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Abstract—In this paper we develop a new method for high-
lighting visually salient regions of an image based upon a known
visual search task. The proposed method uses a robust model of
instantaneous visual attention (i.e. “bottom-up”) combined with
a pixel probability map derived from the automatic detection of
a previously-seen object (task-dependent i.e. “top-down”). The
objects to be recognised are parameterised quickly in advance
by a viewpoint-invariant spatial distribution of SURF interest-
points. The bottom-up and top-down object probability images
are fused to produce a task-dependent saliency map. We validate
our method using observer eye-tracker data collected under
object search-and-count tasking. Our method shows 10% higher
overlap with true attention areas under task compared to bottom-
up saliency alone. The new combined saliency map is further used
to develop a new intelligent compression technique which is an
extension of DCT encoding. We demonstrate our technique on
surveillance-style footage throughout.

I. INTRODUCTION

Existing models of bottom-up saliency are reliable indica-
tors of passive visual attention regions in an image [1], [2].
However, under task based viewing there is often a strong
shift of attention away from the passive observation case [3].
This arises from the imposition of top-down processes by
the observer under task in combination with the bottom up
response [4]. Models have been constructed for the top-down
case, but involve complicated prior learning of general object
classes and their scene contextualisation [4], [5], [6], [7]. Such
models have the advantage of enhanced attention prediction
power even in the absence of a target object being present in
the image, but the complexity of the learning process and the
specific scenarios makes these models hard to generalise.

What we propose here is a task-oriented correction to
bottom up models of visual attention in the case that a
prior learned object is present. The underlying premise of
the proposed bottom-up correction is that if an object of
interest is found to be present in the image, the general
contextual information of the scene can be approximated.
The visual system under task-prioritised viewing is guided by
prior experiences of associating task objects to likely scene
location contexts [8], [9], [10]. Objects generally lie within
semantically sensible parts of an image (e.g. pedestrians along
pavements) and there is a known strong horizontal search bias
in observers under task, based on the image context [11]. An
illlustration of this effect is presented in Fig. 1 in which eye-
fixation points from observers under task are imposed on an

Fig. 1. (Top) An image observed under task with eye-tracker points
superimposed. x denotes all eye fixations of eight observers performing people
count on image. + denotes the first three eye fixations across all participants.
(Bottom) Graph Based Visual Saliency (GBVS) model of passive visual
attention computed from the image. The attentional map is thresholded to
10 - 50% by area.

image. Detected objects can therefore be used to construct
a horizontally-biased “object presence” attention map for
combination with the attention maps from bottom-up/passive
viewing models to give more accurate prediction of eye-
fixations under task than the bottom up models alone. Fig. 1
(bottom) shows the thresholded Graph Based Visual Saliency
[2] map generated from the upper image, with eye-fixations
still imposed. Overlap is generally good, but there is still
substantial energy in the map lying away from the core region
while eye-fixations lie outside the thresholded area.

We use SURF (Speeded Up Robust Features [12]) interest-



point matching to a reference image to determine object pres-
ence in a test image. We further propose an object confirmation
technique based on comparing the distribution between the
reference and test image matched points to introduce higher
confidence to the object recognition process. This process is
not general object recognition, but would apply to particular
object retrieval, such as finding a particular vehicle in a
database from a single or small number of stored reference
images, allowing for the possibility of scale, viewpoint and
illumination changes.

We present comprehensive statistics detailing the eye-
fixation predictive power of our combined attention model
in comparison to the pure bottom up models, showing an
improvement in overlap. We further present data on our
object detection scheme’s reliability over different viewpoint.
Finally, as an illustration of what our object-present-task model
could be used for, we demonstrate a DCT-based task-targeted
compression scheme that preserves regions of high saliency
under task at high fidelity and non-task critical regions at
lower fidelity to offer a notable increase in compression
ratio compared to global application of DCT-based, JPEG-like
compression.

II. OBJECT DETECTION AND CONFIRMATION FROM SURF
POINTS

A. SURF matching and and Object confirmation refinement

SURF (Speeded Up Robust Features [12]) is a robust
feature-detector and descriptor combination that can be used
for point to point matching between images. Generally, the
SURF algorithm finds locally interesting points over many
scales and stores these points into a set of point descriptors
robust to rotation and scale transformations as well as skew
anisotropic scaling and perspective effects, covered to some
degree by the overall robustness of the description technique.
The descriptor matching applies well over viewpoint change,
scale and under different lighting conditions (see [12] for
thorough performance measures) as well as being natually-
distributed towards visually salient information under different
viewing conditions [13].

