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1. INTRODUCTION

The simplistic pinhole camera model used to teach persjg@ind computer graphics) produces sharp images because
every image element corresponds to a single ray in the sé&ed:life optical systems such as photographic lenses,
however, must collect enought light to accomodate the Beitygiof the imaging system, and therefore combine light
rays coming through a finite-sized aperture. Focusing nméshes are needed to choose the distance of an “in-focus”
plane, which will be sharply reproduced on the sensor, witiiects appear increasingly blurry as their distance to
this plane increases. The visual effect of focusing can bendtic and is used extensively in photography and film,
for instance to separate a subject from the background.

Although the simulation of depth of field in Computer Grapghiias been possible for more than two decades, this
effect is still rarely used in practice because of its hightc@he lens aperture must be densely sampled to produce
a high-quality image. This is particularly frustrating bese the defocus produced by the lens is not increasing the
visual complexity, but rather removing detail! In this pgpe&e propose to exploit the blurriness of out-of-focus
regions to reduce the computation load. We study defocus &wignal processing perspective and propose a new
algorithm that estimates local image bandwidth. This adlow to reduce computation costs in two ways, by adapting
the sampling rate over both the image and lens aperture domai

In image space, we exploit the blurriness of out-of-focugiaes by downsampling them: we compute the final
image color for only a subset of the pixels and interpolater. @otivation for adaptive sampling over the lens comes
from the observation that in-focus regions do not requirargd number of lens samples because they do not get
blurred, in contrast to out of focus regions where the largeations of radiance through the lens requires many
samples. More formally, we derive a formula for the variaoeer the lens and use it to adapt sampling for a Monte-
Carlo integrator. Both image and lens sampling are derik@d & Fourier analysis of depth of field that extends recent
work on light transport [Durand et al. 2005]. In particulae show how image and lens sampling correspond to the
spatial and angular bandwidth of the lightfield.

1.1 Related work

Our work builds on a variety of previous approaches that seedfficiently simulate depth of field effects,g.
[Potmesil and Chakravarty 1981; Cook et al. 1984; Cook €1@87; Haeberli and Akeley 1990]. A number of ap-
proaches, in particular in real-time rendering, start fapinhole image together with a depth map and post-process it
using various forms of spatially-varying blur, e.g. [Posihand Chakravarty 1981; Kraus and Strengert 2007; Barsky
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et al. 2003; Zhou et al. 2007; Kolb et al. 1995]. In this paper,focus on high-quality offline image synthesis that
resolves visibility based on a full thin-lens model, not apiit pinhole image.

The method of multidimensional light cuts [Walter et al. BD@educes the cost of estimating a composition of
multiple integrals, one of which is over the aperture. Hosretheir work efficiently estimates the integral over
the apertureonly in conjunction withcomplex illumination. For scenes with simple direct ligigtj their method
performs no better than theiwa technique of independent stratified sampling of thetapeand image. Our work is
complementary to theirs because we seek to reduce the narhipesige-space samples and lens samples, while they
reduce light gathering.

Our approach is related to techniques that adaptively refimeputation based on the smoothness of the current
estimate and by assessing how well smooth interpolatiompiadict new simulated data, e.g. [Bolin and Meyer 1995;
Ferwerda et al. 1997; Bolin and Meyer 1998; Myszkowski 1989®kes et al. 2004]. In contrast, we seelptedict
the local bandwidth or smoothness of the image.

A variety of approaches compute derivatives of illuminatio predict smoothness and improve interpolation, e.qg.
[Ward and Heckbert 1992; Suykens and Willems 2001; Shinyal. et987; Igehy 1999; Chen and Arvo 2000]. In
particular, Ramamoorthi et al. [2007] compute 4D gradieft@diance and adaptively subdivide a Whitted ray trac-
ing solution. While they are usually easier to estimate thraquency content, derivatives do not directly provide
information about sampling rate and their locality can bthtzm asset and a drawback. We seek to predict frequency
content in small neighborhoods that are not infinitesimaifhall so as to avoid missing small features and be able to
derive bandwidth with a reasonable amount of precomputatio

Our work is complementary to the optimization of samplingtgras, [Mitchell 1991; Ostromoukhov et al. 2004;
Agarwal et al. 2003] since we seek to optimize samptiegsity

It also builds on Durand et al.'s analysis of frequency dffén light transport [2005]. In contrast to the mostly-
theoretical nature of this work, we seek to apply bandwid#djztion to accelerate high-quality rendering.

