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Abstract

This paper presents a new real-time active visual tracker
which improves standard mean shift tracking by using
level sets to extract contours from the target. We use
colour and the disparity map computed from a stereo cam-
era pair which prove to be powerful features for tracking
in an indoor surveillance scenario. To combine the fea-
tures in the level sets process, we enhance Chen’s et al
appearance model of [5] by using a probabilistic model
determined via Expectation-Maximization (EM) cluster-
ing. The level set result is used as the weighting kernel
which improves the accuracy of the similarity measure-
ment in the mean shift method. Finally a Kalman filter
deals with complete occlusions.

1 Introduction

Visual tracking is the process of estimating the location of
an object of interest over time in an image sequence using
single or multiple cameras [3]. Visual tracking becomes
one of the essential feature for a machine (e.g. robot)
to sense and understand the surrounding environment [1].
The surveillance system should detect the interesting ob-
ject, track that object in an image sequence and recognize
its behaviour [17].

The aim of this work is to track a single person in an
in-door environment from a stereo pair of cameras placed
on a Pan-Tilt (PT) head attached to a robot. Thus, the
method must be designed to be robust to dynamic back-
ground and motion blur. To do so, we choose to continue
from the work of Chen and Wallace [5] which uses the
mean shift tracker with the level sets as an adaptive kernel.
The use of active contours solves the principal weakness of
the mean shift tracker which results from the tracker’s in-
ability to deal with the object’s postural change because
the kernel is fixed in size and shape. It also improves
the performance of the mean shift by allowing to com-
pute the target’s model from only the object’s features.
Our main improvements from [5] consist in 1) adding a
feature - the disparity map, 2) changing foreground and
background model to a probabilistic model, 3) adding the
dynamic choice of a Kalman filter in complement to the

mean shift. We show that increasing the complexity of
the approach does not affect the capacity of the method
to be used in real-time applications while leading to more
robust results.
First, the simple use of colours in [5] is not sufficiently dis-
criminative when working with a real in-door environment
where the background is not homogeneous. By using the
disparity map in addition, the active contour segmenta-
tion is made more robust in the presence of a cluttered
background. This technique may equally be applied out-
doors subject to the range of the disparity map. Second,
the use of a probabilistic model (vs a deterministic one)
allows to better deal with the active contour evolution.
Third, the main drawback of the mean shift is that it can-
not deal with significant occlusions. Therefore a Kalman
filtering step was added to solve cases of occlusions.

1.1 Related work

In 1988, Kass proposed a model using an energy minimiza-
tion as a framework which became a well-known classical
active contours techniques, called ”snake” [9]. This en-
ergy function consists of features that describe the object
such as edge, line and intensity. It can be interpreted as
three forces: internal force, image force and external con-
straint force. However, because the snake method is based
on edge and corner, this basic model is not working well
on real images due to high detail, texture, illumination,
noise, etc. The minimization of the energy function can
easily fall in a local minimum. For these reasons, Chan
et al. [4] proposed another classical method of active con-
tours which does not depend on edges. In their paper,
they proposed a model in which the stopping term of the
active contour is based on the segmentation of the image
instead of the gradient of the image like in snakes. How-
ever, this model is based on a single representing colour
for the entire region which obviously is not enough in real
images.

Yilmaz and Lankton [18, 10] proposed an energy func-
tion that combines the advantages of both the geodesic
active contours (e.g. snakes) and the region-base active
contours. The former work used the Bayesian framework
to derive many features, e.g. colour, shape, gradient, mo-
tion, into a probabilistic image of object and background.
The segmentation is done by minimizing the energy func-
tion using variational approach. The latter approach as-



Figure 1: Schematic of the proposed tracking algorithm.
Each step is described in the text.

sumes that nearby points inside and outside of the true
edge of an object can be well modelled by the mean inten-
sity of the corresponding local region. One drawback is
that the initial state has to be near to the true boundary,
otherwise the curve can get aligned to another local mini-
mum energy. Moreover, the parameters have to be tuned
for each image individually.

Rousson [14] introduced a feature from shape by train-
ing from the implicit function φ. The training method
is called the voxel-wise probabilistic level set formulation
where φ, resulting from any segmentation method, is kept
in the Probability Density Function (PDF) form. How-
ever, this method is not guaranteed to succeed when the
person can present any side and be in any posture.

