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1. INTRODUCTION 
 
Zurich is the largest urban area in Switzerland and lies on the banks of the Zürichsee (Lake Zurich), 
out of which flows the river Limmat.  It is built along the shores of the lake and the river Limmat, 
within a long straight valley bordered by two ranges of hills, Hönggerberg and Zürichberg-Adlisberg 
to the North, Üetliberg to the South.  This geography was created by glacial processes, the hills being 
moraine deposits from the glacier that excavated the valley.  The original vegetation that covered 
these hills was a mixed deciduous-perennial forest,  some of which is still present, despite the peri-
urban environment.  As the hill slopes fall towards the Limmat valley floor, the forest has been 
gradually replaced with built-up areas as the city expanded. 
 
Many small watercourses that form in these hills drain into the Limmat, other minor watercourses or 
Lake Zurich itself.  Where they pass through urban areas, these streams are frequently forced into 
rigid channels or culverts (Scherrer & Schelble, 2007). As a result, some of these streams flood the 
surrounding areas during storm events. So far, runoff hydrographs for these streams were determined 
using lumped models, the hydrodynamic sewer network model BaSYS-GVM and a hydrological 
response units methodology created by Scherrer and Naef (2003). In this paper, an approach based on 
the distributed rainfall runoff model Wetspa Extension and automatic surface detection is described in 
an attempt to refine the runoff hydrograph at the critical locations in the river network. 
 
Distributed rainfall-runoff models are currently an important area of research in hydrology, due to the 
greater precision they are thought to offer over lumped models, where a larger area, usually a sub-
catchment, is assigned a single set of hydrological parameters (slope, imperviousness, land use, etc.).    
Distributed models, where hydrological parameters are calculated in very small areas, such as square 
cells (raster models) or very small sub-catchments, were made computationally possible by the advent 
of Geographical Information Systems. A variety of mathematical, physical and computational 
approaches have been used to model the interconnected sections present in these systems: The surface 
channels, the sub-surface water bodies, and the sewer systems in urban areas.  Feedback between 
these sections constitutes one of the major problems in the modelling process, as do the complex 
physical processes governing water infiltration. This study has considered the specific case of a small 
catchment within an urban environment. 
 
Amongst the necessary spatial data, land coverage is one of the most important types, since it plays a 
decisive role in establishing the runoff coefficient.  However, this data is difficult to collect on-site, 
and can change frequently and significantly. This has stimulated research into procedures for 
automatically calculating land cover categories from satellite images. A variety of different remotely 
sensed data, such as infrared radiation, and many different techniques, such as wavelets, texture, or 
shape detection, have been applied in the literature.  
 
This paper is organised as follows. First we summarise our dataset (Section 1.2), then prior work in 
the field of both image analysis and hydrological modelling (Section 2). We then present our 
approach to segmenting images into labelled land use areas in Section 3. The theoretical and practical 
aspects of our hydrological model are presented in Section 4. In Section 5 we show results of the 



automatically derived land use data used as input to the hydrological model. Finally we conclude and 
discuss potential avenues for future work in this area. 
 
1.2 Data 
The example of Zurich was chosen because the different departments of the City and the Canton are 
in possession of good quality GIS data: 
 
Geomatik + Vermessung Stadt Zürich (Office for Geomatics and Surveying, City of Zürich) 

 Surface use (ESRI Shapefile) 
 Contour lines of the catchments (AutoCAD DWG and DXF) 
 Orthophotographs (Georeferenced TIFF) 
 Digital Elevation models (ESRI GRID) 

Entsorgung + Recycling Zürich (Disposal + Recycling Utility Zürich) 
 Urban drainage network (Oracle Dump for GeoMedia) 
 Recorded flood events (ESRI Shapefile) 
 Various reports, studies and results of hydraulic calculations 

Amt für Raumordnung und Vermessung, Kanton Zürich (Office for Regional Planning and 
Surveying, Canton of Zurich) 

 Groundwater (ESRI Shapefile) 
 Soil map of the Canton of Zurich (ESRI Shapefile) 
 Surface water network (ESRI Shapefile) 