Finally, we build on studies of defocus effects using Fauaigalysis over 4D light fields, e.g. [Isaksen et al. 2000;
Chai et al. 2000; Ng 2005]. Our derivation of the frequendgatfof depth of field is similar to theirs but we use it in
a ray-tracing context rather than for image-based rendennd photography.

1.2 Background on the Frequency analysis of Light Transport

Our technique builds on signal processing theory of liggmt$port [Durand et al. 2005], local reflection [Ramamoorthi
and Hanrahan 2001; 2004; Basri and Jacobs 2003], and ligghstenpling [Chai et al. 2000; Isaksen et al. 2000]. We
briefly review these theoretical results, following the lggs by Durand et al. [2005] since it addresses both spatial
and angular effects in global illumination.

We are interested in the content oibgal light fieldcharacterized by a 4D slice of radiance in the neighborhdod o
a central ray. Following Durand et al. [2005], we use thedladl counterpart of the 4D radiance function to simplify
exposition; for application in 3D scenes, we project the dbction down to 2D (see Sec.3.3). The local light field
¢ is parameterized by a spatial compongiih the plane orthogonal to the central ray and an angular coetv,
usually the tangent of the angle to the plane normal. We stuglfrourier transform of such light fields

00y, Q) = f f (X, V)@ 2 XAV gy dy (1)
X=—00 JV=—00

and how it is modified by transport phenomena. In what follome describe effects in the Fourier domain since this
domain enables bandwidth and sampling rate prediction.

Transport in free space is a shear of the Fourier transfortheofocal light field. Reflection is described by two
scale transforms due to the incident and outgoing anglesvemdhears due to the curvature of the receiver. Shading
corresponds to a convolution with a small kernel correspuant the spectrum of the clamped cosine term followed by
a clamping by the BRDF angular bandwidth. Texture mappiragrisultiplication of radiance, which is a convolution
in the Fourier domain. Occlusion corresponds to a convauy the spectrum of the blockers.
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To summarize, existing literature analyze the effect aigport phenomena on light fields and show that transport
through free space, reflection and occlusion can be modglsihiple transformations of the light field spectra [Du-
rand et al. 2005]- shear, convolution and multiplicatiope@ively. We use this theory to analyze the effect due to
depth of field and derive an efficient algorithm for image bgsis, taking into account effects due to a finite sized
aperture.

2. A FREQUENCY ANALYSIS OF DEPTH OF FIELD

Sensor Lens Plane in focus

Fig. 1: Finite aperture (thin lens) camera model: Rays from poiht tie in front of (resp. behind) the plane in focus conveogéind (resp. in
front of) the sensor plane, after passing through the leesyliting in finite blurry regions on the sensor called “c&slof confusion”.

We present a theoretical analysis of the frequency conftetiiedight field at the sensor plane of a camera with a
finite sized aperture. For effective exposition, we preseffaitiand analysis where the lightfield is two dimensional:
one spatial and one angular dimension; in 3D space the pomding quantities and transforms are four dimensional.

Consider a poinP in the scene (See Figure 1). We assume that we know the Igtalfleld atP, denoted by
tp(x,v), and its spectrunt,p(Qy, Q). We describe the transport 65 to {o whereQ is in the support plane of the
camera sensor and derive the transformations undergofg®y, Q,) corresponding to this transport. The complete
process is illustrated on Figure 2.

2.1 Transport from P to the lens:

To begin with, the light fronP travels in free space in direction to the lens. From earlierkDurand et al. 2005],
we know that free-space traveling a distadamrresponds to a re-parameterization of the lightfieéda shear in the
angular domain of its Fourier spectrum. We define an opet&atorrepresent this transformation:

(S ) (0 Q) = €p(Qy, Q +dQy).