Unger [15] proposed a unique way of object tracking
by segmenting the object in 2D+t volume instead of in a
single 2D frame. Only the RGB colour histogram is used
as a feature. The occlusion is represented as disjunction in
the volume. The implementation is not real-time because
the size of the volume keeps increasing which affects the
performance of the segmentation.

Brox [2] used a feature vector composed of three colour
channels, three texture channels and two motion channels.
Non-linear diffusion is applied on the features to enhance
them before doing the segmentation.

2 Technical approach

The combination of mean shift, Kalman filter, and active
contour is implemented in this work in order to track a
person using a pan/tilt robot head. The flow of the pro-
posed method is shown in Figure 1.

First, in steps 1 to 3, the tracker is initialized. This
begins with finding a person in the video stream (step
1). (This paper does not focus on this human detection

(a) left image (b) disparity map (c) segmentation

Figure 2: The disparity map and its segmented result.

part and so we choose to use the state-of-the-art Viola
and Jones object detection algorithm.) Then, the fore-
ground and background models are computed through
Expectation-Maximisation (EM) clustering (step2). The
initial contour of the body is then estimated through the
level sets method (step 3), the energy function being de-
termined using the previously estimated foreground and
background models.

Second, step 4, the tracking is performed by a com-
bined mean shift / Kalman filter tracker where the level
set output is used as an adaptive kernel for the mean shift.

Third, steps 5 and 6, the contour of the object is re-
fined using level sets only if no strong occlusion has been
detected. The presence of an occlusion is determined by
computing the similarity between the kernel estimated in
the previous frame and the rectangular kernel found by
the mean shift algorithm in the current frame. If the sim-
ilarity is low, an occlusion is detected. The level set step
is skipped and the position of the object is given by the
Kalman prediction. The velocity of the object is assumed
to be constant and added to the velocity induced by the
robotic head movement. Else, if the similarity is high,
there is no occlusion and the level set is performed (step
5). The result is discarded if the colour histograms of the
previous and the new foreground regions are too different,
meaning a failure in the level sets process. Otherwise, the
foreground and background models are actualised (step
6) and the result of the active contour feeds back as the
kernel to the mean shift for the next frame.

2.1 Body detection

Step 1 is the initial detection of a human body. This
task is carried out to define an initial position and ROI
for the tracker. The OpenCV implementation of Viola
and Jones is used without any modification which provides
both the implementation of the algorithm and the trained
body classifier.

2.2 Foreground and background model
computation

The aim of steps 2 and 6 is to determine the probabilistic
models of the foreground and the background respectively.
Many previous works dealing with this exist [18, 15, 2]. In
this paper, our approach is first to segment the previous
frame using EM clustering. The features used are three
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Figure 3: Result of the EM clustering: (a) image seg-
mented (b-k) individual clusters represented in white with
their associated scores (foreground : background).

channels of colour (YCbCr) and one channel of disparity
map. The disparity map is a virtual depth information
estimated by the difference between the left and right im-
ages of the same scene. The disparity map function is
implemented using the semi-global block matching algo-
rithm [7]. An example of disparity map is shown in Figure
2.

The result of the EM clustering is a set of regions of
homogeneous features described by a 4-D gaussian. The
probabilistic models of the foreground and background
are then defined as a linear combination of those primary
gaussians. In the foreground (resp background) model,
the Gaussians are weighted using the score defined as the
ratio of the area of the foreground (resp background) that
belongs to that cluster as shown in Figure 3.

Steps 2 and 8 differ in the way that foreground and
background are defined in the previous image. In step 2
there is no previous result; the result of the body detection
(step 1) is used. The ellipse region inside the detection
result is assumed to be the foreground region, and the
surrounding area is assumed to be the background region.
The reason of using the ellipse region is that the ellipse
better fits the human shape than the rectangle. In step
6, the foreground and background regions are known in
the previous image from the tracking result.

2.3 Active contour computation

The energy function used in the level sets evolution (step
3 and 5) is adopted from [5] and expressed as

E(C) =
∫ ∫

Ω
µ · δ0(φ(x, y)) · |∇φ(x, y)|

+λfgFfgH(φ(x, y))
+λbgFbg(1−H(φ(x, y))dxdy.

