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ABSTRACT

In surveillance and remote sensing applicationsgasaare often subject to processing both at the
sensor and for display/storage. This paper presestsp towards measuring and understanding how
these processes impact on human interpretatioggodms of similar statistics within images. The grap
describes the methods involved, including imageegation, image processing algorithm application,
and algorithm impact measurement techniques. A ewmisgn is then made between the impact
measurements and human observations. It is sugg#sé¢ data on mathematical measures of the
impact of processing algorithms on statistical segiof images may be usable for intelligent algonit
application.
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1. INTRODUCTION

This study was motivated by a desire to understamd image processing algorithms impact upon
regions of stable texture within a scene. In olisgrvfor example, aerial imagery of countryside an
observer will often intuitively pick-out regions tife image based on their texture and classify taem
separable fields. Application of image processidgodthms to such an image, transforms the
individual textural regions from their initial stato a new set of textures. These textures wilidelly
mathematically distinguishable. However, some esthprocess-resultant textures are difficult for an
observer to distinguish, even though they resolinfthe same original image. This implies that there
exists a “threshold of application” beyond which abserver will find it difficult to distinguish
between two processed images generated from the saiginal texture but using separate image
processing parameters. By collecting informatiortextures under the influence of processing, it may
be possible to apply algorithms intelligently usishgtabase information. For example, if two textural
background regions of an image need to be kephdisthe database could inform an algorithm about
which possible algorithm parameter values woulduitable.

In reality, there may be many processed imagesrgttkusing an image processing algorithm with
different parameter inputs on the same originalutexthat an observer would group as “similar” or
“the same”. Although an algorithm is capable ofdurcing a number of mathematically distinct images
equal to the number of parameters used, the nuaifliertures generated that are distinguishabledcoul
be considerably less than this number.

In terms of the optimal application of the algonittupon the texture region, it is worth knowing whic
parameter steps of the algorithm application witiduce perceptually redundant image regions.

The segmentation of real images, such as aerigldmanto regions of separate textures does not for
a part of this study. Instead, a small set of “lgmoknd” images is generated mathematically and
analysis of this set is performed. The concepthzckground” as opposed to foreground is worth
considering in more detail here.

In performing a task, such as scanning an imageaiioobject of interest that might or might not be
present in the scene, the visual system of therebises likely to pick out salient cues within theage
that could be intrinsic or could be learned. Sudescwould provide foreground information. In
contrast to this, background information could dyrii® a region classifiable as being textured imso
way.



While changing the content of a digital image usangrocessing algorithm can change an observer’s
impression of an image, this is not necessarilgteel to how the same observer might perform a “task
on the same image. (An example of a task is obse@®tection or higher discrimination of an object
within a scene. This is not necessarily relategeteral quality perception

If trying to perform a task looking at a digital &ge, clearly the content around a task-criticakobj
within the image is core to the performance lewdlshe task. If the object stands out clearly aggin
the background, performance will improve. If thged blends very closely to its surroundings, task
performance may be very difficult.

Since the nature of “background” is so difficult define in a general sense, it is therefore worth
examining isolated “background-like” cases under itifluence of processing. Understanding of how
isolated statistics act under processing mightwalfor a better understanding of how regions of
differing statistics react to processing withinlieaages gathered from sensors.

In the study, image processing algorithms are edplo statistically generated image textures, and
image metrics are used to quantify the effect @antéxture as a function of a key parameter of each
algorithm. The image metrics are then related tseoler perception of the effect on the texture. A
knowledge of these factors may assist the inteitiggpplication of an algorithm within different
background regions of a scene.

1.1 Image generation

There are many methods for generating textural @eagurthermore the number of possible images
that could be used is vast. Images are construgtad) mathematical formulae and can be labeled
using their generation parameters. For this stidyas decided to create two classes of image -
Gaussian and Autoregressive. Underlying both methedthe inclusion of pseudo-random number
generation. It is necessary to chack that the ndetls®d for generating the pseudo-random number
chains is sufficient to avoid repetition and therefloss of randomness.

The Gaussian image generator was based on a randorher generator weighted by a gaussian
function. Pixel by pixel, the image was generatethgi this method. As a textural label the gaussian
generator input was a desired mean of 128 witlhurdsird deviation of 32.

