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ABSTRACT

This paper presents a technique for image segmentation. We
demonstrate its efficacy for classsifying high-resolution aerial
images. The application is peak water flow estimation in a
river catchment in the city of Zurich and the data covers a
large rural and urban setting. The output of the segmentation
process is used as input to a hydrological model. We intro-
duce a combined, probabilistic, segmentation approach based
on colour (the LAB colour space is used), texture (using en-
tropy) and image features (gradients). Classification rates for
natural land surfaces and man-made structures are up to 90%
and 85% respectively. When the automatic segmentation re-
sult is compared to the official land use data and reclassified
for use in GIS we achieve an overall classification accuracy
of 70%. This new classification is tested on the WetSpa hy-
drological model and the resulting flow estimate compares
favourably with that computed from hand-classified land use
data.

Index Terms— Segmentation, Colour, Texture, Hydro-
logical mapping

1. INTRODUCTION

The geography of the vicinity of Zurich is, like many places,
prone to flooding during storms. In order to make predictions
about the impact of certain quantities of rainfall the ”runoff”
must be considered within a hydrographical model. This is
related to the permeability of surfaces which in turn relates
to the land use classification. A refined version of the hy-
drological model has recently been developed, based on the
WetSpa distributed rainfall runoff approach. The input to such
a model is currently taken directly from a GIS system where
the land use is the single most important parameter. In image
processing terms this relates to the class of the set of pixels
within a certain boundary (i.e. it is a segmentation-by-hand
procedure). To acquire detailed land use data is labour inten-
sive and expensive. This is possible in affluent areas (such
as Switzerland) but it would be impractical in poorer regions
where the human cost of being unable to make predictions

Thanks to Roland Burckhard and Andres de Moran, School of Built En-
vironment, Heriot-Watt University for access to GIS and hydrological mod-
elling expertise.

about flood-risk would arguably be much greater. The seg-
mentation techniques in the image analysis literature are not
able to offer the fine classification of a hand-labelled GIS land
use layer (which contains upwards of 34 classes) over a very
large dataset. The question motivating this work however is:
will the hydrological model be tolerably accurate under the
constraints of a coarse, but automatic, segmentation scheme
(with, in our case, 5 classes)? If so there exists the possibility
of performing flood risk analysis automatically. This paper
presents a hybrid segmentation method which is tailored to-
wards aerial image segmentation but is devoid of unnecessary
heuristics. The output of the segmentation is used to com-
pute the 60-minute predicted flow at the outlet in the centre of
Zurich and is compared with the same model output for the
official land use classification.

1.1. Prior Work

Image segmentation is an important topic in computer vision
and consequently a variety of methods have been applied to
the problem ranging from the application of filter banks to
agent-based machine learning techniques. Robertson devel-
oped an off-line reflective architecture which learns from a
corpus of hand-labelled data [5]. Wavelets have been used to
speed up the process of classification [3]. Although not ap-
plied specifically to aerial images Varma and Zisserman de-
veloped an improved method for texture analysis based on the
statistics of images, rather than the more popular use of banks
of filters [9]. Texture is clearly a significant image feature
enabling segmentation, as well as colour. Colour-based seg-
mentation is quite popular. It has been shown that RGB gives
reasonable performance in a non-parametric scheme but that
colour spaces which separate the luminance and chrominance
components perform better over a range of imaging condi-
tions [2]. The features colour and texture have been combined
but not addressing the complexities of urban data [1].

Although not the main focus of this paper, for complete-
ness we discuss some of the prior work on hydrological
modelling. Various studies have been carried out in the
Zurich area to assess existing risks from flooding and other
natural hazards. Regarding hydrology, an important study
has been the Runoff Process Map of the Canton of Zurich
(Abflussprozesskarte des Kantons Zurich), [7]. The Runoff



Process Map divides unbuilt or unaltered surfaces of the can-
ton into hydrological response units according to the overland
and subsurface runoff processes that dominate in each one [7].

1.2. Data

The complete set of orthophotos is split into tiles contain-
ing 4000 x 4000 pixels each. In total there are around 200
tiles in the dataset. Representative examples of each class
are extracted from a hand-labelled section of the dataset
which is not then used for further classification or test-
ing. There are 5 classes in our scheme, reduced from the
34 official land use classes. Our class types are generalisa-
tions, for example, the official class building.commerce
and building.annexe become examples of the class
building in the set of classes which can be obtained auto-
matically. The classes we use in this paper are building,
paved, forest, tilled and topsoil.

2. AERIAL IMAGE SEGMENTATION

In this section we introduce a three-stage process for segment-
ing an aerial orthophoto into the five classes defined above.
We start with colour then introduce entropy and gradient as
image features to refine the segmentation. Final classifica-
tion is performed by probabilistically combining the results
of each stage.

2.1. Colour-based segmentation

The first stage of the classification process uses the colour
distributions in a non-parametric scheme. We convert to the
LAB colour space which is a simple linear transform of the
raw RGB pixel intensities [4]. A first approximation to seg-
mentation then follows: for each example pixel in the new
image compute the Euclidean distance to the best example
each class in the training set. We use the A and B vectors to
separate out luminance effects. This normalised distance can
be interpreted as the likelihood of that pixel belonging to one
of the 5 classes (under the assumption that it is drawn from
one of the classes, not an unknown class). An 8x8 median fil-
ter is applied for smoothing. The result of this step is shown
in Figure 2.1. We note in particular that buildings and roads
are likely to be misclassified in this step although 72% of the
pixels on average are correctly classified. The exact propor-
tion varying depending on the predominance of each class in
the input image.