MeteoSwiss (Swiss Federal Office of Meteorology and Climatology) 
 Meteorological data 

 
2. RELATED WORK 
 
2.1 Image Segmentation 
Image segmentation is an important topic in computer vision and consequently a variety of methods 
have been applied to the problem ranging from the application of filter banks to agent-based machine 
learning techniques. Robertson developed an off-line reflective architecture which learns from a 
corpus of hand-labelled data (Robertson, 1999). Wavelets have been used to speed up the process of 
classification (Kim, 2003). Although not applied specifically to aerial images Varma and Zisserman 
developed an improved method for texture analysis based on the statistics of images, rather than the 
more popular use of banks of filters (Varma, 2005). Texture is clearly a significant image feature 
enabling segmentation, as well as colour. Colour-based segmentation is quite popular. It has been 
shown that RGB gives reasonable performance in a non-parametric scheme but that colour spaces 
which separate the luminance and chrominance components perform better over a range of imaging 
conditions (Janssen, 2008). The features colour and texture have been combined but not addressing 
the complexities of urban data (Duboisson-Jolly, 1998). 
 
2.2 Hydrological Modelling and Flood Risk Assessment 
Various studies have been carried out in the Zurich area to assess existing risks from flooding and 
other natural hazards.  Regarding hydrology, an important study has been the Runoff Process Map of 
the Canton of Zurich (Abflussprozesskarte des Kantons Zürich), authored by Margreth and Naef in 
2006 at the request of the Office for Waste, Water, Energy and Air of the Canton of Zurich (AWEL) 
(Cited in Scherrer & Schelble, 2007).  The Runoff Process Map divides unbuilt or unaltered surfaces 
of the canton into hydrological response units according to the overland and subsurface runoff 
processes that dominate in each one, following a methodology created by Scherrer and Naef (2003).  
The specific problems faced by the city of Zurich as an urban area have made it necessary to continue 
the research with more detail, especially regarding small streams within the city.  Scherrer & Schelble 
(2007) group the sixteen stream catchments within the city boundaries according to their 
geomorphological, geological and pedological characteristics, and divide their surface into 



hydrological response units using the results contained in the Runoff Process Map.  Fig. 1 shows the 
proportion of the runoff response for the catchment discussed in this paper: 

 
Figure 1: Proportion of runoff response for each catchment (Scherrer & Schelble, 2007) 

 
In Figure 1, the different types of runoff response are as follows.:  

 SOF: Saturated overland flow 
 SSF: Sub-surface flow 
 HOF: Hortonian overland flow 
 DP: Deep percolation 
 D: Runoff in drained areas 
 Siedlung: Residential areas  

A description of each type can be found in Scherrer & Naef (2003). The numbers refer to the speed of 
the response: 1 for a fast response, 2 for a slightly delayed response, 3 for a greatly delayed response 
(Scherrer & Naef, 2003). The Holderbach catchment has a high flood risk, combining a fast runoff 
response with a high proportion of built-up areas, and occasionally areas with a steep slope, such as 
deep valleys. 
 
3. AUTOMATIC IMAGE SEGMENTATION 
 
Tiled satellite orthophotos (in TIFF format) from the dataset previously described above were used as 
basic data, and a series of calculations were performed on them in order to classify each pixel or 
group of pixels as a certain land type. In order to calibrate the algorithm, segmented orthophotos were 
used. These images had been manually divided into polygons according to the different land use types 
using already available surface use data. Single tiles will be used as an example here for illustrating 
the process. The process was divided into three stages performed offline using Matlab.  Fig. 2 shows 
the process schematic.  As can be seen, the first stage and second stage are performed in succession, 
whereas the third stage is independent of the previous outcomes.  When the three stages have been 
computed, the results are combined probabilistically, and the best outcome is chosen (i.e. we have a 
maximum likelihood scheme). 
 