Due to the robustness of the matching technique under
appropriate thresholding, the presence of descriptor matching
between a reference image and a test image generally delivers
a high confidence that the reference image content is present
in the test image. For an example of SURF detection and
matching, see Fig. 2. In this paper we manually extract an
object of interest from a larger image and store a squared-off
copy of this object as a reference image along with a mask
describing the object envelope within the reference image. We
then “learn” such a reference image by running the SURF
algorithm over it and storing the descriptors. Interest points
outside the object envelope are excluded along with their
descriptors. Of course, the thresholding for matching between
images can vary and there could be mismatched point to point
correspondances. For this reason, we propose a refinement in
the object recognition technique based on the overlap between
the matched points in the reference image and the matched

Fig. 2. Surf matching example. Circles denote detected SURF points, “+”
denotes matched points between reference and test images. Image as shown in
Fig. 1. Top: manually extracted reference image with SURF points matched to
test image. Lower left: test image showing SURF points matched to reference
image. Bottom right, our object contextual correction map (unthresholded).

points in the test image transformed homographically to the
plane of the reference image. This allows greater confidence in
the presence of the object as opposed to a series of unrelated
(but probably robust) point to point correspondances.

There already exist good object classification and recogni-
tion techniques [14], [15], [16] but the technique proposed
here is one of specific object recognition based on the distri-
bution of interest points and not general object categorisation.
In the process of object recognition a reference image (of
an object of interest in this case) is “learned” by applying
the SURF algorithm, transforming the matched interest-points
into an invariant frame of reference then computing a spatial
distribution of those points relative to one another. There
is always the possibility of mismatching occurring between
points at poor thresholds and at substantially different viewing
angles. We therefore use the corrected spatial distribution of
the matches to parameterise the object. In brief there are
two images, one is the Reference Image and the other is the
Test Image. The matched points between these images have
been calculated and the correspondence between these points
is reliable. (This is achievable by choosing the appropriate
thresholds at the SURF detection and matching phases.) It
is assumed that the learned object in the reference image
will have the features included in approximately the same



plane. This should similarly constrain the matched points
in the test image to be similarly planar and only 4 good
matches are required. This is a reasonable assumption since
surveillance objects are usually imaged in the medium to far
field. Matched points are denoted (IMP ′) where I is the image
label, R or T for reference or Test, M denotes that the points
are matched and P’ is the plane. Therefore (TMT ′) denotes
the Matched Test Points in the Test Image plane. We first
calculate the homography matrix between Test and Reference
Image planes using matched points in each image, (TMT ′)
and (RMR′). We then transform the matched points in the test
image to the Reference plane, (TMR′). This is done by using
the homography relationship standard in computer vision. We
use the algorithm detailed in [17]. The spatial distribution of
the (TMR′) is then computed. This is the angular and radial
displacement to all points from a zero point.

D(TMR′) = (r1..n−1, θ1..n−1) (1)

The distribution of matched Test points, (TMR), with each
reference point is overlapped and the displacement δ calcu-
lated. Then for each reference point we apply a Euclidean
distance threshold and count the inliers to δ. The best zero
location is chosen based on greatest number of inliers. The
object is judged present or absent, based on the number of
classified object points within the threshold for the best fit
matches. We chose to set six confirmed object points as our
threshold for object confirmation. In the case where there
are no inliers, it is necessary to choose a different test point
for constructing the distribution and to reapeat the process.
The full set of permutations could be explored but is not
necessary if the confidence in the matching is high: after a
few permutations, the method will find the overlap with the
points within a given tolerance if the object is present. We
find the method is robust for assessing the inliers of an object
distribution. Since the object distribution is only derived from
the matched points in the test image, the technique works in
the presence of partial occlusion where the number of matches
may fall but the distribution is still likely to overlap in the
reference image.