If the light from P passes by an occluder en routd_tdhis occluder also affects the light field. We express thithie
operatorC. This operator corresponds to a product between the ligshtfied the visibility function of the occluder.
C is thus a convolution of the spectrum of the local light fieldhvthat of the occluder [Durand et al. 2005]. If the
occluder were planar, the effect@fis to inject spatial frequencies at the plane of occlusiar.rifen planar occluders,
this is a continuous process through the width of the ocelude

The spectrum of the local light field at the lens after passin@ single occluder is a simple composition of the
above operators:

?L(Qx, QV) = (CS ?P) (Qx, Qv)
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In the general case, light travelling frofnto L will encounterm different occluders, anoh + 1 shears (with different
values for the shear paramethr In this case we can writg (Qy, Q,) as

Qe ) = (S €™ ) (O Q) )

2.2 Lens integration

The result of a finite-sized aperture is that, at each lonafion the sensor, there is an integration of the cone of
incident rays from the lens to the scene, defined by the apertMe choose to model this integration as an operation
over the lightfield at the lens (meaning that the lightfielchensionality is not reduced by this operation). This
integration corresponds to a convolution in ray-spade and thus the light field just aftéris actually

O, (%V) = 0_(XV) ® a(x V). 3)

In this equatiori, (resp.L_) represent the lightfield after (resp. before) the lens,aisdhe indicator function of the
set of rays not blocked by the aperture. The equivalentfioamsin Fourier space is a product and can be written as

0 Q) = 0 (Q Q) AQx Q). (4)

To understand wha (Qy, Q) looks like, one can notice that the set of rays over whichligtgfield is integrated,
converge at a poir®; in the plane in focus (See Figure 1). Therefore, at this poim integration filter is a box in
angles and a Dirac in space. It's Fourier transform is thusi@is angle and a constant in space. lAta(x, V) is
the same function sheared from the distance betreandL. In 3D, the box is circular, and its Fourier transform is
consequently a Bessel function in angles.

As a consequence, the light field lat (i.e. just after the lens) ibandlimitedby the spectrum of the aperture
response function. Constricting the aperture of a camesmdp the width 6l (Q4, Q) resulting in increased angular
bandwidth at_,. The ultimate case of a pinehole camera restédtsa Dirac in both space and angles at the plane in
focus, which means that it's Fourier transform is a condtaattretains all frequencies in the lightfield.

Finally, because we have already accounted for the infegrat the lens, and because the free-space traveling from
the lens to the sensor is usually very small, we will negleist tery last phase of the transport@o

2.3 Consequences on lens integration and image-space frequencies

When numerically performing the lightfield integration ag flens, one would rather adapt the integration accuracy to
the frequency content of the lightfield lat so as to ensure a desirable precision while keeping the caitigu cost

as low as possible. This information is availablefin(Qy, Q) and will be used in our algorithm to drive the lens
sampling.

When computing an image, one would also preferably adapintlage sampling to the frequency content of the
image and interpolate between samples, rather than ekpladmpute all pixels. At the sensor, the result of the
integrated lightfield is the radiance at pof@t corresponding to a pixel into the image. Seen from the lenage-
space frequencies correspond to angular frequencies digtitéeld at L, measured at the center of the lens (See
Figure 1), times the cosine of the incident angle at the sefis&ourier space, this means that we can measure image-
space frequencies from the angular frequencigs i(2x, Q) integrated over the spatial domain. This operation of
view-extraction is therefore a projection of the spectrurerdhe angular axis.

3. ADAPTIVE DEPTH OF FIELD RENDERING

We increase the efficiency with which depth of field effects ba simulated by adaptively varying thmage space
samplesand the number of samples over thgertureat each image sample. The former are obtained according to
conservatively predicted bandwidths over the camera s@amh at each of these samples, the latter are obtained by
estimating the variance of the integrand over the aperfline. computation of both, the bandwidth and the estimate
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Fig. 2: Flatland illustration of the transformations at differelutcations undergone by power spectra of local light fielderafast bounce in the
scene as they travel to the camera sensor.

of the variance, are enabled by the propagation of locat fighd spectra after last bounce off surfaces in the scene
towards the camera sensor.