(1)

where C is a point on the boundary, Ffg and Fbg are
the models of a foreground and a background computed
by EM clustering (see pararaph 2.2). Ffg should have a
lower value for a foreground pixel and a higher value for
a background pixel, and vice-versa for Fbg. µ ,λfg, λbg

are normalizing terms. As in the guideline [12], the Euler-
Lagrange equation is used to minimize the energy of the
velocity function with respect to φ [5]:

∂φ

∂t
= δε(φ)

[
µ · ∇(

∇φ
|∇φ|

)− λfgFfg + λbgFbg

]
(2)

The Dirac delta function δε controls the movement only
for the pixels around the contours, ∇φ

|∇φ| is the direction

normal to the contour, so ∇ ∇φ|∇φ| is the divergence of the

normal (i.e. the curvature) and controls the smoothness
of the curve. Equation 2 is similar to the velocity func-
tion used in active contours based on colour (as in [4]) due
to the similar approach taken to solve the Euler-Lagrange
equation.
The active contour’s tasks are 1) an input kernel of the
mean shift, 2) a tracker itself. The similarity of the his-
tograms between the tracking kernel in the previous frame
and the result of the active contour in the current frame
is checked in order to exclude false segmentations. The
result is discarded in the case of low similarity. Other-
wise, the ROI’s window size is adjusted according to the
boundary of the contours. The position of the ROI is
also moved to the centre of the contours. Finally, the
histogram of the tracking object is updated by using the
newly obtained kernel.

2.4 Mean shift and Kalman filtering

In step 4, the mean shift tracker acts as the backbone
of the application while the active contour is optional (its
result can be discarded when a strong occlusion occurs).
[6] proposed a mean shift tracker using the colour his-
togram as a representation of the target. The most simi-
lar target’s candidate in the next image sequence has the
smallest Bhattacharyya coefficient. To estimate the opti-
mum position of the target, the Taylor expansion of Bhat-
tacharyya coefficient is computed and the term involving
yk minimized. Therefore, in each iteration, the new tar-
get’s position from y0 to y1 is estimated as

y1 =

∑nh

i=1 x
∗
iwig(||y0−x

∗
i

h ||2)∑nh

i=1 wig(||y0−x
∗
i

h ||2)
, (3)

where g(x) = k′(x),

k =

{
1
2c
−1
d (d+ 2)(1− ||x||2) , if||x|| < 1

0 , otherwise
, (4)

wi =

m∑
u=1

δ(bi(x)− u)

√
qu

pu(y0)
., (5)

where qu, pu are the tracked object and the target’s his-
togram. The algorithm iterates until convergence

||y1 − y0|| < ε. (6)



The OpenCV mean shift function is used in this im-
plementation where the back-projection has to be com-
puted first before feeding as the input of mean shift func-
tion. The back-projection is basically the likelihood of
each pixel to belong to the object according to the prob-
ability distribution given by the histogram. The back-
projection acts as the weight (Eq. 5) in the mean shift al-
gorithm. In addition, the back-projection can be masked
in any shape, which limits the search area for the mean
shift. This search area is estimated using the prediction
step of the Kalman filter. Then, the position of the ob-
ject is determined by the mean shift tracker. Afterwards,
this found position is used as measurement in the Kalman
filter method. The robot head is also moved to keep the
center of the object in the center of the image.
Note that the test for occlusion (between step 4 and step
5) is done thanks to the similarity measurement in the
mean shift. To combine with level sets, the similarity
should be superior to a quite high threshold (e.g. ≥ 0.5).
In case the similarity is lower than that threshold, an oc-
clusion is assumed to occur.
There are many approaches to define components in
Kalman filter. For example, [11, 19, 13] defined the state
as the position and the velocity (x, y, vx, vy), or [16] also
added the acceleration (x, y, vx, vy, ax, ay). This paper fol-
lows the idea of [8] where the state X contains only the
position (x, y):

Xn = [xn, yn, 1]T . (7)

The adaptive velocity is dependent on the filter state but
still affects the predicted position by embedding it in the
transition matrix D defined as

Dn+1,n =

 1 0 dxn+1,n

0 1 dyn+1,n

0 0 1

 , (8)

where dxn+1,n and dyn+1,n are the velocities or transla-
tions in x and y directions. The velocities are adaptive.
The learning rate depends on the similarity measurement
and can be any decreasing function. For this implemen-
tation, the learning rate is e−5·ρ, where ρ is the Bhat-
tacharyya distance. The measurement Z obtained from
the mean shift tracker is a position (x,y), therefore, the
measurement matrix is simply written as

M =

[
1 0 0
0 1 0

]
. (9)

Both prediction noise covariance and measurement noise
covariance are

Q = R =

 hx 0 0
0 hy 0
0 0 0

 . (10)

where hx and hy are the width and the height of the kernel.
With the help of the Kalman filter, the tracker can deal
with some occlusion cases. Because Kalman filter is a
single-hypothesis method [1], the tracker might track the
occluding object if it is similar to the tracked object.