2.2. Texture classification via entropy

Given that there will be certain misclassifications due to
changes in appearance when colour alone is used we re-
fine the segmentation using texture. Entropy is a measure
of the disorderness of a distribution which is related to pre-
dictability. Highly textured regions in an image have a higher

(a) (b)

Fig. 1. Illustrative example of (a) an input orthophoto TIFF
tile and (b) the output of colour-space segmentation

(a) (b)

Fig. 2. (a) Output of segmentation via entropy. (b) Gradients
used to find man-made features.

entropy than uniform homogeneous regions. Entropy cannot
be used on its own since distinct regions may vary in ap-
pearance and not entropy. It is defined as H =

∑
i pi log pi,

where pi is the likelihood of the ith entry in a pdf (in this case
approximated by a normalised histogram of a region of an im-
age). Image blob estimation is computed from the smoothed
colour-segmented image using a one-pass connected com-
ponents algorithm [6]. Each region of the training data is
characterised by a mean entropy. Once more, comparing
non-parametrically the distance between the entropy of the
blobs in the new image to each class results in a probability of
that region belonging to that class. The Maximum Likelihood
class from this stage alone is shown in Figure 2.2(a).

2.3. Image gradients

The colour and entropy features result in 93% of pixels which
comprise imaged vegetation being correctly identified over
the test dataset, accounting for 3 of the 5 classes. However
only 64% of true paved and building pixels are correctly clas-
sified this way. This means that in a mainly urban region the
overall classification can be as low as 66%. As a final step
to improve the result for classes paved and building we
use a gradient filter in combination with a predefined shape



Fig. 3. Combined results using colour, entropy and gradients.
Note the improved disambiguation between paved areas and
buildings.

feature. The gradient filter is based on a Sobel filter. The rea-
son for choosing this technique is that the intra-class image
gradient of till is very large thus setting the filter thresh-
old to zero we extract most of that class. The gradient of the
class paved and building is very low so it is then found
by default. When this result is combined with the colour and
entropy classification the segmentation to pick out the man-
made features we are interested in i.e. roads and buildings.
This is shown in Figure 2.2.

2.4. Results and discussion

The described steps result in three normalised likelihood dis-
tributions, pf

ij(c|dij), one per feature, f , for every pixel loca-
tion ij over 5 possible classes given the pixel value at (i,j), dij

The chosen class for pixel (i,j) is given by:

Cij = argmax
∏
f

pf
ij(c|dij) (1)

By comparing the segmentation to ground truth data it is
clear the colour segmentation gives a good result in classi-
fying the topsoil and overall land surface (72%). In contrast
to colour, the entropy stage performs well in classifying the
paved and building by increasing detection from 38% to 65%
on average. This poorer rate is partly explained by the fact
that buildings are non-uniform in colour compared to vege-
tation. As discussed, the gradient feature can classify till
well. Therefore, the colour segmentation result is used as a
base and the entropy segmentation result is used to re-label
the paved and building classes. The gradient feature is
used to detect misclassified buildings by removing the paved
and topsoil (the till having already been removed). The final
result is shown in Table 1. As can be seen the main difficulty

Input Topsoil Forest

Till Paved Building

Fig. 4. An example tile from the dataset illustrates that, when
the imaged area is predominantly urban, the classification re-
sult will be less successful.

is twofold: (a) the ambguity between paved and building re-
gions and (b) the variation within the class of building. We
highlight this in Figure 2.4 and discuss the relevance of this
misclassification to hydrological modelling in the following
section.

Topsoil Till Forest Paved Building
80 93 93 56 65

Table 1. Percentage classification for each class in the test
dataset.

3. HYDROLOGICAL MODELLING

We are unable to discuss the full details of the distributed
hydrological modelling approach used here. Suffice to say
that in distributed process models the area being studied is
divided into a grid or network of elements, and calculations
are carried out in each element, with all parameters discre-
tised over the element grid [8]. The elements can be linked to
estimate water movement (surface and subsurface) between
them. WetSpa Extension is a GIS-based distributed catchment
model, developed at the Department of Hydrology and Hy-
draulic Engineering of Vrije Universiteit Brussel, Brussels,
Belgium. It is based on the earlier WetSpa model, designed
for the prediction of Water and Energy Transfer between Soil,
Plants and Atmosphere, at a regional or catchment scale, with
a fixed daily timescale [10]. Both the offical land use and
the derived land use are shown in Figure 3. These are re-
classified into the 5 classes and the rasters are used as input
to the WetSpa model, implemented in ESRI ArcView 3.2 with
the water balance and flow calculations implemented in FOR-
TRAN. Despite the reclassification introducing further errors,



Our method Official

Fig. 5. Automatically-derived land use compared to the of-
ficial land use supplied by City of Zurich showing the pre-
sented method over the entire dataset surrounding the river
catchment of interest. The original classification has been re-
classified into the 5 classes used in this paper.

about 70% of the pixels are correctly identified. As can be
seen from Figure 3 we obtain a similar estimate of the peak
flow (light blue curve) with the maximum flow being 20%
higher than that computed using the official classification.

4. CONCLUSION AND FUTURE WORK

We have presented a method for image segmentation which
has been applied to a large, real dataset of aerial images. We
have further demonstrated the utility of our approach in a new
approach to hydrological modelling, showing that despite the
coarseness of the classification and the inevitable errors in the
automatic technique, we achieve tolerable results compared to
those computed using hand-labelled data. The segmentation
method is clearly tailored to both the type of class we aim
to detect and to the application. However, we have resisted
heuristics such as shape recognition to improve the identifi-
cation of specific buildings. This means that the presented
method is a general approach to aerial image segmentation.
Further refinements would take account of shadow and ex-
plore the expansion of the number of classes to improve the
peak flow estimate.
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