The Autoregrssive image generator was based uperdescribed in “Texture Generation for use in
Synthetic Scenes”, page 3 he texture is based on a random gaussian figldefated in the same
manner as the gaussian above). The parameterdispdor generation include a mean a standard

deviation and two coefficientsg, and @,. The parameters used to generate the random iete
governed by the following formulae:

RandomMean = mean* (L-al-a2+al* a2)

Randomo = \/02 * (1-a2* a2 -al* (al* (a2* a2))®

These values were then used to generate a randossiga field R(i, ) where i, | are the pixel

locations. The autoregressive texture is then grapon these values with an initial top row and left
column seed value of 1 using the following formula:

P(.j))=a*P(,j-)+a,*P(i-1j)+al*a2* P(i -1 j -1) + R(, j)

This offers a texture that has some relationshipvben pixels over a certain distance depending upon
the initial coefficients. Because the texture isvgn from the seed values at the side it was negessa
carve-off the border regions of initial growth whdhe texture had not yet reached a recursiveestabl
state.

The parameters for generation for the Autoregressdxtures were a mean of 128 and a standard
deviation of 32. It was decided to ke@p = @, for simplicity and to choose values 0.3, 0.35 artd 0
These corresponded to increasing structure wittérnirhages.

Because of the random nature involved in generatisgimages it was necessary to generate sets of
images of the same parameter specifications codiiedistics of the results. Single examples of the

original images generated are shown below. Figurehéws an example of a texture labeled
“Gaussian” generated using a mean of 128 and datdrleviation of 32. Figure 2 shows examples of



“Autoregressive” images generated with an input mef128 and 32 but with different values of the
a,,a, autoregressive coefficients.

Figure 1. Example of a “Gaussian” image.

Figure 2. Three “Autoregressive” images. Fromteftight, 8=8=0.3 , 3=8=0.35, a=8=0.4
The Gaussian image has no specific inter-pixatiaiship. The Autoregressive images do have an

inter-pixel relationship, the distance of whichgisverned bya, and &, . This causes the appearance

of structure within the images. The Gaussian cage be considered a control for the experimentavhi
the autoregressive images offer greater degressgfture asa & increase. It is anticipated that the
images should react distinctly and yet understalydatimage processing algorithms.

1.2 Image processing algorithm set

In choosing the image processing algorithms seapply to the image textures, it is necessary to
consider at least two points. Firstly, it is neeegsto choose algorithms that work on distinct
mathematical principles so that any recorded effeetn be easily related to the workings of the
algorithms. Secondly, to keep the results spaceplsinthe algorithms should have one primary
parameter that will be altered, while any othergitds parameters will be fixed. This will allow the

evolution of impact measurements to be understatdasminimum of potential for confusion.

In light of these limitations, the algorithms chosegere, JPEG, Contrast Limited Adaptive Histogram
Equalisation (CLAHE) and Unsharp Masking. A briekdription of these algorithms follows:

JPEG is a compression algorithm that is based enDOiscrete Cosine Transform (DCT)The
algorithm divides an image into 8x8 blocks (withm@adjustment at the boundary regions where this
does not compute exactly). Each 8x8 block thenthasDCT applied. The DCT elements are then
divided on a per-element basis by a quantisatiotrixnderived from observer experiments to give
good perceived image quality across an examplefsebtages. Generally, this quantisation matrix is
such that the high frequencies within an image wél cut-down to zero allowing for an efficient
encoding of the information across the blocks offlDtformation. The quantisation matrix is weighted

by a “Quality Factor”,Q, with a value of between 1 and 99. TR, level is such that the initial
guantisation matrix is unchanged. Bel&y, the stripping of the high frequencies is more extreand

above Qg the stripping of high frequencies is less so. Inegal therefore quality 1 is very poor,

quality 50 is acceptable and quality 99 is higktha@lgh the relationship between “Quality Factortian
perceived image quality is non-linear. The JPEGortigm is intrinsically lossy due to the DCT



application and therefore there will always be ahmmnatical difference between the original and
JPEG-processed image. The quality factor is tharpeter for this study and is tuned between 1 and
99.

The CLAHE algorithm is a contrast enhancement d@lgor. This algorithm works by tiling the image
into a specified number of tiles and performingalocontrast enhancement upon each tile. The local
tile regions are then stitched together using éd@minterpolation in order to avoid the creation of
artificial boundaries within the image. The contragretching can be limited to avoid damaging
relatively homogenous areas due to noise ampilificain a regular image. Since for this study the
images are statistical and the desire is to seethevalgorithm transforms a non-featured textute in
another, the contrast-limiting threshold is left dafault. The parameter for this algorithm is the

number of tiles,NTiles along each axis of the image and is tuned bet@e@md 40. For simplicity,
the condition,NTiles(x) = NTiles(y), is kept. Note that the total number of tiles irspd upon the

image is the square of this number. For paramb{&tlesin this study, the total number of tiles over
the image is thereforéotaltiles = (NTiles)®.

