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ABSTRACT 

In surveillance and remote sensing applications images are often subject to processing both at the 
sensor and for display/storage. This paper presents a step towards measuring and understanding how 
these processes impact on human interpretation of regions of similar statistics within images. The paper 
describes the methods involved, including image generation, image processing algorithm application, 
and algorithm impact measurement techniques. A comparison is then made between the impact 
measurements and human observations. It is suggested that data on mathematical measures of the 
impact of processing algorithms on statistical regions of images may be usable for intelligent algorithm 
application. 
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1. INTRODUCTION 

This study was motivated by a desire to understand how image processing algorithms impact upon 
regions of stable texture within a scene. In observing, for example, aerial imagery of countryside an 
observer will often intuitively pick-out regions of the image based on their texture and classify them as 
separable fields. Application of image processing algorithms to such an image, transforms the 
individual textural regions from their initial state to a new set of textures. These textures will be usually 
mathematically distinguishable. However, some of these process-resultant textures are difficult for an 
observer to distinguish, even though they result from the same original image. This implies that there 
exists a “threshold of application” beyond which an observer will find it difficult to distinguish 
between two processed images generated from the same original texture but using separate image 
processing parameters. By collecting information on textures under the influence of processing, it may 
be possible to apply algorithms intelligently using database information. For example, if two textural 
background regions of an image need to be kept distinct, the database could inform an algorithm about 
which possible algorithm parameter values would be suitable.  

In reality, there may be many processed images generated using an image processing algorithm with 
different parameter inputs on the same original texture that an observer would group as “similar” or 
“the same”. Although an algorithm is capable of producing a number of mathematically distinct images 
equal to the number of parameters used, the number of textures generated that are distinguishable could 
be considerably less than this number.  

In terms of the optimal application of the algorithm upon the texture region, it is worth knowing which 
parameter steps of the algorithm application will produce perceptually redundant image regions. 

The segmentation of real images, such as aerial images, into regions of separate textures does not form 
a part of this study. Instead, a small set of “background” images is generated mathematically and 
analysis of this set is performed. The concept of “background” as opposed to foreground is worth 
considering in more detail here.  

In performing a task, such as scanning an image for an object of interest that might or might not be 
present in the scene, the visual system of the observer is likely to pick out salient cues within the image 
that could be intrinsic or could be learned. Such cues would provide foreground information. In 
contrast to this, background information could simply be a region classifiable as being textured in some 
way. 



While changing the content of a digital image using a processing algorithm can change an observer’s 
impression of an image, this is not necessarily related to how the same observer might perform a “task” 
on the same image. (An example of a task is observer detection or higher discrimination of an object 
within a scene. This is not necessarily related to general quality perception1.) 

If trying to perform a task looking at a digital image, clearly the content around a task-critical object 
within the image is core to the performance levels of the task. If the object stands out clearly against 
the background, performance will improve. If the object blends very closely to its surroundings, task 
performance may be very difficult.  

Since the nature of “background” is so difficult to define in a general sense, it is therefore worth 
examining isolated “background-like” cases under the influence of processing. Understanding of how 
isolated statistics act under processing might allow for a better understanding of how regions of 
differing statistics react to processing within real images gathered from sensors.  

In the study, image processing algorithms are applied to statistically generated image textures, and 
image metrics are used to quantify the effect on the texture as a function of a key parameter of each 
algorithm. The image metrics are then related to observer perception of the effect on the texture. A 
knowledge of these factors may assist the intelligent application of an algorithm within different 
background regions of a scene.  

1.1 Image generation 

There are many methods for generating textural images. Furthermore the number of possible images 
that could be used is vast. Images are constructed using mathematical formulae and can be labeled 
using their generation parameters. For this study it was decided to create two classes of image - 
Gaussian and Autoregressive. Underlying both methods is the inclusion of pseudo-random number 
generation. It is necessary to chack that the method used for generating the pseudo-random number 
chains is sufficient to avoid repetition and therefore loss of randomness. 

The Gaussian image generator was based on a random number generator weighted by a gaussian 
function. Pixel by pixel, the image was generated using this method. As a textural label the gaussian 
generator input was a desired mean of 128 with a standard deviation of 32.  

