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ABSTRACT

We present an algorithm for efficient stratified importance sampling
of environment maps that generates samples in the positive hemi-
sphere defined by local orientation of arbitrary surfaces while ac-
counting for cosine weighting. The importance function is dynam-
ically adjusted according to the surface normal using steerable ba-
sis functions. The algorithm is easy to implement and requires no
user-defined parameters. As a preprocessing step, we approximate
the incident illumination from an environment map as a continuous
piecewise linear function on S 2 and represent this as a triangu-
lated height field. The product of this approximation and a dynami-
cally orientable steering function, viz. the cosine lobe, serves as an
importance sampling function. Our method allows the importance
function to be sampled with an asymptotic cost of O(logn) per sam-
ple where n is the number of triangles. The most novel aspect of the
algorithm is its ability to dynamically compute normalization fac-
tors which are integrals of the illumination over the positive hemi-
spheres defined by the local surface normals during shading. The
key to this feature is that the weight variation of each triangle due to
the clamped cosine steering function can be well approximated by
a small number of spherical harmonic coefficients which can be ac-
cumulated over any collection of triangles, in any orientation, with-
out introducing higher-order terms. Consequently, the weighted in-
tegral of the entire steerable piecewise-linear approximation is no
more costly to compute than that of a single triangle, which makes
re-weighting and re-normalizing with respect to any surface ori-
entation a trivial constant-time operation. The choice of spherical
harmonics as the set of basis functions for our steerable importance
function allows for easy rotation between coordinate systems. An-
other novel element of our algorithm is an analytic parametrization
for generating stratified samples with linearly-varying density over
a triangular support.

1 INTRODUCTION

Variance reduction strategies are crucial elements of Monte Carlo
global illumination algorithms. Without them, it is generally re-
garded as impractical to obtain adequately converged Monte Carlo
solutions, particularly for environments that incorporate challeng-
ing lighting distributions and/or surface scattering functions. Since
the earliest systematic study of Monte Carlo algorithms in render-
ing [14, 9, 22], both importance sampling and stratification have
been recognized as being particularly relevant variance reduction
strategies, although it has often been a challenge to incorporate
them without simultaneously introducing statistical bias [15, 16].
Both importance sampling and stratification are now commonplace
in illumination computations, and often appear in several guises
within a single algorithm. While improvements to both strategies
continue to be an active area of research, importance sampling of-
fers the largest potential payoff, with the total elimination of vari-
ance being theoretically achievable [21].
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Importance sampling strategies appear in a wide variety of
forms, from sampling incident illumination using a simple cosine
distribution, to finely adapting the sampling to a particular BRDF,
or to features of the environment. In recent years considerable
attention has been given to importance sampling of environment
maps. There are two justifications for this focus: First, environment
maps frequently encode high-dynamic range light sources [10] and
therefore represent a significant challenge for efficient sampling.
Secondly, light from distance sources, as represented by an envi-
ronment map, is spatially independent, which greatly simplifies the
task of importance sampling by reducing the dependence of such
distributions to direction only.

In the context of estimating reflected radiance, a variance reduc-
tion strategy must meet several inherent requirements [16], plus an
additional property that should be met if at all possible:

1. Estimate the distribution of incident illumination

2. Generate samples distributed according to the estimated illu-
mination

3. Compute the density of each sample

4. Maintain stratification (if possible)

If the incident illumination is defined by an environment map, the
first requirement is partially met; the only additional aspects that
should be addressed are occlusion and weighting by the cosine of
the incident angle, as the incident radiance is always integrated
with respect to projected solid angle. The second requirement can
be met by approximating the incident illumination using piecewise
constant functions, or other simple approximations [17], which ad-
mit sampling algorithms. The third requirement is that of com-
puting the density with which a given sample was drawn which
requires that the pdf be normalized. This can always be accom-
plished through numerical integration of the approximating func-
tion. However, such normalization is generally significantly more
costly than drawing samples, as it involves the entire importance
sampling function. We refer to the latter as the renormalization
problem, as it is frequently a significant challenge to achieving un-
biased importance sampling that is computationally feasible.

We present a new approach to sample a product of two func-
tions and demonstrate that it can be used to efficiently sample high-
dynamic-range environment maps to estimate reflected radiance.
Several methods have been proposed to efficiently sample environ-
ment maps and some of them even sample from the product of il-
lumination and surface reflectance functions (see Section 2). Our
main contribution is the introduction of the notion of a steerable
importance function defined as the product of sharply varying in-
cident illumination and a smooth steerable function and a scheme
to draw correctly-weighted samples from this importance function.
By sampling from an importance function that is the product of illu-
mination over the sphere of directions and the positive cosine lobe
defined by the surface normal, we reduce variance in the estimate
since (1) we do not generate “wasted” samples that lie below the
tangent plane and (2) we down-sample directions that are close to
the horizon.