3.1 Algorithm

To adaptively distribute effort between sampling the image aperture, we consider the different transport phenamen
between a visible object and the camera sensor. We proptgagpectral information of local light fields after last
bounce off visible objects. To do this, we sample the powecspm of the light field and adjust these samples during
the different stages of transport to reflect the power spettiensity locally. Using a depth map to detect occlusion
along the transport, we are able to efficiently estimateueegy propagation towards the camera sensor.

Using the frequency information of the light fields at thesmmwe extract a slice to obtain an image space density
(see Sec. 3.4) that predicts bandwidth locally over the casensor. This operation is performed for a subset of image
pixels on a regular grid, namely one every ten to one hundpezls) and the frequency information is splatted using
a max across the image. This makes the whole process venSiass of the spectra at the plane of focus are used
to estimate the variance of the integrand over the aperse® $ec. 3.4). We use the density yielded by this slice to
derive the number of lens samples for each pixel.

The next stage of our algorithm samples the image densityeatichates the number of lens samples required at
each of those sample locations. Given this information, stierate incident radiance at those locations on the camera
sensor using a Monte Carlo path tracer. The final image isystnacted from the scattered radiance estimates. Figure 3
shows this process on a simple scene with a dramatic degthldfeffect.
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Fig. 3: Walkthrough into our algorithm:Top Left Image density depicting local bandwidth at each pix@p Right Lens density indicating
expected variance in the aperture integrédottom Left image samples at which incoming radiance is estima@attom Right reconstructed
image, using adaptive gaussian splatting. Blurry regiohthe image are sampled sparsely, but require profuse sagpli the lens.

3.2 Sampling local light field spectra

Let Q be a point on the sensor from where a primary rag cast (through the center of the lens) andRete the
point of intersection of this primary ray with the scene. \Wpresent the power spectrum of the local light fiel&at

PP(QX, Q)| , by a set of random variables

(@ @) ~ P ( [t )

) O0<i<n

lw?| < co and|w?| < Q, are independent random variables representing the spatishngular components of a 2D
frequency sampleQ, is half the angular bandwidth of the reflectance functiof.atP is a projection of the four

dimensional power spectrum down to two dimensions, one ¢h,ezamely space and angle. The projection down to
two dimensions implies that we assume isotropy indepehdanspace and in angle which makes the computation,
representation and propagation of the spectra practiclblgactice this assumption is reasonable since we are only

interested in maximum frequencies and not in accurate atsrof the spectra themselves.

Local light fields in the scene can of course be arbitrarilgnptex, as can their corresponding 4D spectra. The

existance of discontinuities in the light field implies thia range of frequencies is infinite. Although, after reftact
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they are restricted in the angular domain by the bandwidthefreflectance function, they could contain arbitrarily
high spatial frequencies. This results in a very conseargairediction of bandwidth & and thus we generate more
samples than the optimal number.
Associated with each primary ray is a set of samples— iaynitialized with{(wS;, %)} from the power spectrum
at P as above. The range of useful frequencies in the image ptaalkvays bounded by the maximum number of
sampled\s per square pixel in image space, and by the maximum numbensfdamplesl;, in angle, which are user
defined parameters. Also, in practice, anticipating theusfrem the point to the sensor, we can restrict the spatial
bounds to be such that the resulting frequencies stay béklewaximum angular frequency at the sensor.
Propagation of the frequency content along the ray utiequires that the samples be appropriately updated at
each step in the transport frofto Q. These updates are simple and inexpensive to compute (séé fig

3.3 Propagating local light field spectra

Transport through free spachears the power spectrum along the angular direction piopal to the distance trans-
ported. Starting from the original samples, obtaining dasfhat are distributed according to the sheared distoibut
involves simply shifting each of the samples in the anguiarethsion. That is, each samfes;, «?) is updated to
be(wis, W + du)is) as a result of the free space transport by a distdnce

Occlusioninvolves a convolution of the spectrum with the local ligletdi by the spectrum of the occluder. Random
variables representing the spectra of the light field anetwtuder when added are representatives of the convolution
of the two distributions. Thus if we are able to draw sami{e%, v%)}, 0 < i < ngfrom an occluder’s spectrum then
we can simply update our samples’, w?) to be(w? + v, w? + v2).