The Autoregrssive image generator was based upon one described in “Texture Generation for use in 
Synthetic Scenes”, page 382. The texture is based on a random gaussian field (generated in the same 
manner as the gaussian above). The parameters specified for generation include a mean a standard 

deviation and two coefficients, 1a and 2a . The parameters used to generate the random field were 

governed by the following formulae: 
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These values were then used to generate a random gaussian field ),( jiR where ji, are the pixel 

locations. The autoregressive texture is then grown upon these values with an initial top row and left 
column seed value of 1 using the following formula: 
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This offers a texture that has some relationship between pixels over a certain distance depending upon 
the initial coefficients. Because the texture is grown from the seed values at the side it was necessary to 
carve-off the border regions of initial growth where the texture had not yet reached a recursive stable 
state.  

The parameters for generation for the Autoregressive textures were a mean of 128 and a standard 

deviation of 32. It was decided to keep 21 aa = for simplicity and to choose values 0.3, 0.35 and 0.4. 

These corresponded to increasing structure within the images. 

Because of the random nature involved in generating the images it was necessary to generate sets of 
images of the same parameter specifications collect statistics of the results. Single examples of the 
original images generated are shown below. Figure 1 shows an example of a texture labeled 
“Gaussian” generated using a mean of 128 and a standard deviation of 32. Figure 2 shows examples of 



“Autoregressive” images generated with an input mean of 128 and 32 but with different values of the 

21,aa autoregressive coefficients. 

 

Figure 1. Example of a “Gaussian” image. 

   

Figure 2. Three “Autoregressive” images. From left to right, a1=a2=0.3 , a1=a2=0.35, a1=a2=0.4 

 The Gaussian image has no specific inter-pixel relationship. The Autoregressive images do have an 

inter-pixel relationship, the distance of which is governed by 1a  and 2a . This causes the appearance 

of structure within the images. The Gaussian case is to be considered a control for the experiment while 
the autoregressive images offer greater degrees of structure as a1, a2 increase. It is anticipated that the 
images should react distinctly and yet understandably to image processing algorithms. 

1.2 Image processing algorithm set 

In choosing the image processing algorithms set to apply to the image textures, it is necessary to 
consider at least two points. Firstly, it is necessary to choose algorithms that work on distinct 
mathematical principles so that any recorded effects can be easily related to the workings of the 
algorithms. Secondly, to keep the results space simple, the algorithms should have one primary 
parameter that will be altered, while any other possible parameters will be fixed. This will allow the 
evolution of impact measurements to be understood with a minimum of potential for confusion.  

In light of these limitations, the algorithms chosen were, JPEG, Contrast Limited Adaptive Histogram 
Equalisation (CLAHE) and Unsharp Masking. A brief description of these algorithms follows: 

JPEG is a compression algorithm that is based on the Discrete Cosine Transform (DCT)3. The 
algorithm divides an image into 8x8 blocks (with some adjustment at the boundary regions where this 
does not compute exactly). Each 8x8 block then has the DCT applied. The DCT elements are then 
divided on a per-element basis by a quantisation matrix derived from observer experiments to give 
good perceived image quality across an example set of images. Generally, this quantisation matrix is 
such that the high frequencies within an image will be cut-down to zero allowing for an efficient 
encoding of the information across the blocks of DCT information. The quantisation matrix is weighted 

by a “Quality Factor”, Q , with a value of between 1 and 99. The 50Q level is such that the initial 

quantisation matrix is unchanged. Below 50Q the stripping of the high frequencies is more extreme and 

above 50Q the stripping of high frequencies is less so. In general therefore quality 1 is very poor, 

quality 50 is acceptable and quality 99 is high, although the relationship between “Quality Factor” and 
perceived image quality is non-linear. The JPEG algorithm is intrinsically lossy due to the DCT 



application and therefore there will always be a mathematical difference between the original and 
JPEG-processed image. The quality factor is the parameter for this study and is tuned between 1 and 
99. 

The CLAHE algorithm is a contrast enhancement algorithm. This algorithm works by tiling the image 
into a specified number of tiles and performing local contrast enhancement upon each tile. The local 
tile regions are then stitched together using bilinear interpolation in order to avoid the creation of 
artificial boundaries within the image. The contrast stretching can be limited to avoid damaging 
relatively homogenous areas due to noise amplification in a regular image. Since for this study the 
images are statistical and the desire is to see how the algorithm transforms a non-featured texture into 
another, the contrast-limiting threshold is left on default. The parameter for this algorithm is the 
number of tiles, NTiles  along each axis of the image and is tuned between 2 and 40. For simplicity, 

the condition, )()( yNTilesxNTiles = , is kept. Note that the total number of tiles imposed upon the 

image is the square of this number. For parameter NTiles in this study, the total number of tiles over 

the image is therefore 2)(NTilesTotaltiles = . 