B. Object context surface

We are trying to model visual attention under task by
modulating the reliable bottom up maps with a contextual
search surface based on object presence. Once a reference
object of interest is detected in an image, we construct an
“object context surface” for combination with the bottom
up map of the raw test image. The premise behind the
construction of this surface is that objects of similar class are
generally horizontally distributed in an image and that under
task there is consequently a strong horizontal bias in attention.
Of course, there is a compromise in judgement required here.
The horizontal search pattern is quite strong for scenes with
some kind of horizon and starts to break down as the potential
image area for search increases, e.g. as altitude is increased
from eye-level observation towards aerial photography. The

horizontal constraint is generally true for eye-level imagery.
We choose to construct our surface using the following steps:
1. We find the centre height of the detected object from
the matched SURF points in the test image. 2. We take the
horizontal line through the centre point as our axis of object
context. 3. We take two boundaries to define the core context
of the image, one 1/6th of the image height above and the other
1/6th of the image height below the centre line. We saturate
the map within this area. (In the case that the detected object
is larger than the 1/6th height either side of the centre, the size
of the object is chosen instead of the 1/6th image height.) 4.
Outside the core context, the map is tailed-off in the vertical
direction according to the formula:

distance(x, y) =
(

(y − cny)
2

)
(2)

where (x,y) is the current point in the map of the same
dimensions as the image (excluding the core context) and cny
is the closest point y dimension to the saturated mask. This
equation weights the distance values so that there is a tail-off
from the core context in the vertical direction. See Fig. 2 for
an object presence surface example.

C. Combination of bottom up and object-presence contextual
surfaces

Now we have models for the bottom up case and for the
target present case. We wish to fuse these data maps together
in a way that will preserve the core information. The bottom
up map contains important contextual information likely to
attract attention under passive observation. The top down map
is based on the detection of a known object and is based
on prior knowledge of search bias in observers in general
natualistic imagery. The combination depends strongly upon
the degree of belief of the value of each component. In our
case, by inspection on our data sets (see later - Validation), we
set the surf detection and matching thresholds appropriately so
that we have strong belief in the presence of our object based
on SURF matching alone. In the case of further “object con-
firmation” by distribution as outlined above there is similarly
a high belief in the plausibility of the top-down surface. The
human visual system deals with task by reading the bottom up
information in a scene but imposing contextual constraint on
the search. Therefore we seek to combine the surfaces in such
a way that the object map dominates, but allows for strong
bottom up areas to remain possible attention zones. Due to
each being derived from different bases it is common to apply
a power to the maps prior to combination in the general form
of equation (3) [4].

C(x, y) = (BU(x, y)) ∗ (O(x, y))γ (3)

where C is the combined map, BU is the GBVS saliency
map [2], O is the “object” surface, either from SURF points
or from object-classified points. The indices (x, y) are the
pixel locations and are included to show that the above is
elemental, not matrix multiplication. We choose γ = 0.05



in this paper. This has the effect of flattenning the object
distribution somewhat. We also rescale the values before
combination of the two different maps to reflect their degree
of belief. We trust the bottom up map in the passive case,
but it is less reliable in the task case. We choose therefore to
set the pixel values of the bottom up map to between [0.32
0.95] and the values of the Object map to between [0.93 0.95]
while retaining a large floating point value for each pixel,
allowing for smoothness. These values were chosen out of
many possible values to produce maps that combine to offer
domination of the attentional surface by the object context
component with the possibility of diversional attention to the
bottom up map. An example of the thresholded combined map
is shown in Fig. 3 against eye-tracker data. Note the overlap
improvement compared to GBVS alone illustrated in Fig. 1.

Fig. 3. Thresholded Combined Bottom up GBVS map and Object context
correction. Eye fixation data overlaid from all participants. All fixations
denoted by “x”, first three only by “+”. Note the shift in energy towards the
known target area compared to the pure bottom up case in Fig. 1.

III. VALIDATION OF THE COMBINED SURFACE UNDER
TASK

Since the aim here is to build an improved attention map,
the map is here tested against human observer eye-fixations,
taken under tasking, to assess how valuable a correction to the
bottom-up only case the proposed object-surface is.

The eye-tracker data and image set from Torralba and
Henderson has been used to validate the model (to view see
URL in[4]). The test image data set for this paper comprises
72 images and 108 search scenarios (3x36 tasks) performed
by 8 observers, “count the people” on the first 36 images and
“count the cups” and “count the paintings” on the other 36.
Objects appropriate to the search-and-count task performed
by the observers were manually extracted as reference images
from the test images for all 108 search scenarios e.g. if task
was to count the number of paintings, a painting would be
extracted from the image, if present. Overall there were 61
object present cases and 61 appropriate objects for task were
extracted out of the 108 tasks. These objects were stored
as reference images in a head-on, 0◦ object recognition test
process. (A discussion of matching and object detection under
different angular viewpoint follows.) Each reference image