For each ray we use the depth map to build a list of occluders and the palatgy the ray the occlusions occur. To
achieve this, we search the depth map for discontinuitidssaiat these discontinuities in an occlusion buffer. Each
discontinuity is splatted to influence a region as large @siitle of confusion. Given a pixgd and a pixelq in its
neighborhood, the test to determinagi€orresponds to a discontinuity where occlusion needs tabeuated for is
illustrated in Figure 5.

At each occlusion point, the power spectrum of the occlusl@ssumed to be a Dirac in angle and proportional to
1/wy in space. This conservative choice is due to the fact thitiliig functions contain zero-order discontinuities and
thus produce a spectrum with first-order fall-off. The efffetcthis is seen in the regions surrounding the foreground
cubes in Figure 7 where the predicted effect of occlusionasenconservative than its measured counterpart.

The effect of a finite apertuns to cut off high angular frequencies at the plane in focupdating samples to
represent the result of applying this operator involvesatiig angular frequencies with a probability defined by the
shape of the aperture power spectrum. Although this willéase the variance of the estimate, it is reasonable since
we are interested in information about maximum frequenaesnot complete spectra.

3.4 Bandwidth, variance and reconstruction

3.4.1 Sampling the imageTo obtain image space samples, the first step is to consexlyatistimate bandwidth
over the camera sensor using the incoming local light fiekcsgl information. That is, we project the samples
onto the angular axis (view extraction) and compute thedsghngular frequency in the local neighborhood of each
pixel. In practice, to decrease sensitivity to outliers,wse the 98 percentile of energys as a representative of the
maximum value at each poiste [0, W) x [0, H). HereW andH are the width and height of the image respectively.
The distribution ofs over the image serves as an indicator of regions that neeel saripled more densely. Further,
sinceé&s represents the maximum local frequency, we can estimateptimal number of samples required locally
(samples per square pixel) gfrom the Nyquist limit, as

4621, 1,
p9 = S ©

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



8 . Cyril Soler, Kartic Subr et al.

rQ

v
Scene Point ".'.".".by

Y

A

Transport E... ot
Shift samples in angle i i
QV

Occlusion
Add samples with
those from occluder's

—->0ccluder ¢ ~ er s O T - o= < 2,

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Loop if several occluders

c Aperture Filter
Lens ¥ = « . _Reject samples against
&N © Qv Q, ~ Q¢ | aperture's response

spectrum
< Horizontal projection
~2Qconto angular axis
‘Q -
o’/ Image Sampling
® Extraction of
b . 2y 98th percentile
L]
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where f;, and f, are the horizontal and vertical fields of view. However, simge predict bandwidth conservatively
for increased reconstruction quality, the number of sampler the image may be suboptimal. After computing the
density, image samples are generated accordipfsjaising a technique that produces samples with desireakde no
properties [Ostromoukhov et al. 2004]. The total numberashgles is dependant on the integralo¢§) over the
image rather than a user defined parameter.

3.4.2 Sampling the apertureUsing Monte Carlo integration over a finite aperture, thearare of the estimates
depend on the variance of the integrand. The goal is to satin@laperture more profusely at image locations where
the variance of the lens integrand is high. We use the light fipectra at the plane of focus to estimate the angular
variance of the light field, since according to Parsevakotlem, the variance of a function is the integral of its power
spectrum minus the DC term:

o2 = f V()2 — yp(O)

In this equationy, is the predicted spectrum just before the lens, obliquetyepted onto the angular axis. The
projection is obliqgue because of the local parameterinadiothe lens. Since all rays through the lens intersect at a
common point at the plane of focus, the parameterizationesiétkis projection horizontal at this plane. The slope of
the projection to apply at the lens is thus given by the shistéarce from the lens to the plane in focus.