Unsharp Masking is actually the name of a sharpening process. Its name is derived from the process of 
taking a blurred version of an image from itself, to create a sharpened image. In this study an “unsharp” 
Laplacian filter is created that takes the following form: 

 

















−−−
−+−

−−−

+
=

ααα
ααα

ααα

α
1

151

1

)1(

1
Unsharp  

whereα is the degree of sharpening and varies between 0 and 1. This unsharp filter is then convolved 
with the original image to give the sharpened image. In this study, the parameter is α  and the values it 
takes are between 0 and 1 in intervals of 0.01 

1.3 Impact metrics 

Of the total possible number of metrics which could be used to assess the impact of an image 
processing algorithm, it has been decided to analyse a small set for the purposes of this study. This is 
possible because the images are expected to be statistically classifiable by design. That is, due to there 
being high similarity between generated images of the same input parameters by design, if a set of such 
images is processed then the output image set should hold similar statistics. 

The metrics chosen were the mean, the variance, the skew the kurtosis the Peak Signal to Noise Ratio 
(PSNR) the correlation coefficient and the Structural Similarity Index (SSIM_index). These statistical 
metrics are very basic for the most part, but applying them to images that are relatively homogenous 
(or statistically well-classified) does make sense.  The mean and variance are well-known but a review 
of the other metrics and why they may be appropriate follows. 

Skew is a measure based on the 3rd moment of the data. It a measure of how the data is distributed 
between halves of the curve. In a Gaussian distribution the skew of an image is zero. If the skew is 
negative the distribution of data is weighted towards the left of the curve. Similarly, if the skew is 
positive the distribution of data is weighted to the right. 

Kurtosis is a measure based on the 4th moment of the data. It measures how the data is distributed 
between the tails and peak of the curve. In a Gaussian distribution the kurtosis is zero. If the kurtosis is 
positive the distribution of data is weighted towards having more data in the tails of the curve than in 
the gaussian case. Similarly a negative kurtosis implies that more data is in the center than is out in the 
tails. 

For the mean, variance, skew and kurtosis the original value is calculated and is compared to the value 
calculated in the processed image. 

PSNR is an intrinsic measure of comparison between two images. In this case the measure is that 
between original and processed images. In this implementation of the PSNR the difference is taken 
between the images and the mean of the square error is calculated. The PSNR is then calculated in 
decibels using the following formula: 
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The correlation coefficient is calculated using the following formula 

))var(*(*))var(*(

)),(*( 2

BNAN

BACovN
ntnCoefficieCorrelatio =  

where Cov  is the covariance between data A andB and N is the number of data points. It is a 
measure of how similar the data sets are and outputs a value between –1 and 1 where –1 is strongly 
negative correlation, 0 is no correlation and 1 is strong positive correlation.  

SSIM_index is a measure of the structural similarity between two images. It is fully described by Z. 
Wang4. It attempts to separate the components of the images into luminance, chrominance and 
structure. It acts to take local statistics into account by filtering the image with a local window function 
(default Gaussian). By subtracting the non-structural components of the images by approximating the 
luminance to the mean, and the chrominance to the standard deviation a value of the structural 
difference is then calculated using the following measure 
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(in above and following, all multiplication is done element by element rather than by matrix) 

where 1m = filter outcome of window and image1, 2m = filter outcome of window and image2, 

2112 mmm ×= and 1σ = filter outcome of window and image1, 2σ = filter outcome of window and 

image2, 2112 σσσ ×= , C1 & C2 are small constants to avoid division by zero. The index is the 

mean value of the map output.  

2. DATA COLLECTION 

2.1 Computational Data Collection 

The experimental procedure was as follows. For each set of image generation parameters and a 
particular algorithm,  

1) An image was generated and the appropriate statistical metrics of the original image were 
collected. 

2) The image was processed using the chosen algorithm and with a particular parameter. The 
appropriate statistics of this single image were collected and the difference metrics were 
calculated between the original and processed images. 

3) The algorithm parameter was increased by one step and stage two above was repeated 
until the parameter steps were exhausted 

Because of the intrinsically random nature of the image generation, the above set of steps was run three 
times for each set of image generation parameters to gather group statistics. It was found that for the 
textures involved in this study repetition beyond three did not adequately compensate the necessary 
outlay of extra computational time by offering a substantial reduction in error. 