Unsharp Masking is actually the name of a sharggpiocess. Its name is derived from the process of
taking a blurred version of an image from itsalfcteate a sharpened image. In this study an “upsha
Laplacian filter is created that takes the follogviorm:

-a a-1 -a
a-1 a+5 a-1
-a a-1 -a

1
Unsharp = i+ a)

whereq is the degree of sharpening and varies betweer @ amhis unsharp filter is then convolved
with the original image to give the sharpened imagehis study, the parameter 6 and the values it
takes are between 0 and 1 in intervals of 0.01

1.3 Impact metrics

Of the total possible number of metrics which coblel used to assess the impact of an image
processing algorithm, it has been decided to asadysmall set for the purposes of this study. This
possible because the images are expected to sictdly classifiable by design. That is, due here
being high similarity between generated image$efsame input parameters by design, if a set df suc
images is processed then the output image setdshoid similar statistics.

The metrics chosen were the mean, the varianceskihe the kurtosis the Peak Signal to Noise Ratio
(PSNR) the correlation coefficient and the Strualt@imilarity Index (SSIM_index). These statistical
metrics are very basic for the most part, but applghem to images that are relatively homogenous
(or statistically well-classified) does make sen3ée mean and variance are well-known but a review
of the other metrics and why they may be approgifiaitows.

Skew is a measure based on tffenSoment of the data. It a measure of how the datistributed
between halves of the curve. In a Gaussian digtobithe skew of an image is zero. If the skew is
negative the distribution of data is weighted tadgathe left of the curve. Similarly, if the skew is
positive the distribution of data is weighted te tight.

Kurtosis is a measure based on tHerdoment of the data. It measures how the datasisitslited
between the tails and peak of the curve. In a Gashstribution the kurtosis is zero. If the kwitis
positive the distribution of data is weighted todshaving more data in the tails of the curve timan
the gaussian case. Similarly a negative kurtos@i@n that more data is in the center than is ouhé
tails.

For the mean, variance, skew and kurtosis ther@igialue is calculated and is compared to theevalu
calculated in the processed image.

PSNR is an intrinsic measure of comparison betwaenimages. In this case the measure is that
between original and processed images. In thisamphtation of the PSNR the difference is taken
between the images and the mean of the square isroaiculated. The PSNR is then calculated in
decibels using the following formula:



PSNR = 20* log,, (255/VMSE)

The correlation coefficient is calculated using fbiéowing formula

(N * Cov(A, B))?
(N*var(A))* (N * var(B))

CorrelationCoefficient =

where CoVv is the covariance between dafhandB and N is the number of data points. It is a
measure of how similar the data sets are and aupwhalue between —1 and 1 where -1 is strongly
negative correlation, 0 is no correlation and 4tieng positive correlation.

SSIM _index is a measure of the structural simyabétween two images. It is fully described by Z.
Wand'. It attempts to separate the components of thegémanto luminance, chrominance and
structure. It acts to take local statistics intoamt by filtering the image with a local windownfttion
(default Gaussian). By subtracting the non-strataomponents of the images by approximating the
luminance to the mean, and the chrominance to thedard deviation a value of the structural
difference is then calculated using the followingasure

((2*my, +CD) * (2* 7,, +C2))

SSM =
~ T (m? v m? +Q) * (0, + 0,2 +C2))

(in above and following, all multiplication is doeéement by element rather than by matrix)

where M, = filter outcome of window and imageln,= filter outcome of window and image2,
m,, = m, Xm,and g, = filter outcome of window and imaged, = filter outcome of window and

image2,0,, =0, XJ,, C1 & C2 are small constants to avoid divisionzgyo. The index is the
mean value of the map output.

2. DATA COLLECTION
2.1 Computational Data Collection

The experimental procedure was as follows. For esathof image generation parameters and a
particular algorithm,

1) Animage was generated and the appropriate stafistietrics of the original image were
collected.

2) The image was processed using the chosen algaoaitishwith a particular parameter. The
appropriate statistics of this single image werkkected and the difference metrics were
calculated between the original and processed image

3) The algorithm parameter was increased by one sidpstage two above was repeated
until the parameter steps were exhausted

Because of the intrinsically random nature of thage generation, the above set of steps was ree thr
times for each set of image generation parametegather group statistics. It was found that fa th
textures involved in this study repetition beyohdet did not adequately compensate the necessary
outlay of extra computational time by offering dstantial reduction in error.