The central limit theorem predicts that the Monte Carlomates of each of these integrals using uniform sampling
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Fig. 5: A depth map of the scene is used to build the lists of occludknsg with their distances, for each primary ray. P is thénpof intersection
of the primary ray through pixel p and the scene. This defihesdbuble cone where a ray from the lens can hit the point P.ablowe figure
illustrates the interval of depth values for a neighboririggb g within which a discontinuity is reported.

over the aperture has itself a variancedghg). While, in theory, stratification can improve the varianpet@O(n3?),
Mitchell showed [Mitchell 1996] that in practice it is abo@(ng1®) for pixels with edge boundaries. Using this
conservative estimate for stratified sampling of the apertwe determine the number of samples as

1
ns = k(o?)* (6)
The constant of proportionalitit,can be used to control the expected error consistently beegittire image.

3.4.3 Image reconstructionWe reconstruct the image using the radiance estimates latoédloe image sample
locations. The color at each pixel is computed as a weightethge of a constant number of neighboring samples.
Since the samples are distributed according to a densitgsihg a constant number of neighboring samples involves
adaptively varying the radius of contribution of each pigelthat a constant number of samples (independent of the
local density) contribute to the color at each pixel. In pi@g we use a gaussian weighting term with a variance that
is proportional to the square root of the local density.

We emphasize that sparsely sampled images resulting fnromlaion of depth of field cannot be splatted upto
material or depth discontinuities (as is done for pinholmee simulation), due to the integral over the aperture.
Blurred discontinuities in the image need to be sampledwatety, which requires a systematic treatment of occlusion
and aperture effects (see Sec.3.3).

4. VALIDATION AND RESULTS

We compare our conservative predictions of the local imagaltvidth and lens variance against experimental mea-
surements. To verify our predictions of the image densitygah pixels (in the reference image) we compute a
windowed Fast Fourier Transform (FFT) with the window ceatieats; and record the 98percentile. Figure 6 shows

a comparison of such a measured'9®rcentile image against our image space sampling defiiymeasurement

is not entirely local due to a fundamental property of thedeiwed FFT. Depending on the choice of window size the
measured frequencies are either heavily blurred (largdavifi or restricted heavily in the range of measured frequen-
cies (small window). To avoid border effects, the measurgmare limited to the interior part of the reference image.
From the figure, it is evident that our prediction both appearqualitatively match the distribution of measured fre-
guency and is of the same order of magnitude. In fact, we mltaiuch more local prediction than observed with the
windowed FFT.
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Fig. 6: Comparison between measured and predicted image-spagpaefieies. left: image space frequencies are
measured in the reference image by extracting the maxi@8parcentile (radially) in a 2D spatial spectrum computed
using a64 x 64 windowed Fourier transform around the point. Inlays shoe ¢ipectra and image-space frequencies
in pixel1 at four points.Center:measured values across the image that should be comparea tinoulated values
(right). Our method not only gives qualitatively the same profildérefuencies but also produces a conservative
estimate of the actual values. Note that in the domain of feguiencies, the measured frequencies become higher
than our estimate since the measurement method can notqeaguy low frequencies because of Gdex 64 window
resolution. In addition, the windowed fourier transformshan averaging effect whereas we estimate a purely local
frequency, hence the difference in blurriness of the twoaaghes..

133 412 1270 3820 12087 37331 133 412 1270 3920 12097 37331

Fig. 7: Comparison of variance measured over the rays convergieatb pixel of theubesscene left), with the variance predicted by our method
(right). Both images are displayed using the same scale. Our grediis comparable to the actual measured values both inigidution over
the image, but also qualitatively, except in the foregrowre it is a more conservative estimate. This makes it edabkdaptive lens sampling.

To verify our estimates of the variation of the integrandrahe aperture, we use stratified samples to estimate and
record the variance in the lens integrals at each pixel. ¢ufei 7 we compare the predicted variance at each pixel
using Eq.6 to the actual variance measured during Monteo@asdgration over the aperture for the reference image.
From the comparison we observe that, although our predéistidbution resembles the measured variance, we predict
higher frequencies around the blurry cubes in the foregtaimce our prediction is conservative.
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4.1 Computation times

The table in Figure 8 summaries computation cost for theuarscenes and focus settings with our algorithm. Kitchen
1 and 2 correspond to the kitchen scene with the plane in feeusn the foreground and background respectively.
Clearly, the accumulated cost of propagating, computirdysplatting frequency information, along with image re-
construction (using splatting) is quite negligible comgahto the cost of rige stratified Monte Carlo integration over
the aperture at all pixels (see table in Fig. 9). This sugg#®it our adaptive algorithm significantly increases the
efficiency of synthesizing images with depth of field effe@sleast by an order of magnitude). The shallower the
depth of field, the blurrier the image; this is when the adepigorithm provides maximum gain.