The overall process was carried out for the three algorithms, across the desired parameter spaces using 
the specified four textures, repeated three times. For each image processing algorithm and each texture-
class defined by its parameter space, the out put was a set of 7 charts (one for each processing metric) 
showing a single metric with error bars vs. image processing parameter. The output was therefore 12 
sets (3 algorithms applied to 4 image classes) of 7 charts. This information can be used to see how well 
each metric used traces human perception of the impact of the algorithms for different image 
processing algorithm parameter inputs. 

2.2 Collection of Observer data 

As described in the introductory section, an aim of the study is to assess the correlation of the 
mathematical metrics with observer perception (‘impression’) of the effect of an algorithm on a texture. 



Therefore the observer experiments need to provide data that indicates which degrees of processing 
acting on a base texture are reliably perceptibly different or otherwise to a set of observers. This data 
can then be compared to the mathematical metric data.  

The basic question posed to an observer is therefore: can a given pair of texture images from a data set 
be distinguished? For this test the data set should include the original image and other images produced 
through the processing of the original image by a particular algorithm but using different parameters. 
The full set of algorithm parameters will give the following possible sets of image pairs, 

})({ orOAP i vs. })({ orOAP j , where O  is the original image in the set, P is an image processed 

version of O  processed by algorithmA , and subscripts ji,  denote the set of allowed parameter 

values in the set. Let i be the image parameter that is under test and let j denote the label of the 

parameter being compared to i . The condition ji = and the display of O vs.O  pairs is allowed. To 

build up observer information, for a fixed })({ orOAP i observers would be asked to judge whether the 

textures })({ orOAP j and })({ orOAP j  are the same, and record the response, say 1 for yes and 0 for 

no. After stepping through all parameters there would be a function mapping how similar the observer 
found })({ orOAP i compared to all other textures in the set. Over a set of observers, this data 

becomes more credible as the observers performing the same test question will likely tend to respond in 
a statistically similar fashion that can be regarded as a trend. Taking the data as a Bernoulli process and 
therefore assuming the number of correct responses given by the observers for given input i  to be the 
sum of random samples with a probability of success ip  allows the textures to be grouped 

perceptually. A psy-function of algorithmic-texture perception can be built up, specifying the 
relationship between the underlying probability of a correct responsep and the input stimulus 

intensity. By calculating a psy-function for each value allowed in the set })({ orOAP i and then 

summing them, it is possible to get an overall function that displays how similar the set of observers 
found all other textures relative to a point. This psy-function may then be compared to the 
mathematical metrics. 

After some initial consideration, it was decided to constrain ji, to a subset of the allowed parameters. 

This was done firstly because upon inspection of the processed images, there were some quite subtle 
changes at full parameter resolution for many texture/algorithm combinations indicating that full 
resolution was unnecessary and secondly because this would limit the number of time-consuming 
observer tests required. In all of the examples, the generated textures used are the four described above. 

For CLAHE, the Ntiles values for })({ orOAP i  were taken from the set {O, 4, 8, 12, 16, 20, 24, 28, 

32, 36, 40} (where O is the original, unprocessed image). The comparison values })({ orOAP j  were 

taken from the set { O, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40}. 
Therefore for each observer 11 psy-functions were generated at a resolution of 2-Ntiles. 

For JPEG, the Quality Factor values for })({ orOAP i  were taken from the set {10, 20, 30, 40, 50, 60, 

70, 80, 90, O} (where O is the original, unprocessed image). The comparison values })({ orOAP j  

were taken from the set { 5 ,10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, O}. 
Therefore for each observer 10 psy-functions were generated at a resolution of 5-Quality Factor. 

For unsharp masking because the difference in output for even quite large parameter step differences 
was obviously very small, it was decided to take the alpha values for both })({ orOAP i and 

})({ orOAP j  were taken from the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, O}. Therefore for 

each observer 12 psy-functions were generated at a resolution of 0.1 alpha. 

The appropriate image pairs from the above sets were combined with a black separator-space to form a 
single image of test pairs. The test pairs were based upon the same original image. A random element 
ensured that for such tests })({ orOAP i  had an equal chance of appearing on the left or right hand 

side of the pair image. It was these pair-images that formed the basis of the testing on the observers. 