The overall process was carried out for the thigershms, across the desired parameter spaceg usin
the specified four textures, repeated three tifieseach image processing algorithm and each &xtur
class defined by its parameter space, the out patanset of 7 charts (one for each processingajetri
showing a single metric with error bars vs. imagecpssing parameter. The output was therefore 12
sets (3 algorithms applied to 4 image classes)atfarts. This information can be used to see hollv we
each metric used traces human perception of theadmpf the algorithms for different image
processing algorithm parameter inputs.

2.2 Collection of Observer data

As described in the introductory section, an aimtld study is to assess the correlation of the
mathematical metrics with observer perception (fiegsion’) of the effect of an algorithm on a tegtur



Therefore the observer experiments need to prodate that indicates which degrees of processing
acting on a base texture are reliably perceptilffiereint or otherwise to a set of observers. Thitad
can then be compared to the mathematical metre& dat

The basic question posed to an observer is therefan a given pair of texture images from a deta s
be distinguished? For this test the data set shioaldde the original image and other images preduc
through the processing of the original image byadigular algorithm but using different parameters.
The full set of algorithm parameters will give tHellowing possible sets of image pairs,

{P(A)orO} vs. { P(A)orO}, where O is the original image in the seR is an image processed
version of O processed by algorith®, and subscriptd, | denote the set of allowed parameter
values in the set. Letbe the image parameter that is under test andj B¢note the label of the
parameter being compared o The conditioni = j and the display 0O vs.O pairs is allowed. To
build up observer information, for a fixdd®( A)or O} observers would be asked to judge whether the

textures{ P(A))or O} and{ P(A))orQO} are the same, and record the response, say $and 0 for
no. After stepping through all parameters therelditae a function mapping how similar the observer
found { P(A)orO} compared to all other textures in the set. Overetacé observers, this data
becomes more credible as the observers performagame test question will likely tend to respand i
a statistically similar fashion that can be regdrde a trend. Taking the data as a Bernoulli psaad
therefore assuming the number of correct respogises by the observers for given inputto be the
sum of random samples with a probability of succgds allows the textures to be grouped
perceptually. A psy-function of algorithmic-textungerception can be built up, specifying the
relationship between the underlying probability @f correct respong@and the input stimulus
intensity. By calculating a psy-function for eachlue allowed in the sef P(A))orO} and then

summing them, it is possible to get an overall fiomcthat displays how similar the set of observers
found all other textures relative to a point. Thisy-function may then be compared to the
mathematical metrics.

After some initial consideration, it was decidecctmstraini, j to a subset of the allowed parameters.

This was done firstly because upon inspection efgiocessed images, there were some quite subtle
changes at full parameter resolution for many texttgorithm combinations indicating that full
resolution was unnecessary and secondly becausewthild limit the number of time-consuming
observer tests required. In all of the examples gémnerated textures used are the four descrilmekab

For CLAHE, the Nitiles values fof P(Ai)orO} were taken from the se© 4, 8, 12, 16, 20, 24, 28,

32, 36, 40} (whereD is the original, unprocessed image). The companisdues{ P(A)orO} were

taken from the set O, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 30, 32, 34, 36, 38, 40}.
Therefore for each observer 11 psy-functions weregated at a resolution of 2-Ntiles.

For JPEG, the Quality Factor values {d?(A))orO} were taken from the set {10, 20, 30, 40, 50, 60,

70, 80, 90,0} (where O is the original, unprocessed image). The comparisdues{ P(A)orO}
were taken from the set { 5,10, 15, 20, 25, 3Q,4% 45, 50, 55, 60, 65, 70, 75, 80, 85, 90,dp,
Therefore for each observer 10 psy-functions wereegated at a resolution of 5-Quality Factor.

For unsharp masking because the difference in odigpleven quite large parameter step differences
was obviously very small, it was decided to take #ipha values for bot{ P(Ai)orO} and
{P(A)orO} were taken from the set {0, 0.1, 0.2, 0.3, 0.8, 0.6, 0.7, 0.8, 0.9, D}. Therefore for
each observer 12 psy-functions were generatedestodution of 0.1 alpha.