(i.e. 1 extracted “object” per task) was tested using one-pass
surf descriptor matching against the descriptors from a one-
pass surf application to the other 108 search task images. Our
surf matching thresholds were such that there was practically
no mismatching between the reference and test images. The
largest number of mismatches per image (i.e. matches from
the wrong image) was 1 and this was a statistically very
rare event. 30 out of 61 objects were recognised using our
object confirmation (This is > 6 matched surf points lying
within overlap tolerance) and 47 examples had reliable SURF
matching to at least three points in the test image. The
reason for these low values can be attributed parially to our
conservatively high matching threshold and partially to the
object size in the image - often the area of the object pixels
was very low( 1% of image area of 800 x 600) and this did
not allow for robust descriptor representation in quantity.

For each search scenario, three saliency maps were created:
(i) Bottom Up saliency; (ii) SURF combined map only from
matched points; (iii) Object combined map from Object points.
The construction mechanism for (ii) and (iii) was identical, but
there was a subtle change of the object centre line since not all
matched points were classified as object points. Essentially the
statistics from (ii) and (iii) were identical within reasonable
error, so below only cases (i) and (ii) are presented (iii, is
actually a refined subset of ii allowing for higher confidence).

All 72 images had a bottom up map applied. SURF-only
object maps were constructed when there were at least three
matched points between the reference and test images (47/61
cases). Object surfaces were further constructed when there
were more than 6 points classified as object points (30/61).
Where the object was detected, the bottom up and top-down
object contextual maps were combined as described above.

The attentional maps of each class were thresholded to
different image areas representing the more salient half of the
image. X = 10, 20, 30, 40 and 50% of image area were chosen
since these levels clearly represent the ”more salient” half of
the image to different degrees, as illustrated in Figs. 1 and 4.

For each search scenario, the eye tracker points lying within
and without each threshold level of each mask were counted.
We chose to use all eight participants and to process all of
the eye points. This gives the exhaustive search case. The
overlap was considerably higher if only the first three fixations
were considered, but such fixations may contain elements of
centre bias and so the statistics are not presented here. The
comprehensive statistics for the overlap of the eye fixations
under task are shown in Fig. 4. On the left, the overlap of
under-task eye fixations of all 8 observers over all 108 tasks
vs. the 72 bottom up maps is shown. On the right, the overlap
of the eye-fixations of all 8 observers in the 47 tasks where
an object surface from at least three SURF matches could be
constructed. There is a substantial overlap improvement using
our object-present surface, with there being approximately
a 10% higher attentional overlap relative to the bottom up
models alone.



Fig. 4. The figure shows the overlap with the attentional maps at different
threshold levels for all eye-points, gathered over 8 experimental participants
under task. left: eye-data vs bottom-up only (72 images, 8 participants, 108
tasks). right: eye-data vs. combined bottom-up and SURF-point object context
attentional maps. (47 incidents of # SURF Matches > 3, 8 participants, 47
tasks). The bar indices 1 to 5 correspond to the 10 to 50% surface area
coverage of the masks, as illustrated in Fig. 1 and in Fig. 3. The main axis
is the percentage of interest points over the whole image set that lie within
the saliency maps at the different threshold levels. The bars indicate average
overlap at each threshold. Errors: standard deviation is plotted in red. There
is a ten percent (or so) higher eye-fixation overlap when object context can
be combined with the pure bottom up case.

A. Validation of SURF and Object confirmation over angular
viewpoint change

We performed a test on the matching performance and
object classification over different viewpoint angles. Six sets
of viewpoint shift images were collected, each based around a
different object in the scene Viewing angle varied from head-
on 0◦ to 30◦ in steps of 5◦. From each image in the set, an
object region was manually extracted as a reference image.
This object was between 10 and 20% of image area. The
relative angles between reference plane and the other images
in the set were known and the matching performance of both
the SURF points alone and the Object Recognition refinement
were tested over the different viewpoints. It was found that the
object confirmation breaks down between 15 and 20◦ of offset
from the reference, while the SURF matching alone generally
started to collapse beyond 20◦.

IV. DCT COMPRESSION USING COMBINED SALIENCY
MAPS

We have demonstrated a technique that can succesfully
modulate attention maps from the bottom up model alone to
adjust for task based viewing that relies on a simple object
recognition. If we know the zone of an image that is of interest
to an analyst, we can apply a selective compression targeted
towards those areas of the image that are task critical. This
could potentially save a lot of bandwidth. Many compression
schemes are applied globally. This requires using some rule of
thumb to maintain all potential information within an image,
which means that the compression is not as strong as it could
be, or it involves pushing the global compression further at
the risk of destroying key information in an image. Here we

propose a simple method of how our attention-enhanced map
could be used to apply an intelligent compression to an image.