A willing observer set was recruited, consisting of 10 observers. The ages of the group varied between 
20 and 58 with an average of 42 years. They all claimed to have normal, or corrected to normal vision. 
Before testing began, the aims of the experiment were explained to the observers, and were shown 
example videos of an image being tuned through the parameters of an image processing algorithm. 



The image pairs were displayed in a random order for each required value of })({ orOAP i . There was 

no time limit imposed upon the observer, although observers were advised to try to spend less than four 
seconds on each image pair. The viewer distance was set at around 60 cm and the screen resolution was 
adjusted to display the images suitably. The observers were asked to respond to the image pair stimuli 
by inputting to computer by pushing a particular button whether they perceived the images as “the 
same” or as “different” This is subtly different from asking if they are “identical” which is likely to 
elicit a more conservative response.  Their responses to the question were saved out to disk. Depending 
on the algorithm involved, the observers were given a short break approximately every 200 images to 
reduce fatigue on the observer. Lapse errors (errors that are independent of stimuli, such as pushing the 
wrong button for no apparent reason5) are always present in observer experiments although fatigue can 
increase their rate of occurrence. A crude estimate of lapse rate was made by collecting the statistics of 
the error-rate for image pairs of matching images. This is a crude estimate because this depend on the 
context of the surrounding processed image set – if there is a large number of perceptually-similar 
images around the “identical” test pair then that will make it harder to easily identify the textures as the 
same than if the neighboring textures were all easily-distinguishable.  The guess rate should also be 
estimated – this is the rate at which it is generally possible for an observer to input the right answer to 
the test even if he ignores the content of the test. The overall lapse rate was approximately 5% using 
the estimate above. The guess rate varies with the number of tests in a block compared to the number 
of actual correct responses. This rate is between 5% and 10% depending on the algorithm combinations 
used above. In general a psy-result needs to be above this notional guess-rate to have some 
significance. 

The recorded set of observations for each value of })({ orOAP i compared to all })({ orOAP j were 

averaged across the observer set to give the psy-function for each })({ orOAP i . For each algorithm, 

the averaged psy-functions for each parameter point were summed to give a master psy-function of the 
perception of the textures generated by the algorithm. Summing all psy-functions across the parameter 
space will creates an average of how similar each point is to the other points along the axis. In this way 
the summed psy-functions will provide a perceptual grouping map that can be compared with the 
mathematical statistics.  

2.3 Computational vs. observer data 

The computational and observer data are displayed in figures below. The data is displayed in a format 
that is convenient for the paper. What is of importance is recognizing the trends and analyzing whether 
the data is significant, rather than worrying too much about the values of the numerical data. (Such 
numerical data could change very quickly for different textures. Only the Correlation Coefficient, the 
SSIM and the PSY functions have been constrained in the y-axis to an interval of [0,1] and the rest are 
auto-scaled. Following is a little explanation of the results and the trends encountered. The figures 
contain a lot of information and it is necessary to read the captions to navigate them. See figure 3 for 
the CLAHE algorithm, figure 4 for the JPEG algorithm and figure 5 for the unsharp algorithm. 

Looking down the columns of figure 3, which shows the results for CLAHE, it is interesting to note 
that the mathematical metrics correspond reasonably well to the shape of the psy-function. The original 
texture stands out from all the others. The psy-functions generally possess a long grouping of 
perceptually similar textures between roughly 2 and 25 NTiles and then the perception of the images 
changes as NTiles approaches 40. The form of the PSNR is very similar to that of the Correlation 
Coefficient and SSIM index when viewed over a local area of their respective y-axes. The skewness 
and kurtosis are small, but statistically significant within the context of this study. These graphs are 
relatable to the psy-function – they have a straight-line growth in value up until the same region and 
then change more suddenly. Recalling that the metrics were calculated as an average of measures of 
three textures generated with the same parameters, it is clear that the output of CLAHE remains stable 
to textures generated within our mathematical constraints. In spite of this general similarity, there are 
clearly areas where there is difference, most notably for the value of 40 tiles. At forty tiles in the 
Gaussian case there is a sudden change in perception, which is also matched by many of the metrics. In 
the Autoregressive cases, the observers did not observe such a phenomenon, although the metrics for 
the Autoregressive continue to pick-up the same change as in the Gaussian case. Obviously, there are 
numerous other exceptions. Looking across the rows, it might be possible to distinguish the textures on 
the strength of the computational metrics alone, but probably not to label them very accurately. 