Scene Size Frequency Path | Reconstruction |Image space| Primary,
computation | tracing (seconds) samples rays
(seconds) |(seconds
Cubes |721x 589 45 3150 3 76000 13 M
Snooker [904x 806 90 4500 10 119335 25M
Kitchen 1 897x 679 60 7401 8 867000 44 M
Kitchen 2 897x 679 60 6849 3 2000000 | 77 M

Fig. 8: Execution times for the different steps in our algorithm andhber of primary rays cast are shown for different scenes.

The number of image samples is indicative of the number @lpiwhere radiance needs to be estimated. For images
with larger regions in focus (large depth of field), this niantwould be very close to the number of pixels in the image.
In those regions, the gain from using our algorithm is dudnoextremely sparse lens sampling, again implying that
fewer radiance estimates are required. Note that focusagdmare reconstructed faster, which is consistent since
samples require smaller splatting radii.

We use the total number of primary rays cast to compare otintgae with the non-adaptive stratified sampling
technique. By distributing the total number of primary ragst in our method amongst all pixels for the stratified
sampling method, we generate images of similar computatiorst. The table shown (see Fig. 9) shows the number
of rays cast for similar image quality as those images useahé&asurements in Fig. 8. We also tabulate the theoretical

speedup by dividing the number of primary rays in the refeegechnique by the number of primary rays cast by our
algorithm.

Scene Number of Number of . Speedup
lensrays/pixel | primaryrays | duetoour method
Cubes 450 191M 14.7
Snooker 600 437M 17.3
Kitchen 1 1100 2719M 610
Kitchen 2 1100 2719M 353

Fig. 9: Number of rays cast using stratified sampling Monte Carlegration for similar appearance quality as for the imagessutated in Fig.8.
The last column shows the speedup gained by using our methtadned by dividing the middle column by the last columnigng=

Finally, we compare our approach to adaptive lens sampksgdb ora priori variance estimation: For each pixel,
we trace a fixed (and small) number of rays and use their rediealue to estimate their variangeaccross the lens.
Using Equation 6 we compute for each pixel the required nurobeays to reduce the variance of the integrated light
through the lens under a given threshold. We setup thishblteéso that the total number of primary rays is the same

than the number of rays used by our method. In figure 4.1 we acerhe two methods on the kitchen (foreground
focus setup) at different locations.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 10: Comparison between our methdabfton row and adaptive lens sampling based on variance estimatan & small number of samples
(top row). Both bethods use the same number of primary rays for tHeeemtage. While the adaptive lens sampling manages to umife the
variance accross the image, it needs to send rays for eacteaewy pixel while our method only samples a few pixels in tbst tlurry regions.
This makes the adaptive lens sampling unable to competewitmethod at equal number of primary rays.

4.2 Examples

We present, in Figure 11, example renderings with diraatilhation of a scene lit by area and point light sources. The
frequency maps conservatively capture the various effeish can produce high image-space and lens frequencies
such as focused regions for the former, and highly curvedwaeregions for the later. The image samples as well
as the lens samples are automatically adapted so as to pradumage of constant quality. The image resolution is
897x 679, and we used maximum valuesNyf = 4 image samples per square pixel afd= 2500 lens samples per
pixel. The total number of primary rays is 4400, 000 and 77000 000 in the two settings respectively.

We compare our results to what we can obtain using a stratdiegisampling (with image space stratification for
antialiasing) for the same computation cost. We do this yngethe number of lens samples so that the total number
of primary rays is the same as with our method samples (70 2@dot the foreground and background focus settings
respectively). In both cases our algorithm results in insafat are less noisy. Our algorithm performs particularly
well in regions of high angular variance such as the handl#fseocabinet. Despite the total cost being the same, the
reason that the iiee method does not produce regions with less noise, is taaymegions of the image are wastefully
oversampled because of its non-adaptive nature.