Figure 4: Synthetic sequence: no occlusion, static camera.

Figure 5: Synthetic sequence: occlusion, static camera.

3 Results

We first discuss the speed performance of the algorithm
then present evaluation of accuracy. The algorithm was
implemented on a computer with Intel Core 2 Extreme
QX9650 3000 MHz and 3.25GB RAM. The robot head is
composed of twos Point Grey Flea2 cameras with FUJI-
NON DF6HA-1B external lens and attached on a Biclops
PT-M Pan-Tilt head. The input camera resolution is 640
by 480 pixels. The resulting frame rate is 5 fps with the
image size reduced to 50 x 50 in the active contour step.
This scale was chosen empirically by measurements on
synthetic sequences. The resulting contours were scaled
back to the original size. The algorithm performs in real-
time: the PT head is successfully instructed to move so
that the person of interest keeps being in the centre of the
cameras images at all time.

3.1 Evaluation on synthetic sequences

Three synthesised sequences are presented to illustrate the
detail of the proposed algorithm. These sequences, with
their associated depth map and ground truth, have been
created in 3Ds Max.

In the first sequence (Fig. 4), there is no occlusion.
The active contour is re-computed each time and the sim-
ilarity model is consistent in time. In the second sequence
(Fig. 5), an occlusion occurs. In this case, the result of
the combined mean shift / Kalman filter tracker is used to
predict the position of the object but no active contours
is computed as no information is available. The same is
illustrated in the third sequence (Fig. 6). Here, a camera
motion occurs and is compensated in the mean shift step.



Figure 6: Synthetic sequence: occlusion, moving camera.

Sequence Mean Sensitivity Mean Square Error
1. Fig. 4 97.84% 0.17%
2. Fig. 5 97.81% 0.15%
3. Fig. 6 94.53% 0.12%
4. Fig. 7 96.85% 3.15%

Table 1: Average sensitivity and mean square error by
sequences

In Figures 4 to 6, the caption on each image gives the end
state of the algorithm which normally is the active con-
tour. However, during occlusion, the active contour step
is skipped and the tracked position relies on the meanshift
estimation. On each image is displayed: (Green rectangle)
the estimated position from Kalman filter with measure-
ment, (Red rectangle) the predicted position from Kalman
filter without the correction step (i.e. during an occlu-
sion), (Blue rectangle) the result of the mean shift, (Green
contours) the accepted contour, and (Red contours) the
discarded contour.

Table 1 gives the average of sensitivity and mean
square error on every frames of a sequence.

3.2 Evaluation on real data

In addition, the results on the real sequence showed in
Fig. 7 was evaluated against a manually created ground
truth. The average sensitivity and mean square error is
also given in table 1.

The performance of the mean shift is improved by us-
ing the active contour’s result as the histogram of the
tracking object excludes any background region. As a re-
sult, the similarity measurement and the histogram com-
parison can be computed efficiently. The mean shift with
Kalman filter cloud deals with occlusions, while the ac-
tive contour improves the occlusion detection by improv-
ing the similarity measurement accuracy. However, the
Kalman filter tracker might not work in every cases of oc-
clusion, especially when the occluded object is similar to
the tracked object. This algorithm seems to work only in

Figure 7: Test sequence in real indoor environement

Figure 8: Comparison between [5] (1st row) and this pa-
per’s result (2nd row).

the case when the duration of an occlusion is relatively
short and the robot displacement is not too large because
the real object velocity is not constant like in synthesis
images. As the velocity is assumed to be constant during
occlusions, the algorithm may fail if the object changes
direction or speed.

Comparing to [5], the segmentation in an in-door envi-
ronment is now possible by adding a disparity map (Fig.
8). However, it also introduces more noise around the
boundaries of the object because the disparity map de-
pends on the matching between left and right images and
the matching algorithm is still far from perfect as shown
in figure 9. This problem could be solved by using sensors
which measure the depth directly (e.g. PMD).

This algorithm has to be improved to support the ap-
parition of a new colour on the tracked object. This
new colour will be classified to be an object or a back-
ground region depending on its similarity to either region.
For example, this problem occurs when the diffusion light
projects a bright colour on the object surface (Fig. 10)
which becomes a part of background because the back-
ground is composed of a bright object (the white wall).



(a) The noisy result. (b) The disparity map.