 

 

 

 

Figure 3. Graphs showing the evolution of the metrics as CLAHE algorithm is tuned through parameter NTiles. 
The value of NTiles is between 2 and 40 and lies along the x-axis of every chart. The columns are ordered into 

texture classes: from left to right, Gaussian, Autoregressive (a1=a2=0.3) , Autoregressive (a1=a2=0.35), 
Autoregressive (a1=a2=0.4). Each row represents a distinct metric. From top to bottom these are: mean, variance, 
skew, kurtosis, PSNR, Correlation Coefficient, SSIM. The first four rows have the metric of the original image 

drawn across the graph. The final row shows the psy-functions derived from the observer experiments. Psy-
measures on the original image have been labeled with NTiles = 1. 



 

 

Figure 4. Graphs showing the evolution of the metrics as JPEG algorithm is tuned through parameter Quality 
Factor. The value of Quality Factor is between 1 and 99 and lies along the x-axis of every chart. The columns are 

ordered into texture classes: from left to right, Gaussian, Autoregressive (a1=a2=0.3) , Autoregressive (a1=a2=0.35), 
Autoregressive (a1=a2=0.4). Each row represents a distinct metric. From top to bottom these are: mean, variance, 
skew, kurtosis, PSNR, Correlation Coefficient, SSIM. The first four rows have the metric of the original image 

drawn across the graph. The final row shows the psy-functions derived from the observer experiments. Psy-
measures on the original image have been labeled with Quality Factor = 100. 

 



 

 

 

 

Figure 5. Graphs showing the evolution of the metrics as unsharp masking algorithm is tuned through parameter 
alpha. The value of alpha is between 0 and 1 and lies along the x-axis of every chart. The columns are ordered into 

texture classes: from left to right, Gaussian, Autoregressive (a1=a2=0.3), Autoregressive (a1=a2=0.35), 
Autoregressive (a1=a2=0.4). Each row represents a distinct metric. From top to bottom these are: mean, variance, 
skew, kurtosis, PSNR, Correlation Coefficient, SSIM. The first four rows have the metric of the original image 

drawn across the graph. The final row shows the psy-functions derived from the observer experiments. The value 
1.1 at the far right of the graphs represents the values of the original images. 



Considering figure 4, JPEG. The mean is not significant, and the skewness and kurtosis tend to zero 
quickly. As for CLAHE above the metrics show that the texture-generation is stable when the 
algorithm is applied. The psy-functions show that, as expected from the design of the algorithm, the 
observers found images above Quality Factor 40 difficult to distinguish, including the original image. 
Looking down the columns of figure 4, again it is easy to see that there is an intuitive correspondence 
between many of the metrics and the psy-functions. The Correlation Coefficient and the SSIM appear 
to match up well. The PSNR is a poor match. There is an obvious dip in the Autoregressive 
(a1=a2=0.4). case at around Quality Factor 20 which is not detected by the metrics. 

In figure 5, unsharp masking, the original image is very different from the processed images in most 
cases. Again, overall the texture is well-categorised by its generation parameter and remains stable 
under processing. The mean value is not a significant metric and the skewness is small. The kurtosis 
reduces as the autoregressive constant increases. Many of the metrics have a similar umbrella-shape to 
the psy-function but it seems harder to associate the metrics to the Psy-functions.  

 

Conclusion 

As a step towards intelligent algorithm application we generated image-sets of known statistics and 
processed them using mathematically distinct algorithms over a range of possible parameters. For each 
image processing parameter used, we collected basic statistics of the generated image. We next carried 
out observer experiments to determine a psy-function describing how an observer might perceptually 
group neighboring images. It was observed that the metrics had a clear similarity in outlook to the psy-
functions across the examined parameter spaces for the algorithms in many cases.  Using a database of 
how various textures behave under processing might allow for the intelligent application of algorithms 
on certain classes of images, such as aerial imagery or certain medical applications, which are heavily 
texturally dependent  – either by applying limits on the parameters of an algorithm or by selecting the 
algorithm required to separate a texture into visually-distinct areas automatically. Despite the fact that 
the metrics used were relatively unsophisticated and the number of textures small, it seems possible 
that the information yielded from this experiment could be used in this fashion to get a limited general 
result. A necessary next step for this research would be the expansion of the method to include more 
sophisticated texture classification schemes, such as wavelets, and the introduction of a wider set of 
original textures. 
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