While the illumination is known a priori, the importance func-
tion also depends on a dynamically oriented clamped-cosine lobe.



When we account for changes in the distribution of incident illumi-
nation above the local tangent plane and/or weighting by the cosine
of the incident direction, all but the first requirement become more
difficult to meet: generation of samples, computation of the densi-
ties, and maintaining stratification. These difficulties stem, in part,
from the problem of renormalizing the constantly-changing distri-
bution.

We derive a method that solves the renormalization problem
decisively by means of a novel hierarchical organization that en-
codes all possible variation very efficiently in advance using what
amounts to steerable functions. We consider the surfaces being ren-
dered with respect to the environment maps to steer the importance
function using a cosine lobe defined by the surface normal. This
lobe is clamped to zero at the tangent plane of the surface, which
has the effect of ignoring all illumination that arrives from below
the tangent plane.

2 RELATED WORK

Reflected radiance L(x,ωr) due to direct illumination from distant
sources, can be expressed as the integral∫

S 2
L(ωi)ρ(x,ωi,ωr)max(n.ωi,0)V (x,ωi)dωi (1)

since radiance incident from distant sources, L(ωi), is only a func-
tion of direction. Here x is a point, with normal n, on a surface
with ρ as its bidirectional reflectance distribution function (BRDF)
and the integration is over the sphere of incoming directions ωi.
We will refer to the third and fourth terms in the integrand as the
clamped-cosine and visibility terms respectively.

A number of sampling strategies have been proposed to effi-
ciently estimate this integral; these methods fundamentally differ
in their choice of an importance function. The method of struc-
tured importance sampling [1] defines an importance function that
is a carefully chosen combination of illumination density and solid
angle separating the samples. The samples are distributed using a
point relaxation algorithm and the incident illumination is approx-
imated with several point light sources. Further, as an acceleration
technique, the light sources are sorted in decreasing order of power
and sampled deterministically in that order. Another method that
approximates the illumination with point light sources [19], extends
hierarchical Penrose tiling to quickly sample the 2D environment
map; the samples also satisfy certain noise properties. While both
these techniques require far fewer samples than naı̈ve sampling of
only the clamped-cosine term to produce images of similar visual
quality, many (about half) of the samples generated are likely to
lie below the tangent plane and thus be rejected. In addition, the
cosine term is ignored which means that bright sources near the
horizon are sampled as profusely as sources of similar power at the
pole.

Some methods include the surface BRDF [6, 8, 7] in the impor-
tance function. This allows efficient sampling of a combination of
high frequency illumination and glossy surfaces with a large specu-
lar component. Lawrence et al. [17] introduced a fairly general nu-
merical method for approximating and numerically inverting cumu-
lative distribution functions, which lends itself to both stratification
and importance sampling. Ghosh et al. [12] proposed a method to
account for temporal coherence in animation sequences involving
environment maps. In this paper, we describe a method that uses
the clamped-cosine weighted illumination as an importance func-
tion thus automatically accounting for the cosine importance given
a normal direction, and also ensuring that all samples are generated
above the tangent plane.

Ramamoorthi and Hanrahan first observed that a clamped cosine
lobe could be very effectively approximated using a small num-
ber of spherical harmonic basis functions; indeed, nine such coef-
ficients attains a fit that is deemed sufficiently accurate for most

graphics applications [20]. They also observed that the spherical
harmonic representation of a rotated lobe is no more complex than
a static one in that no higher-order terms are added as a result of any
rotation. It is precisely these observations that we build upon here
to obtain an importance sampling function that can dynamically ac-
count for any incident surface orientation by pre-computing its re-
sponse to a steerable lobe; in this case, a clamped cosine lobe. We
shall see that this solves the renormalization problem by making
renormalization of an arbitrary piecewise linear importance sam-
pling function equivalent in cost to re-weighting a single point in
the environment map. We first approximate the environment map
as a piecewise-linear 2D function; Section 3.3 explains how the
piecewise-linear function can be re-weighted and re-normalized
very efficiently by a clamped-cosine lobe, thus making the entire
importance-sampling function “steerable.” Section 5 starts with the
basic problem of drawing stratified samples with a linearly-varying
density over a triangular support, as this will be the basis for strat-
ified sampling of our piecewise-linear importance sampling func-
tion. Figure 9 shows such an importance sampling function, that is
dynamically re-weighted and re-normalized via a steerable clamped
cosine lobe along with the stratified samples drawn from it.