The appropriate image pairs from the above sets e@mbined with a black separator-space to form a
single image of test pairs. The test pairs weredagpon the same original image. A random element
ensured that for such test®(A)orO} had an equal chance of appearing on the leftght tiand
side of the pair image. It was these pair-imagaesftirmed the basis of the testing on the observers

A willing observer set was recruited, consistinglofobservers. The ages of the group varied between
20 and 58 with an average of 42 years. They aiingd to have normal, or corrected to normal vision.

Before testing began, the aims of the experimenevexplained to the observers, and were shown
example videos of an image being tuned througlpéinameters of an image processing algorithm.



The image pairs were displayed in a random ordeedch required value §fP(A)orO} . There was

no time limit imposed upon the observer, althougbesvers were advised to try to spend less than fou
seconds on each image pair. The viewer distancesetasg around 60 cm and the screen resolution was
adjusted to display the images suitably. The olessrwere asked to respond to the image pair stimuli
by inputting to computer by pushing a particulattt whether they perceived the images as “the
same” or as “different” This is subtly differenbfn asking if they are “identical” which is likelpt
elicit a more conservative response. Their respoits the question were saved out to disk. Depgndin
on the algorithm involved, the observers were giaeshort break approximately every 200 images to
reduce fatigue on the observer. Lapse errors @that are independent of stimuli, such as pusttiag
wrong button for no apparent rea3pare always present in observer experiments ajfindatigue can
increase their rate of occurrence. A crude estirofitepse rate was made by collecting the stasisifc

the error-rate for image pairs of matching imadéss is a crude estimate because this depend on the
context of the surrounding processed image settheife is a large number of perceptually-similar
images around the “identical” test pair then thik mvake it harder to easily identify the textur@sthe
same than if the neighboring textures were alllgaistinguishable. The guess rate should also be
estimated — this is the rate at which it is getgabssible for an observer to input the right aesto

the test even if he ignores the content of the st overall lapse rate was approximately 5% using
the estimate above. The guess rate varies witihhahgber of tests in a block compared to the number
of actual correct responses. This rate is betwéemaisd 10% depending on the algorithm combinations
used above. In general a psy-result needs to be&eablis notional guess-rate to have some
significance.

The recorded set of observations for each valugR{A)or O} compared to al{ P(A)orO} were

averaged across the observer set to give the peyidn for each{ P(A)orO} . For each algorithm,

the averaged psy-functions for each parameter peené summed to give a master psy-function of the
perception of the textures generated by the algoritSumming all psy-functions across the parameter
space will creates an average of how similar eaéfit is to the other points along the axis. In thisy

the summed psy-functions will provide a perceptyiauping map that can be compared with the
mathematical statistics.

2.3 Computational vs. observer data

The computational and observer data are displaydigures below. The data is displayed in a format
that is convenient for the paper. What is of impoce is recognizing the trends and analyzing whethe
the data is significant, rather than worrying toacm about the values of the numerical data. (Such
numerical data could change very quickly for difer textures. Only the Correlation Coefficient, the
SSIM and the PSY functions have been constraindideiry-axis to an interval of [0,1] and the rest ar
auto-scaled. Following is a little explanation bEtresults and the trends encountered. The figures
contain a lot of information and it is necessarydad the captions to navigate them. See figumar 3 f
the CLAHE algorithm, figure 4 for the JPEG algonittand figure 5 for the unsharp algorithm.

