly, our estimate for variance
is an over-estimate. Since we distribute a fixed budget of shading
samples for rendering, the spatial distribution of variance and band-
width predicted by our algorithm are more important than their ac-
tual values.

4.4 Limitations and future avenues
Visibility and global illumination: We focus on accurate depiction
of materials rather than scenes. Thus we ignore effects such as
visibility for shadows and global illumination.

Spatially-varying BRDFs: We have only used homogeneous (non
spatially-varying) materials, modulated by a texture. We precom-
puted local bandwidths separably for reflectance (4D) and texture
(2D), in a few seconds. Extending our algorithm to fully spatially
varying BRDFs (6D) is possible at the extra cost of 6D bandwidth
precomputation.

Local light sources: While we focused on multi-light settings, it
is possible to use our algorithm with local light sources instead,
with a small modification. While distant illumination only contains
purely angular frequencies, illumination from local sources would
also contain spatial frequencies depending on the geometries.

5 Conclusion
We have introduced an algorithm for interactively and accurately
shading dynamic geometry with acquired materials. Our contri-
bution is to: (1) only shade a small fraction of pixels where the
local bandwidth is predicted to be large; and (2) adaptively sam-
ple shading integrals based on the predicted variances. We achieve
these predictions by quickly computing local bandwidth informa-
tion from standard G-buffers. We have introduced the concept of
a bandwidth buffer, to store this information. We also exploit the
bandwidth information to sub-linearly scale multisample antialias-
ing with deferred shading.

A Frequency localization using wavelets
Wavelets are localized both in space and frequency. We estimate the
maximum frequency by examining the set of wavelets contributing
to each point of the signal. If x is a point in the domain of a signal
s, φ denote the scale function and ψ be the mother wavelet. Then

s(x) =
∑
i

βi ψi(x) +
∑
i

∑
j

λi,j
1

2i
φ

(
x− 2ij

2i

)
.

Since wavelets of the same scale have identical bandwidths, we
compute the maximum wavelet coefficient λmaxi = maxj |λij | per
frequency band, and estimate the signal bandwidth by:

bw = 2Iw with Iw = argmini

n∑
k=i

λmaxk < εmax
k

λmaxk

The result is independent of ε as long as it is a small value. We use
ε = 0.01 in all our experiments.
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