In the following sections we define our steerable importance
function and construct procedures and a data structure to allow
stratified sampling of the function and correctly computing the den-
sities with which samples were generated. To summarize, our con-
tributions are :

1. We define a novel importance function that dynamically
accounts for (a) high frequency illumination, (b) cosine-
weighting defined by the normal and (c) the local tangent
plane, by only generating samples in the positive hemisphere.

2. We introduce a tree data structure whose novel traversal algo-
rithm is guided dynamically by a parameter which is the local
surface normal.

3. We derive a method for stratified sampling of triangles ac-
cording to a linear density. An earlier method [3] for stratified
sampling of triangles only details the scheme for sampling
constant and not linear densities.

4. We draw stratified samples from the dynamically normalized
importance function, construct a weighting scheme and use
the generated samples to estimate reflected radiance.

3 STEERABLE IMPORTANCE SAMPLING

3.1 Steerability

Steerable functions have been used extensively as general tools in
image processing and computer vision. Specifically, their proper-
ties were exploited in constructing filters of arbitrary orientations by
describing them as linear combinations of basis filters [11]. Ashik-
min and Shirley used Steerable Illumination Textures for lighting
bumpy surfaces in a way that shadowing and interreflection were
considered [5]. In this section, we briefly introduce steerable func-
tions and our novel use of them as importance functions. A detailed
literature survey and description of steerable functions can be found
in Teo’s dissertation [23].

A steerable function is defined as one whose transformed ver-
sion can always be expressed as a linear combination of a fixed,
finite set of basis functions. The coefficients in the linear combina-
tion together form the “steering” function and are dependent on the
transformation. Thus a steerable function g(x) can be written as an
inner product–

gn(x) = 〈s(n),b(x)〉 (2)



Figure 1: 2D illustration of the algorithm used to construct the tree with steerable weights. Here segments are equivalent to triangles in the 3D setting. The vectors
of weights associated with the triangles are at the leaves of the tree, and are propogated up to the root; weights at internal nodes are computed simply as the sum
of the weights of their children.

where n is a vector of parameters for the particular transformation,
s(n) is a set of steering functions which depend on the transforma-
tion and b(x) is a set of basis functions. The definition of steerable
functions suggests that the transformed function must be express-
ible as a linear, analytic expression containing the basis functions;
however, in practice, steerable functions and their basis functions
are often represented in sampled form and thus are thus approxima-
tions [23].

The main idea in this paper is to use a steerable function as an
importance function. By virtue of being steerable, the importance
function can continuously be reoriented by the superpositioning
of a fixed, finite set of basis functions. Following Ashikmin and
Shirley [5], the domain of our function is the sphere of directions
S 2, therefore we use the spherical harmonics bases weighted by
the illumination in the corresponding direction from an environ-
ment map. As a steering function, we use the positive lobe of the
cosine function and our dynamically defined importance function
is the cosine weighted illumination in the positive hemsiphere at
each point being shaded. The decrease in variance results from (1)
generating samples that lie only above the local tangent plane and
(2) weighting them according to the product of illumination and the
oriented cosine.

In this paper we consider only the use of a single clamped cosine
as a steering function and define an importance function for reduc-
ing the variance in estimates for reflected radiance due to direct
illumination from environment maps.

Figure 2: For the purpose of illustration we show the lower dimension analog
of our steerable importance function for one orientation of the clamped cosine
and a 2D environment map which is a function of u ∈S .

Veach and Guibas described a technique by which to effectively
sample from the sum of multiple functions provided that each can
be sampled in isolation [25]. While the approach is quite general,
it has several important drawbacks when applied to sampling en-
vironment maps. First, it generates samples over the entire sup-
port of each pdf, which would produce many samples in the wrong
hemisphere. Second, the technique in only amenable to stratifica-
tion within each pdf, not to the actual importance function that is a
combination of the two pdf’s.

Clarberg et al introduced a technique to sample from products
of functions using wavelets as basis functions and demonstrated its

effectiveness in sampling a product of illumination and reflectance
functions [7]. However, their method suffers from a fundamental
limitation inherent to using wavelet multiplication, which is that
there is no straighforward way of rotating wavelets [18]. In con-
trast, our choice of spherical harmonics bases enables easy rotation
which in turn allows the two functions to easily be expressed in the
same coordinate system. Consequently, their method requires the
precomputation of the wavelet coefficients for a fixed set of dis-
crete directions and interploates the coefficients for directions that
are not in this set.