Looking down the columns of figure 3, which shows tesults for CLAHE, it is interesting to note
that the mathematical metrics correspond reasonedilyto the shape of the psy-function. The origina
texture stands out from all the others. The psytions generally possess a long grouping of
perceptually similar textures between roughly 2 aBd\Tiles and then the perception of the images
changes as NTiles approaches 40. The form of th¢RPIS very similar to that of the Correlation
Coefficient and SSIM index when viewed over a logada of their respective y-axes. The skewness
and kurtosis are small, but statistically signifitavithin the context of this study. These graphs a
relatable to the psy-function — they have a strdligle growth in value up until the same region and
then change more suddenly. Recalling that the osetxiere calculated as an average of measures of
three textures generated with the same paramétesglear that the output of CLAHE remains stable
to textures generated within our mathematical ¢aimgs. In spite of this general similarity, thene
clearly areas where there is difference, most rptldy the value of 40 tiles. At forty tiles in the
Gaussian case there is a sudden change in percepticch is also matched by many of the metrics. In
the Autoregressive cases, the observers did na@redsuch a phenomenon, although the metrics for
the Autoregressive continue to pick-up the samanghas in the Gaussian case. Obviously, there are
numerous other exceptions. Looking across the ritwsight be possible to distinguish the textures o
the strength of the computational metrics aloné ppobably not to label them very accurately.
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Figure 3. Graphs showing the evolution of the metas CLAHE algorithm is tuned through parameteilds$T
The value of NTiles is between 2 and 40 and lieagkhe x-axis of every chart. Thelumns are ordered into
texture classes: from left to right, Gaussian, Aedoessive (ga=0.3) , Autoregressive {23=0.35),
Autoregressive (@a=0.4). Eaclrow represents a distinct metric. From top to bottbesé are: mean, variance,
skew, kurtosis, PSNR, Correlation Coefficient, SSTHe first four rows have the metric of the origimahge
drawn across the graph. The final row shows thefysgtions derived from the observer experimensy- P
measures on the original image have been labelidNiiiles = 1.
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Figure 4. Graphs showing the evolution of the mstas JPEG algorithm is tuned through parametelitQua
Factor. The value of Quality Factor is between d @ and lies along the x-axis of every chart. @dlamns are
ordered into texture classes: from left to righauSsian, Autoregressive f&=0.3) , Autoregressive {23,=0.35),
Autoregressive (@a=0.4). Eaclrow represents a distinct metric. From top to bottbesé are: mean, variance,
skew, kurtosis, PSNR, Correlation Coefficient, SSTHe first four rows have the metric of the origimahge
drawn across the graph. The final row shows thefysgtions derived from the observer experimensy- P
measures on the original image have been labekbdQuiality Factor = 100.



Il L S
g R I
el #E e
i /// I
ot
p // //_./
P G AL
i i [l et
et
..///
I -

A ] anien

Figure 5. Graphs showing the evolution of the rmastas unsharp masking algorithm is tuned throughnpeter
alpha. The value of alpha is between 0 and 1 a&sdaliong the x-axis of every chart. Tdofumns are ordered into
texture classes: from left to right, Gaussian, Aedgoessive (ga=0.3), Autoregressive {2a=0.35),
Autoregressive (@a=0.4). Eaclrow represents a distinct metric. From top to bottbesé are: mean, variance,
skew, kurtosis, PSNR, Correlation Coefficient, SSTHe first four rows have the metric of the origimahge
drawn across the graph. The final row shows thefynsgtions derived from the observer experimente Value
1.1 at the far right of the graphs represents #hees of the original images.



Considering figure 4, JPEG. The mean is not sigaifi, and the skewness and kurtosis tend to zero
quickly. As for CLAHE above the metrics show thdie ttexture-generation is stable when the
algorithm is applied. The psy-functions show tlet,expected from the design of the algorithm, the
observers found images above Quality Factor 4Gcdliffto distinguish, including the original image.
Looking down the columns of figure 4, again it &s¥ to see that there is an intuitive corresponglenc
between many of the metrics and the psy-functidhg Correlation Coefficient and the SSIM appear
to match up well. The PSNR is a poor match. Tharean obvious dip in the Autoregressive
(y=2=0.4). case at around Quality Factor 20 which isdetected by the metrics.

In figure 5, unsharp masking, the original imagedsy different from the processed images in most
cases. Again, overall the texture is well-categatidy its generation parameter and remains stable
under processing. The mean value is not a signifiogetric and the skewness is small. The kurtosis
reduces as the autoregressive constant increases. & the metrics have a similar umbrella-shape to
the psy-function but it seems harder to assodaeartetrics to the Psy-functions.

Conclusion

As a step towards intelligent algorithm applicatiwa generated image-sets of known statistics and
processed them using mathematically distinct allgors over a range of possible parameters. For each
image processing parameter used, we collected btistics of the generated image. We next carried
out observer experiments to determine a psy-fundiiescribing how an observer might perceptually
group neighboring images. It was observed thahtbtrics had a clear similarity in outlook to the/ps
functions across the examined parameter spacésda@igorithms in many cases. Using a database of
how various textures behave under processing naiigw for the intelligent application of algorithms
on certain classes of images, such as aerial imagerertain medical applications, which are heavil
texturally dependent — either by applying limits the parameters of an algorithm or by selectimg th
algorithm required to separate a texture into \igtdistinct areas automatically. Despite the fawit

the metrics used were relatively unsophisticated #we number of textures small, it seems possible
that the information yielded from this experimentilt be used in this fashion to get a limited gaher
result. A necessary next step for this researchidvba the expansion of the method to include more
sophisticated texture classification schemes, sschvavelets, and the introduction of a wider set of
original textures.
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