 

Figure 2: Schematic of the aerial orthophoto segmentation process 
 

3.1 First stage: colour similarity 
Each orthophoto tile contained several layers with different resolutions, therefore it was necessary to 
extract one of the layers, with a resolution of 4000x4000 pixels. This layer contained four bands (red, 
green, blue and an extra empty band). The supplied images had been segmented according to surface 
use data supplied by the city of Zurich, using a specific classification containing 34 types. These 
original types were reclassified into five simple land uses, as shown in Table 1. Clearly this is a 
potential source of error since the hydrological model makes use of some land-use categories which 
are impossible to detect from the images alone. We therefore generalise the categories using the 
labelling in the official land-use document. Fig. 3 shows an example of input tile and surface use 
samples. Both the original image and the segmented image were converted from RGB colour space 
into LAB colour space (Leon, 2006), and then the square Euclidean distance between the original and 
segmented a and b values were calculated. Each pixel in the original image was then assigned the 
land use type for which the distance was minimum. Brightness values were computed for categories 
1, 2 and 3, and pixels exceeding a maximum brightness level were reclassified as category 0, since 
they will not be classified until the later steps. That is, buildings and paved areas have ambiguous 
colour and are classified more accurately via entropy and gradients (steps 2 and 3). An image filter is 
applied to the results of the first stage, in order to remove noise (small groups of pixels which are 
incorrect) (Russ, 1999). The result of the first stage segmentation is shown in Fig. 4(a). 
 



 

 
Table 1: Reclassification of original land use categories 

Forest         

Paved        

Tilled        forest… 

Topsoil      

 
 

Building     

(a) One tile     (b) Examples of the training classes 
 

Figure 3: Example input image and samples from the class training dataset. 
 



 
(a) Colour-Space Classification   (b) Entropy Classification 

 
(c) Gradient Filter   (d) Final result 

 
Figure 4: The outputs of each stage of the segmentation process using the input tile (see Fig. 3(a)). 

 
3.2 Second stage: texture classification via entropy 
 
Contiguous pixels belonging to the same land use type are grouped into blobs (Haralick, 1992). Image 
texture is computed for each blob and for the segmented sample image, and these textures are 
compared.  The measure of texture is entropy, which is a metric for the “disorderdness” of the 

distribution of pixel intensity values. This is given by  where the probabilities, 

p, are computed from the image histograms (Kurz, 2006). Textures are measured in each RGB image 
band separately, and then differences are calculated between each blob and each of the five land use 
categories, one band at a time. In this way, the blob is assigned a rating per band, and the three band 
ratings are then added up to obtain the final blob rating. Each blob is assigned the land use type that 
has the minimum texture difference to the segmented sample of that type. The process from the 
previous step is applied to RGB values, but considering ranges of values. This results in each blob 
being assigned a second land use value, that can coincide with the one obtained in step 3 or not. The 
texture difference percentage and the colour difference percentage for each land use type are 
multiplied, and the maximum resulting percentage is taken as the land use type. The result of the 
second stage is shown in Fig. 4(b). 
 
3.3 Third stage: Gradient (edge) detection 
 
A Sobel edge detection function is required to distinguish between forest and tilled areas on one hand 
and paved and building areas on the other. This shows improved performance over Prewitt and 
Roberts. This function measures the gradient of colour intensity values from one pixel to the 8 



contiguous ones (Svoboda 2007). Fig. 4(c) shows the result of this operation.  Areas identified as 
forest or tilled surfaces are shown in white.  Blobs corresponding to land uses detected in the other 
two stages (topsoil and paved) are subtracted from the output image, so that the new results are only 
tilled and building areas. The final result of the third stage segmentation only includes buildings. Fig. 
4(d) shows the result of this process. 
 
3.4 Assessment of the accuracy of the segmentation 
 
The accuracy of the three segmentation stages was assessed by comparing the land use category for 
each pixel in the processed images then calculating the percentage of accurate land use detection in 
each category (derived from hand-labelled images). Blobs for each land use category from the stage 
result having the highest detection percentage are combined into the final resulting image. Table 2 
shows the final segmentation result as a percentage showing that, where there is an equal distribution 
of all classes, an 84% classification rate is achieved. An illustrative example is shown in Fig. 5. In 
practice where there are many buildings the result could be around 65%. 
 