3.2 The Importance Function

By partitioning the domain of integration in Equation (1), S 2, into
spherical triangles Si, i = 1,2, ..,M we rewrite the r.h.s. of the equa-
tion as the sum of integrals over Si

M

∑
i=1

∫
Si

L(ω)ρ(x,ω,ωr) f (n,ω)V (x,ω)dω, (3)

where f (n,ω) = max(ω ·n, 0).
Consider one of the spherical triangles, Si, and the planar trian-

gle4(i) defined by the vertices of Si. Let p = (p0, p1) ∈ [0,1]2 be
a point on 4(i) defined using the parametrization ψ : [0,1]2→4.
Disregarding visibility and the BRDF for the moment, and switch-
ing to the above parameterization, we get

1∫
0

1∫
0

L(µi(p0, p1)) f (n,µi(p0, p1))ϕi(p0, p1) |Ji(p0, p1)| d p0 d p1

where ϕi(p0, p1) arises as a result of using a change of variables
from the plane onto the sphere and µi(p0, p1) is the unit vector
along ψi(p0, p1). Here,

µi(p0, p1) =
ψi(p0, p1)
‖ψi(p0, p1)‖

, ϕi(p0, p1) =
µi(p0, p1) ·n4(i)

‖ψi(p0, p1)‖2 (4)

and n4(i) is the unit normal of4(i).
We normalize the function |Ji(p0, p1)| , to make it a pdf and ob-

tain the Monte Carlo estimator

Gi

N

∑
j=1

L(µ
j

i ) f
(

n,µ
j

i

)
ϕ

j
i (5)

where samples ψ
j

i drawn from the pdf that is proportional to
|Ji(p0, p1)| are used to obtain µ

j
i and ϕ

j
i .

We derive ψi such that the Jacobian is linear in both parameters
and equal to the illumination weighted by the clamped cosine at



each vertex of4(i) (see Appendix). The normalization factor Gi is
simply the integral of the Jacobian and is given by

Gi =
1∫

0

1∫
0

|Ji(p0, p1)|d p0 d p1. (6)

Replacing the BRDF and visibility terms and adding the esti-
mates over all spherical triangles Si, we arrive at our estimate of the
total reflected radiance along ωr as

M

∑
i=1

Gi

N

∑
j=1

L(µ
j

i )ρ(x,µ
j

i ,ωr) f
(

n,µ
j

i

)
V (x,µ

j
i )ϕ j

i (7)

Note that the piecewise linear importance function is a linear
interpolation of the product of illumination along directions given
by the vertices in the partition of the sphere of directions and their
corresponding clamped cosines for a given normal.

3.3 Steerable Weighting
Two of the most attractive features of importance sampling are that
1) the distribution used to reduce variance need only be an approx-
imation, and 2) no bias is introduced so long as we can correctly
compute the density of the samples generated. For this task, we
shall use the spherical harmonic approximation of the clamped co-
sine lobe first proposed by Ramamoorthi and Hanrahan [20] in the
context of fast approximations of irradiance due to distant sources.
Our application will differ fundamentally, but will nonetheless en-
joy the benefits of concise representation and fast evaluation. First,
observe that the function

f (n,ω) = max(〈n,ω〉 ,0), (8)

which is what we have been referring to as a clamped cosine lobe,
can be approximated by a finite linear combination of spherical har-
monics (SH):

f (n,ω) ≈
k

∑
i=0

ai(n)Yi(ω), (9)

where we have treated the spherical harmonics as functions defined
on the sphere, S 2, rather than the more traditional function of two
angles. We have also “linearized” the indexing of the basis func-
tions, which are traditionally indexed with double subscripts de-
noted by ` and m, with ` = 0,1,2, . . ., and −` ≤ m ≤ `. In particu-
lar, our ordering coincides with the subscripts (0,0), (1,−1), (1,0),
(1,1), (2,−2), (2,−1), (2,0), (2,1), and (2,2), etc. Here a(n) is
the vector of SH coefficients after being rotated using the normal n.

The product of the incident distant illumination along ω and the
clamped cosine at ω for a given normal n can be expressed as

L(ω) f (n,ω) ≈ L(ω)
k

∑
i=0

ai(n)Yi(ω)

=
k

∑
i=0

L(ω)ai(n)Yi(ω)

= 〈a(n),w(ω)〉 (10)

where w(ω) = L(ω)Y(ω) is a vector containing the SH bases asso-
ciated with a direction ω , weighted by the illumination along that
direction. Observe that this expression is similar to the r.h.s. of
Equation (2), suggesting that the product L(ω) f (n,ω) is steerable.