The JPEG algorithm is designed for good visual quality
in photo-real images and so is appropriate in our examples.
JPEG relies on quantisation of the Discrete Cosine Transform
applied to 8 by 8 pixel blocks of an image. This reduces
the relatively unimportant high frequency components in each
block, allowing for efficient huffman or arithmetic coding. The
quantisation is performed using a quantisation matrix derived
from psychovisual tests and this matrix can be weighted to
provide the required degree of compression in the block. The
reverse process decodes the image [18], [19]. The heavier
this quantisation, the larger the compression ratio achieved,
however this is tempered by the fact that over-quantisation
will produce blocking atifacts that significantly reduce image
quantity and can damage real information within the image.
In regular JPEG, the quantisation is fixed across the whole
image. In our case, however, we have a reliable method of
selecting regions of contextual search interest under task. Our
previous analysis leads us to “expect” 85% of eye fixations to
lie within the top 50% of images by object contextual saliency.
We therefore threshold out half of the image for high and half
for low compression. This low information will not be lost
altogether and will be available for contextual guidance.

We use a greyscale copy of the image and choose two
quality factors to impose a high or low quality on the image
region. The quality factor (Q) of 50 uses an unweighted matrix
which is the original matrix derived from psychovisual experi-
ments to give acceptable compression. The quantisation matrix
we use is that specified in Annex K of the JPEG standard
for the luminance component of images [18], appropriate for
greyscale. We choose a low value of Q=3 for the outlying
regions and weight the quantisation matrix according to the
following relationship: (50/Q) ∗ Qmatrix. We choose this
exagerated example of compression to illustrate the technique.
In practice, higher values of the non-core regions would be
chosen which would be more visually pleasing and would not
necessarily take up very much more storage.

We ran the binary DCT technique over a set of 50 greyscaled
test images with object matches from reference images from
differing angles. For comparison, we also applied a global
DCT compression to the test images at Q=50. We found the
average compression ratio (length(quantised, linearised DCT
image string) : length(huffman-encoded string)) for the Binary-
Task-DCT-Huffman was 6 ± 0.2, while for the Global-DCT-
Huffman the average was 5.5 ± 0.5. The final compressed
output had a storage value of 0.1737 bits per pixel (bpp) for
the binary, object-context compression and 0.1927 bpp for the
global compression. The gain in compression outweighs the
required storage for the reference descriptors and is valuable
for large datasets. An effective illustration of object-context
oriented compression is presented in Fig. 5.



Fig. 5. Task-oriented compression based on 9 matched and confirmed object
points between test and reference. Top left our reference image containing
an object of interest. Top right our test image, at a different viewing angle
to reference. Centre left a zoom-in of the detected object in the full intelli-
gent compression (seen in Bottom). Centre right the thresholded combined
attentional map of the bottom up and object context in the test image. Black
regions set to Q=3, others Q=50 in the attention based compression. Bottom
The full compressed image. Non task-core regions are heavily averaged while
maintaining the background, core regions are preserved. (See Centre left for
a zoom-in of the detected object.)

V. CONCLUSION AND FUTURE WORK

We have successfully demonstrated a new method of com-
bining a reliable model of bottom up saliency with an ob-
ject recognition scheme to contruct a combined bottom-up
and object-present (i.e. task) attentional map for an image.
This offers considerable advantages over previously reported
methods. Specifically we do not require an intensive training
phase and can remain viewpoint invariant. Testing of the
resulting combined map against observer eye-fixations shows
that the combined maps offer substantial improvement against
the bottom-up only case at predicting the location of human
observer eye-fixations under task, if an object is detected.
Finally, we demonstrate the utility of this information, by
proposing and demonstrating a DCT compression technique
that uses the combined attentional maps to prioritise task-
salient information during compression. Even though the ob-
ject recognition technique that we use in this paper is based
around the recognition of a specific object, the approach this

paper presents would still apply in the case of general object-
class recognition. This is one obvious future extension to this
project but impact on performance needs to be considered
carefully. The application of compression algorithms to im-
ages based on their task-salient regions can be extended by
investigating alternative compression schemes.
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