In Figure 12 we show another configuration where ray traciegefits from our method: in particular, the lens
sampling densities and the image-space sampling denadigst to the BRDFs of the shiny balls and the specular
trumpet.

4.3 Discussion of the various approximations

Ignoring phase information of the local light field spectss, we do in our model, implies approximations in the
computation of convolutions between spectra. In practiige, means that we neglect the relative positions of metipl
obstacles close to the same ray. The convolution is therestanated, and tends to produce higher frequencies when
multiple obstacles lie between the eye and the scene. Thi®xmation is therefore conservative with respect to
image-space frequency and lens variance.

By reducing dimensionality from 4D spectra to 2D spectra,implicitly make assumptions about the isotropy in
the spatial and angular domains independently. In pracsioee we only use the spectra to conservatively predict
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(b) Constant lens sampling (same cost)

(c) Comparison with constant lens (d) Lens space frequency map (e) Image—space frequency map

sampling at equivalent cost and number of lens samples

(f) Our method (backgound focus) (g) Constant lens sampling (same cost)

Fig. 11: Example of renderings using our method, with two settingh@focus planga) and (f). In both cases, we
compare our result to sampling the lens constantly throughioe image and by shooting the same number of total
rays than in our method. The images obtained are much morgyhbturegions of high variance, such as door handles
which are highly curved very specular materials. In (¢) wernaamn specific image locations and compare our method
(at left) to the uniform constant sampling (at right). () and (e) we show the lens and image-space frequency maps
(logarithmic tone mapping) that we used to sample the lenkimage, as well as the number of lens samples used at
some locations.
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bandwidth, we do not observe artifacts that could be dueisgitiojection.

Our choice of using conservative spectra such as maximutiakfraquencies when a textured surface is detected
and angular frequencies equal to the bandwidth of the BRD&lI@murfaces results in suboptimal sampling. Thus we
are not able to take special advantage of knowing the locad\walth of a region with texture. In addition we do not
take illumination into account while sampling.

5. CONCLUSION AND FUTURE WORK

We have proposed a practical scheme that adaptively diggskeffort between sampling the image and the aperture,
in order to simulate depth of field effects in image syntheBge gain in efficiency due to our method is independent
of the technique used to estimate radiance at each pixel. régepted an algorithm for conservative predictions of
regions in the image where the effect of a finite sized apertudominant, using existing theory that analyzes analysis
light fields in the Fourier domain. Our algorithm predictdtbpixels where the image is bandlimited and hence can
be sampled sparsely, and pixels where there is a signifisgetcted variance in the integral over the aperture.

Our algorithm yields a sparse yet sufficient sampling of thage in conjunction with a number of lens samples
at each pixel that reduces variance drastically. We haveslaosignificant reduction in the number of primary rays
required, in comparison with a uniform sampling of the imagth stratified sampling of the aperture.

Since our estimates of bandwidth and expected variancetbeeaperture are both conservative, the number of
samples are sub optimal. We believe, however, that irdtiadi our algorithm with more intelligent spectral samples
will further improve the efficacy of our method. One possipilvould be to approximately predict light field spectra
at points in the scene, due to global illumination effectéthdugh this might be an interesting path to explore, it is
unclear if the gain due to this optimization will outweigletbost of estimating spectral information due to illumioati
effects.

Another interesting avenue would be to explore the possilif seeding the Metropolis light transport algo-
rithm [Veach and Guibas 1997] with carefully chosen patltoeding to frequency predictions.
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(b) Lens sampling density

(a) Image sampling density

(d) Reconstructed image

(c) Image space samples

Fig. 12: (a) The image sampling density predicts that the shiny regidniseotrumpet, with high curvature and in focus need to be $aghmost
profusely in the imaggb) The aperture density predicts that defocused regions rebd sampled densely while the ball in focus requires very few
samples over the aperturge) the image samples obtained from the image sampling defd)jtyhe image is reconstructed from scattered radiance

estimates.
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