Image \ Class Topsoil Till Paved Building Total 

Mainly Topsoil 63 85 56 60 66 
Mainly Till 63 89 38 65 84 

Mainly Urban 64 79 51 63 62 
Even Distribution 80 93 41 64 84 

Table 2: Classification rates for the automatic method compared to hand-labelled ground truth 
computed over the entire test dataset. Note the confusion between Paved and Building classes. 

 

 
(a) Single tile input     (b) Paved areas 

 
(c) Tilled soil    (d) Grassy areas 

 
Figure 5: Examples of three of the classes extracted from a mostly rural section of the Zurich aerial 

image datset. 



 
4. DISTRIBUTED HYDROLOGICAL MODELLING 
4.1 Distributed Modelling 
In distributed process models the area being studied is divided into a grid or network of elements, and 
calculations are carried out in each element, with all parameters discretised over the element grid 
(Skidmore, 2002).  The elements can be linked to estimate water movement (surface and subsurface) 
between them.  Elements are generally smaller than a subcatchment, or according to Vieux (Beven 
and Moore, 1993:9), “smaller than the scale of the process or system being modelled”.  Although 
spatial variability is taken into account from the start, the main disadvantages are that this capability 
may not be exploitable due to the lack of spatially distributed data, or to the uncertainty caused by a 
large number of parameters, and large amounts of data to be analysed (Beven & Moore, 1993:9). 
 
The first stage in the evolution of distributed models, brought about by the availability of GIS, was 
the overlaying of soil, vegetation and topographical spatial data, resulting in the classification of the 
catchment surface into hydrological response units (HRUs).  Runoff was then generated in each HRU, 
and the results were routed through the catchment, in a similar way to the Ross time-area method 
(Beven, 2001). This approach still uses the unit hydrograph concept, but in a spatially distributed 
form.  Maidment et al (1996) describe a unit hydrograph model where each cell in a discretised 
catchment is assigned its own unit hydrograph, and then all the unit responses from all the cells are 
routed through the catchment to the outlet point.  
 
Various researchers produced models based on explicit equations of all the surface and subsurface 
processes in a catchment (Beven, 2001).  This idea still underpins most distributed hydrological 
models today.  The current state of the art for distributed hydrological models is a continual 
development of ever more detailed fully explicit models. This brings the problem of parameter 
overabundance, and consequently very difficult calibration.  There is the possibility that simpler 
models with simplified equations, or a degree of spatial lumping, offer more accurate results.  A 
distinction has thus arisen between models that operate at a catchment, subcatchment, or smaller 
scale, and those operating at basin scale, reflecting the different types of data available in each case 
(Beven, 2001).  
 
An example of the specific problems of urban hydrological modelling is described by Djokic and 
Maidment (in Beven & Moore, 1993:10), such as abrupt changes in drainage patterns caused by the 
artificially altered terrain and the presence of buildings and other obstacles, which will mean surface 
routing algorithms will have to be modified. The presence of a drainage network can significantly 
alter hydrographs and flow patterns.  For these authors, this means recommending TIN (Triangulated 
Irregular Networks) elevation models over grid-based models for hydrological modelling, whereas 
Smith (1993) proposes an urban model that takes into account a raster representation of the street plan 
and location of the sewer nodes, and finds that grid models are adequate.  Zech and Escarmelle (1999) 
propose an urban model which uses a modified DEM where buildings have been raised above the 
ground by a constant amount, whereas sewers have been modelled as trenches through an arbitrary 
elevation decrease. 
 
4.2. Wetspa Extension 
WetSpa Extension is a GIS-based distributed catchment model, developed at the Department of 
Hydrology and Hydraulic Engineering of Vrije Universiteit Brussel, Belgium.  It is based on the 
earlier WetSpa model, designed for the prediction of Water and Energy Transfer between Soil, Plants 
and Atmosphere, at a regional or catchment scale, with a fixed daily timescale (Wang et al, 1996, Liu 
& De Smedt, 2004).  Figure 7 shows a diagram of the hydrological processes that are considered in 
the original WetSpa model, which divides the area being studied into cells.   