We define the function
∣∣J j(p0, p1)

∣∣ in each triangle 4( j) with
vertices A, B and C as a linear combination of products of illumi-
nation and the clamped cosines at vertices. The integral of the Ja-
cobian (see Equation (6)) within each triangle is simply the volume

of the truncated triangular prism defined by the triangle. Given that
the Jacobian varies linearly within each triangle4( j), we can write
G j as

〈
a(n),W j

〉
where

W j =
Area(4( j))

3

(
wa

j +wb
j +wb

j

)
. (11)

We precompute and store w(ω) at each vertex in the partition
of the sphere of directions and a weight W j associated with each
triangle4( j). Given a normal n we first compute a(n) and then G j
in constant time for each triangle4( j) with just one dot product.

The next observation is the crucial one for the approach we
present in this paper. If Q is any set of triangle indices, then

∑
j∈Q

W j = ∑
j∈Q

〈
a,W j

〉
=

〈
a, ∑

j∈Q
W j

〉
=

〈
a,WQ

〉
,

where WQ is a new collection of nine coefficients. Thus, the total
weight of all the triangles combined is, once again, represented by
a collection of the same number of spherical harmonic coefficients;
summing the contributions of any number of triangles in any orien-
tation does not introduce higher-order terms.

To fully exploit this property, we organize the triangles in the
partition of the sphere of directions then organize hierarchically as a
binary tree. Each triangle is assigned a vector of nine values, which
is then propagated up the tree, adding the weights of the children at
each internal node, until the root is reached (see Figure 1). The al-
gorithm for generating samples from the resulting piecewise-linear
function is illustrated in Figure 5, and the algorithms for generat-
ing the rotated cosine lobe coefficients and for traversing the three
structure are shown in Figure 4, respectively. Further details on the
generation of the triangular mesh are provided in Section 4.

4 IMPLEMENTATION AND RESULTS

4.1 Preprocess
The preprocess step is composed of two main stages– triangulation
of the environment map and construction of a reasonably balanced
binary tree. While a balanced tree is not required for correctness of
the algorithm, balance ensures an O(S logN4) asymptotic bound on
the execution time if S stratified samples are required to be drawn
for any given normal vector and the triangulation consists of N4
triangles. The domain is triangulated by uniform subdivision of
an icosahedron followed by a step of adaptive subdivision. During
adaptive subdivision, triangles are subdivided if the deviation of
the linear approximation within them from the actual illumination
is found to be greater than a threshold. After subdivision, vertex
and triangle weights are computed and stored.

Figure 3: The weight of each triangle vertex is determined by the environ-
ment map and its position relative to the surface under consideration. The
weight of the entire triangle is a linear combination of its vertex weights.



function Sample (n,ξ1,ξ2)
1 a← RotateLobeCoeffs (n)
2 w← weight coefficients of tree

3 v← root of tree

3 while v is not a leaf do
4 wl ← 〈a,LeftWeightCoeffs (v)〉
5 wr ← 〈a,RightWeightCoeffs (v)〉
6 w← wl

wl +wr

7 if ξ1 < w then

8 ξ1←
ξ1

w
9 v← LeftChild (v)

10 else

11 ξ1←
ξ1−w
1−w

12 v← RightChild (v)
13 endif
14 endwhile
15 (s4,ρ4)← SampleTriangle ( Triangle (v), ξ1, ξ2 )
16 if 〈n,s4〉< 0 then s4← − s4

17 return
(

s4,
ρ4
〈a,w〉

)

function RotateLobeCoeffs (n)
1 a0← c4; a1← 2c2ny; a2← 2c2nz

2 a3← 2c2nx; a4← 2c1nxny; a5← 2c1nynz

3 a6← c3n2
z − c5; a7← 2c1nxnz; a8← c1

(
n2

x −n2
y
)

4 return a

Figure 4: The basic algorithm for stratified sampling of the dynamically re-
weighted piecewise-linear importance function. The variables ξ1 and ξ2 are
assumed to be stratified random variables in [0,1]× [0,1]. Note that step 16
introduces a bias which can be eliminated by a slight increase in computational
cost ( Figure 7). c1 = 0.429043,c2 = 0.511644,c3 = 0.743125,c4 = 0.886227,c5 =
0.247708 according to Ramamoorthi and Hanrahan [20].