Figure 9: Inaccurate boundary due to the disparity map

Figure 10: New colour appears on the object.

4 Conclusions and Future Work

This paper presents a new dynamic tracker that combines
mean shift, the Kalman filter and active contours. The
aim is to track a person from a pan-tilt head and ex-
tract the person boundary (silhouette) that may further
be used in a gesture recognition system. A feature, the
disparity map, is added to the colour space to work in a
4D space. The use of this feature improves the segme-
nation between foreground and background in a cluttered
in-door environment. However, it also introduces noise on
the boundaries of the object in the segmentation result.
For future work, more suitable features should be searched
in order to improve the accuracy on the border of the ob-
ject tracked. For the tracker part, the Kalman filter has
been added in order to be tolerant to occlusions. Further
optimization will aim to reduce computation time to allow
more smooth operation of the PT head. The present work
presents results for tracking people, however, no a priori
restriction on the tracked object is made by the method:
other rigid or deformable objects could easily be tracked,
given a suitable detection algorithm.

References

[1] A.Cavallaro and E.Maggio. Video tracking theory and
practice. 2010.

[2] T. Brox, M. Rousson, R. Deriche, and J. Weickert. Colour,
texture, and motion in level set based segmentation and
tracking. Image and Vision Computing, 28(3):376–390,
2010.

[3] K. Cannons. A review of visual tracking. Technical report,
Technical Report CSE-2008-07, York University, Depart-
ment of Computer Science and Engineering, 2008.

[4] T.F. Chan and L.A. Vese. Active contours without edges.
Image Processing, IEEE Transactions on, 10(2):266–277,
2001.

[5] Z. Chen and A.M. Wallace. Active segmentation and
adaptive tracking using level sets. In Proc. of British Ma-
chine Vision Conference, pages 920–929, 2007.

[6] D. Comaniciu, V. Ramesh, and P. Meer. Real-time track-
ing of non-rigid objects using mean shift. In cvpr, page
2142. Published by the IEEE Computer Society, 2000.

[7] H. Hirschmuller. Stereo vision in structured environments
by consistent semi-global matching. In Computer Vision
and Pattern Recognition, 2006 IEEE Computer Society
Conference on, volume 2, pages 2386–2393. IEEE, 2006.

[8] V. Karavasilis, C. Nikou, and A. Likas. Visual Tracking by
Adaptive Kalman Filtering and Mean Shift. Artificial In-
telligence: Theories, Models and Applications, pages 153–
162, 2010.

[9] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. International journal of computer vision,
1(4):321–331, 1988.

[10] S. Lankton, D. Nain, A. Yezzi, and A. Tannenbaum. Hy-
brid geodesic region-based curve evolutions for image seg-
mentation. In Proc. of SPIE Vol, volume 6510, pages
65104U–1. Citeseer.

[11] H. Lu, R. Zhang, and Y.W. Chen. Head detection and
tracking by mean-shift and kalman filter. icicic, page 357,
1899.

[12] S. Osher and R.P. Fedkiw. Level set methods and dynamic
implicit surfaces. Springer Verlag, 2003.

[13] N.S. Peng, J. Yang, and Z. Liu. Mean shift blob track-
ing with kernel histogram filtering and hypothesis testing.
Pattern Recognition Letters, 26(5):605–614, 2005.

[14] M. Rousson and N. Paragios. Prior knowledge, level set
representations & visual grouping. International Journal
of Computer Vision, 76(3):231–243, 2008.

[15] M. Unger, T. Mauthner, T. Pock, and H. Bischof.
Tracking as segmentation of spatial-temporal volumes by
anisotropic weighted TV. In Energy Minimization Meth-
ods in Computer Vision and Pattern Recognition, pages
193–206. Springer, 2009.

[16] X. Yang, H. Li, and X. Zhou. Nuclei segmentation us-
ing marker-controlled watershed, tracking using mean-
shift, and Kalman filter in time-lapse microscopy. Cir-
cuits and Systems I: Regular Papers, IEEE Transactions
on, 53(11):2405–2414, 2006.

[17] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A
survey. Acm Computing Surveys (CSUR), 38(4):13, 2006.

[18] A. Yilmaz, X. Li, and M. Shah. Object contour tracking
using level sets. In Asian Conference on Computer Vision.
Citeseer, 2004.

[19] Z. Zhu, Q. Ji, K. Fujimura, and K. Lee. Combining
Kalman filtering and mean shift for real time eye track-
ing under active IR illumination. Pattern Recognition,
4:40318, 2002.