 
Figure 6: WetSpa model structure (from Wang et al, 1996) 

 
Processes in the atmosphere, vegetation canopy, and within the soil in the root, transmission and 
saturation zones are all modelled for each cell, where a balance of water and energy is enforced.  
There is a simplified representation of water movement in the soil in the form of one-dimensional 
vertical flow.  Overland flow follows the Hortonian model, with runoff generation governed by 
variable source area.  A groundwater flow model is integrated using the two-dimensional Dupuit-
Forchheimer horizontal flow equation.  The water table position is determined through an explicit 
finite difference scheme for each cell and in each time step (Liu & De Smedt, 2004). WetSpa 
Extension is a development of WetSpa with the following additions or changes: Simulation time steps 
can be days, hours or minutes, in order to enable the model to be used for different hydrological 
modelling applications, such as long-term water resources studies, or short-term event-based flood 
simulations. The model has been implemented in ESRI ArcView 3.2, with the water balance and flow 
calculations themselves implemented as MS-DOS executable files programmed in FORTRAN (Liu & 
De Smedt, 2004). 
 
5. RESULTS 
 
5.1. Comparison of land use classifications 
The raster coverage that resulted from the automatic land use classification is shown in Fig. 7 (b). For 
comparison, the original land use information shapefile supplied by the city of Zurich is shown in Fig. 
7 (a). The land use classifications used by the City of Zurich, and the simplified classification 
implemented in the automatic classification program were different from the categories used by 
WetSpa Extension.  Therefore, it was necessary to reclassify both rasters before modelling could be 
performed.  The resulting rasters are shown in Fig. 8, which also shows a comparison of the two 
reclassified rasters, with the differing pixels marked in red.  As can be seen, there is a majority of 
correctly classified pixels but the errors are due to the image processing (previously discussed) and 
the re-classification process. 
 
 



 
Figure 7: Original land use classification compared to automatically derived classification 

 
5.2. Comparison of hydrological modelling results 
Fig. 9  shows the result of modelling the Holderbach catchment in WetSpa Extension using the 
automatically derived land use categories together with the rest of the necessary data, and the 
synthetic T10-60 rainfall event, which is also shown, and Fig. 10 shows the results for the same 
catchment when the original, hand-labelled land use categories are used instead.  
 



 
Figure 8: Original and automatically derived land classifications, reclassified for use in WetSpa 

Extension 
 
 



 
Figure 9: Modelling results: Distributed, calibrated, using automatic classification 

 

 
Figure 10: Modelling results: Distributed, calibrated, using original classification 

 
 
 



6. DISCUSSION and CONCLUSION 
 
Regarding the automatic classification of land use, the algorithm represents a first approach to the 
problem but serves to highlight the challenges involved in this approach. The divergence between real 
and detected land use is also be caused by the reclassification that was necessary to use the data 
within WetSpa Extension, with its specific land use classification. This classification places great 
importance on the type of vegetation. These details are lacking in the classification used by the City 
of Zurich, and also could not be distinguished using the applied automatic classification methodology.  
To perform this reclassification, simplifications were made, such as classifying all woodland areas as 
containing a specific type of tree.  However given that vegetation was detected at 90% accuracy this 
explains the relative success of the technique. Considering the image processing aspect alone, the 
main source of error is the misclassification of paved areas as buildings. Although this does not seem 
to cause difficulty for the hydrological model (due to similar permeability) some improvements could 
be made using shape as a feature i.e. buildings are predominantly textureless rectangles when viewed 
from above. Some minor misclassifications also occur due to shadow. There are established 
techniques which could potentially be applied to remove shadow but further work is necessary to 
explore their applicability in this domain (Finlayson 2006). 
 
The data used to model the catchment results in similar hydrographs to those obtained using the 
correct data, despite the proportion of misclassified cells present in the automatically classified land 
use data. In fact, as can be seen in the figures, in some cases the hydrograph obtained with the 
automatically classified land uses is more similar to the comparison ‘measured’ flow than the original 
hydrograph. This is an indication of the fact that the model is not very sensitive to changes in soil 
permeability, and other factors.  However, the ‘measured’ flows used for comparison were derived 
from a different, simpler model than the one used here, and therefore are not necessarily more 
accurate than the results obtained for this study. 
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