We build a binary tree that has the triangles randomly distributed
as its leaf nodes. Each triangle is associated with a weight, which is
the volume of the truncated prism formed by raising its vertices by
the appropriate heights. We approximate this volume with one third
the area of the triangle times the average height at its vertices. Al-
though this is an approximation and makes the importance function
deviate slightly from the actual function on the sphere, it does not
introduce a bias so long as the weights computed are in accordance
with the densities that samples are drawn from. This approximation
converges to the correct volume as the triangulation is refined.

The internal nodes of the tree represent clusters of triangles and
their volumes can each be written as a sum of the volumes of their
respective child nodes. Thus we sum up the individual basis vectors
of the children to compute the basis vector at each internal node.
The actual volume, including the cosine weighting, is computed
by a dot product of this weighted basis vector with the coefficient
vector of the clamped cosine which is provided during query. Thus
we build the tree in a bottom-up fashion, at each node summing up
and storing the basis vectors of child nodes (see Figure 1).

It is interesting to note that the volume of the root, which repre-
sents the volume under the importance function, is computed for a
given normal direction by just one dot product which trivializes the
cost of renormalization.

4.2 Sample Generation

Given a normal direction and two random variables chosen uni-
formly in [0,1] we draw a single sample from our importance func-
tion in three steps– picking the triangle to sample from, drawing a
sample from that triangle according to the weights defined at the
vertices and actually computing the density with which the sample

was chosen.
Starting with the root we evaluate the volume at each internal

node (one dot product each) and use the information to guide the
path down to the leaf. At each level the path favors the child with a
higher volume (see Figure 5). Thus using one of the random vari-
ables, and O(logN4) inner products (each of 9 coefficient vectors),
we pick a triangle proportional to the integral of the linearly-varying
densities (See Figure 4). Once we pick a triangle we re-scale the
random value used to traverse the tree to [0,1] and sample from the
triangle using the two random variables as shown in Section 5.

Computing the density with which the given sample was chosen
is trivially obtained by the ratio of the actual height at that sample
(which is obtained by interpolating between the heights of the ver-
tices) and the total volume associated with all the triangles (which
is the volume of the root). Both are evaluated in constant time.

4.3 Results

Figure 9 shows the importance function as the product of the envi-
ronment map values and the oriented clamped cosine lobe for two
different environment maps, each with a differently oriented lobe;
the resulting samples drawn are also shown.

We compare our method against standard stratified importance
sampling by obtaining irradiance estimates for a set of normal di-
rections by varying the polar angle and comparing variances in the
estimates. The standard method involves treating the environment
map image as a discrete 2D function from which stratified samples
are drawn using numerical inversion [1]. Since our method is steer-
able, and accounts for the normal while generating samples, we
achieve significantly lower variance especially when the number of
samples is few or the normal is facing away from bright illumina-
tion. Figure 8 shows the variances in irradiance estimates using
stratified importance sampling and steerable stratified importance
sampling for 16 and 64 samples.

Figure 5: Once a nearly-balanced binary tree for the triangles has been
built, and the spherical harmonic representation of the weight at each vertex
has been propagated up to the root, stratified sampling from with respect to any
surface orientation is very straightforward. As the cosine lobe is changed, the
branching probabilities along every path are altered. To reach a leaf triangle
with the correct probability, only 9-element dot products along the path to that
triangle are computed. Thus, the cost of generating a sample and computing
it correct density is O(logn), where n is the number of triangles. The details of
path traversal are shown in Figure 4.



function SampleTriangle (T,ξ1,ξ2)
1 s← f (ξ1,T.wa,T.wb,T.wc)
2 t← g(ξ2,s,T.wa,T.wb,T.wc)
3 w← (1− s)T.wa + s(1− t)T.wb + stT.wc

4 p← (1− s)T.A+ s(1− t)T.B+ stT.C
5 return (w,p)

function f (ξ ,wa,wb,wc)
1 X ← (wb−wa)/3+(wc−wb)/6

2 Y ← wa/2

3 α ← X/(X +Y )
4 β ← Y/(X +Y )
5 return RootOf (αx3 +βx2−ξ )

function g (s,ξ ,wa,wb,wc)
1 t← s(wc−wb)+2(1− s)wa + swb

2 γ ← s(wc−wb)/t

3 ρ ← 2((1− s)wa + swb)/t

4 return 2ξ/(ρ +
√

ρ2 +4γ ξ )

Figure 6: The complete algorithm for stratified sampling of triangles with
vertex weights wa, wb, and wc defining inear probability density functions. The
RootOf function can be either closed form, or iterative, using Newton’s method.

Figure 10 shows the effectiveness of our sampling technique
by rendering images using different numbers of samples of a scene
with diffuse, glossy and specular materials.

5 LINEAR STRATIFIED SAMPLING OF TRIANGLES

In this section we present a simple and compact algorithm that al-
lows generation of stratified samples according to a linearly-varying
density function over a triangle with vertex weights that we shall de-
note by wa, wb and wc. Our approach is similar to the method that
can be used to derive area-preserving maps onto 2-manifolds [3]
such as planar and spherical triangles [24, 2] with the fundamental
difference that the general approach had been used to derive map-
pings with only a constancy constraint on the determinant of the
Jacobian matrix. For sampling a linear density, we need to derive
a mapping such that this determinant is proportional to the linear
function we wish to sample from. We show that this problem– of
deriving a continuous bijection from the unit square onto the tri-
angle such that the determinant of the jacobian of this bijection is
proportional to the linear function defined by the vertex weights–
can be reduced to finding the roots of a cubic and a quadratic in the
interval [0,1] with coefficients being functions of the vertex weights
(see appendix for the derivation). It can be easily verified that the
cubic function cannot attain a maxima in the interval (0,1) and is
therefore guaranteed to have exactly one real root in that interval.

The algorithm for sampling from the triangle with vertex weights
is summarized in Figure 6, and sample output from the algorithm is
shown in Figure 11. Using this algorithm to sample from triangles
in conjunction with the tree-traversal algorithm (Section 4.2) allows
stratified sampling of the steerable importance function.

6 BIAS: SOURCES AND REMEDIES

Ringing in the lobe approximation: Because the clamped cosine
lobe is approximated by its projection onto a finite set of basis func-
tions, there is a small amount of ringing near the derivative discon-
tinuity. The ringing causes the approximation to become slightly
negative where the lobe is clamped to zero. This is easily fixed by
adding an offset (approximately 0.09) to the coeffiient correspond-
ing to the constant basis function. This will increase the values uni-
formly, thus somewhat reducing the effectiveness of the importance
sampling by decreasing the overall variation. This approach com-
pletely eliminates the possibility of negatively weighted triangles
and negative densities, and introduces no additional bias. However,

15 (s4,ρ4)← SampleTriangle ( Triangle (v), ξ1, ξ2 )
16 ρ−← GetDensity (a,−s4)
17 if 〈n,s4〉< 0 then s4← − s4

18 return
(

s4,
ρ4+ρ−

〈a,w〉

)
Figure 7: This is a modification to the algorithm shown in Figure 4. When
samples are generated in the wrong hemisphere, they can be reflected through
the origin and used. This introduces no bias, provided the density of the sample
takes into account both antipodal samples.

uniformly raising the value of the function causes some stray sam-
ples, with low probability, to be generated in triangles that should
not have been sampled and hence marginally increases the variance
of the estimator.
Samples in the wrong hemisphere: A second minor source of bias
is due to samples that are occasionally generated below the hori-
zon. This results from an approximation to the clamped cosine lobe
that is not exactly zero in the hemisphere below the horizon. Con-
sequently, there is a small probability that it will be sampled. This
problem is exacerbated by the global offset that guarantees the func-
tion is non-negative. One solution is to simply ignore such samples
which amounts to rejection. Another solution is to ignore the bias
due to reflecting them into the positive hemisphere; as they occur
infrequently, there is little error in any case. However to remove
this bias, we increase the density of all samples generated to ac-
count for the density of those that arrived there through reflection.
Thus, whether a sample falls in the correct hemisphere or not, we
add the densities of the two antipodal directions, as shown in Fig-
ure 7. This policy will generate a very low-probability “ghost” of
the opposite hemisphere, and is therefore likely to produce a small
number of samples that are not very useful, but the resulting esti-
mator will be unbiased.

7 CONCLUSION AND FUTURE WORK

In this paper, we defined a novel piecewise linear steerable impor-
tance function that accounts for the cosine weighting for any surface
orientation and presented an efficient algorithm for stratified im-
portance sampling of environment maps by using this importance
function . We achieved this by constructing a binary tree whose
structure remains unchanged during the entire sample generation
process. Given a surface orientation (normal vector), renormaliza-
tion of densities associated with a triangles was done in constant
time and our sampling cost was logarithmic in the number of trian-
gles used to partition the environment map.

Another novel contribution of this paper is an algorithm to gen-
erate stratified samples on a triangle according to a linearly-varying
density. The algorithm is simple, compact and does not require any
numerical inversion techniques.

Including reflectance functions in the importance function has
been shown to be an important step towards variance reduction.
Our method to sample the environment map may be used in con-
junction with sophisticated BRDF sampling using multiple impor-
tance sampling [25]. As future work, we would like to increase the
degrees of freedom in the steering function so that specular lobes
of reflectance functions can be taken into consideration, allowing
us to efficiently sample from a product of the illumination and re-
flectance functions. We expect that this will be a significant step in
reducing variance further. However, the increased dimensionality
of the steering function suggests that the compressed storage of the
steerable basis could prove challenging.

Using stripification[13] to benefit from the stratification (by im-
proving locality) or low-discrepancy sequences in place of stratified
sampling are other directions to explore for further variance reduc-
tion.
Acknowledgements: The authors wish to thank Cyril Soler, Fredo
Durand and the anonymous reviewers for their helpful comments.



Figure 8: Comparison plots of variance in irradiance estimates of our al-
gorithm against standard stratified importance sampling which uses the 2D-
density of the illumination in the environment map as an importance function.
Tests were run using the St.Peter’s Basilica environment map, on a set of nor-
mal directions by varying the polar angle in the interval (0,π). There is a signif-
icant increase in variance for normals facing away from the illumination using
the standard method as a result of not considering local surface orientation in
the importance function.
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APPENDIX: DERIVATION OF PARAMETERIZATION

We start with a parametrization

φ : [0,1]2 → 4 (12)

of the triangle ABC, based on barycentric coordinates,

φ(s, t) = (1− s)A+ s(1− t)B+ stC (13)

which defines a smooth bijection from the unit square to the triangle. From this map-
ping, we derive two functions f and g such that the composition

ψ(ξ1,ξ2) ≡ φ( f (ξ1),g( f (ξ1),ξ2)) (14)

is a parametrization whose Jacobian matrix is proportional to the linearly-varying den-
sity. Note that the functions are cascaded; that is, the result of f is used as a parameter
to the function g. If the parameters ξ1 and ξ2 are two uniformly distributed random
variables in [0,1], then the resulting points will have the desired pdf. Moreover, if the
samples are stratified, the generated samples will retain the stratification.

The functions f and g are inverses of the normalized cumulative distributions F(s)
and Gs(t) over the first and second and second parameters of the mapping in (13)
respectively.

To find F and G we first define a function σw : [0,1]2 →4, which corresponds to
the weighted area of the triangle. That is,∫

4
σw =

∫
4

wσ , (15)

where w is the linear function

w(u,v) = (1− s)wa + s(1− t)wb + stwc (16)

and σ is the surface area 2-form,∫
4

σ = Area(φ(4)). (17)

The cumulative distributions are expressed analogous to their uniform counterparts [3],
with the difference being that the integrand is replaced by σw. That is,

F(s) =
∫ 1

0
∫ s

0 σw(u,v)dudv∫ 1
0

∫ 1
0 σw(u,v)dudv

(18)

Gs(t) =
∫ t

0 σw(s,v)dv∫ 1
0 σw(s,v)dv

(19)

Substituting the appropriate expressions and integrating, we obtain αx3 +βx2−ξ1 and
γx2 +ρx−ξ2 as expressions for F and Gs respectively. These cumulative distributions



Figure 9: From left to right: Input map of Grace Cathedral; clamped-cosine function (with iso-polar lines in red); our importance function (clamped-cosine weighted
input); Samples(green) drawn from the importance function (juxtaposed on dimmed input). Very few of the samples lie in the low-intensity regions of the map and
none in the hemisphere below the tangent plane. A large number(100,000) of samples is shown to highlight the effectiveness of the method.

may be inverted analytically or numerically to obtain functions f and g. Here α , β , γs

and ρs are

α =
wb +wc−2wa

wa +wb +wc (20)

β =
3wa

wa +wb +wc (21)

γs =
s(wc−wb)

s(wc−wb)+2(1− s)wa + swb (22)

ρs =
2(1− s)wa + swb

s(wc−wb)+2(1− s)wa + swb , (23)

and s = f (ξ1)

Figure 10: Figure shows images rendered using our sampling algorithm
within the “Galileo’s Tomb” environment map. Insets show that the variance
is tolerable even with few samples and quickly converges as the number of
samples is increased.

Figure 11: Triangle ABC(left) was sampled using our linear stratified sam-
pling algorithm. Samples along AA’(magenta), BB’(red) and CC’(blue) were
collected in 20 bins (for each line) and estimates of the density in each bin
were computed and plotted. Also shown are the analytically computed ex-
pected densities along each line(black).

Figure 12: Rendered image of objects of different materials ranging from
purely diffuse to purely specular in the Grace Cathedral HDR environment.
Inset compares our results with Stratified Importance sampling which does not
take the cosine term into account while generating samples.


