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This paper investigates the coincidence between six interest point detection 
methods (SIFT, MSER, Harris-Laplace, SURF, FAST & Kadir-Brady Saliency) 
with two robust “bottom-up” models of visual saliency (Itti and Harel) as well 
as “task” salient surfaces derived from observer eye-tracking data. 
Comprehensive statistics for all detectors vs. saliency models are presented in 
the presence and absence of a visual search task. It is found that SURF interest-
points generate the highest coincidence with saliency and the overlap is 
superior by 15% for the SURF detector compared to other features. The overlap 
of image features with task saliency is found to be also distributed towards the 
salient regions. However the introduction of a specific search task creates high 
ambiguity in knowing how attention is shifted. It is found that the Kadir-Brady 
interest point is more resilient to this shift but is the least coincident overall. 

1   Introduction and prior work 

In Computer Vision there are many methods of obtaining distinctive “features” or 
“interest points” that stand out in some mathematical way relative to their 
surroundings. These techniques are very attractive because they are designed to be 
resistant to image transformations such as affine viewpoint shift, orientation change, 
scale shift and illumination. However despite their robustness they do not necessarily 
relate in a meaningful way to the human interpretation of what in an image is 
distinctive. Let us consider a practical example of why this might be important. An 
image processing operation should only be applied if it aides the observer to perform 
an interpretation task (enhancement algorithms) or does not destroy the key details 
within the image (compression algorithms). We may wish to predict the effect of an 
image processing algorithm on a human’s ability to interpret the image. Interest points 
would be a natural choice to construct a metric given their robustness to transforms. 
But in order to use these feature points we must first determine (a) how well the 
interest-point detectors coincide with the human visual system’s impression of images 
i.e. what is visually salient, and (b) how the visual salience changes in the presence of 
a task such as “find all cars in this image”. This paper seeks to address these 
problems. First let us consider the interest points and then explain in more detail what 
we mean by feature points and visual salience.  
Interest Point detection: The interest points chosen for analysis are: SIFT [1], 
MSER [2], Harris-Laplace [3], SURF [4], FAST [5,6] and Kadir-Brady Saliency [7]. 



 
Fig. 1. An illustration of distribution of the interest-point detectors used in this paper. 
 
These are shown superimposed on one of our test images in Figure 1*. These schemes 
are well-known detectors of regions that are suitable for transformation into robust 
regional descriptors that allow for good levels of scene-matching via orientation, 
affine and scale shifts. This set represents a spread of different working mechanisms 
for the purposes of this investigation. These algorithms have been assessed in terms of 
mathematical resilience [8,9]. But what we are interested in is how well they 
correspond to visually salient features in the image. Therefore we are not 
investigating descriptor robustness or repeatability (which has been done extensively 
– see e.g. [8]), nor trying to select keypoints based on modelled saliency (such as the 
efforts in [10]) but rather we want to ascertain how well interest-point locations 
naturally correspond to saliency maps generated under passive and task conditions. 
This is important because if the interest-points coincide with salient regions at a 
higher-than coincidence level, they are attractive for two reasons. First, they may be 
interpreted as primitive saliency detectors and secondly can be stored robustly for 
matching purposes.  
Visual Salience: There exist tested models of “bottom-up” saliency, which accurately 
predict human eye-fixations under passive observation conditions. In this paper, two 
models were used, those of saliency by Itti Koch and Neibur [11] and the model by 
Harel, Koch, and Perona [12]. These models are claimed to be based on observed 
psycho-visual processes in assessing the saliency of the images. They each create a 
“Saliency Map” highlighting the pixels in order of ranked saliency using intensity 
shading values. An example of this for Itti and Harel saliency is shown in Figure 2. 
The Itti model assesses center-surround differences in Colour, Intensity and 
Orientation across scale and assigns values to feature maps based on outstanding 
attributes. Cross scale differences are also examined to give a multi-scale 
representation of the local saliency. The maps for each channel (Colour, Intensity and  

                                                             
* Note: these algorithms all act on greyscale images. In this paper, colour images are converted 

to grey values by forming a weighted sum of the RGB components (0.2989 R + 0.5870 G + 
0.1140 B) 

 



 
Fig. 2. An illustration of the passive saliency maps on one of the images in the test set. (Top 
left) Itti Saliency Map, (Top right) Harel Saliency map (Bottom left) thresholded Itti, (Bottom 
right) thrsholded Harel. Threshold levels are 10, 20, 30, 40 & 50% of image pixels ranked in 
saliency, represented at descending levels of brightness. 

Orientation) are then combined by normalizing and weighting each map according to 
the local values. Homogenous areas are ignored and “interesting” areas are 
highlighted. The maps from each channel are then combined into “conspicuity maps” 
via cross-scale addition. These are combined into a final saliency map by 
normalization and summed with an equal weighting of 1/3 importance. The model is 
widely known and is therefore included in this study. However, the combination 
weightings of the map are arbitrary at 1/3 and it is not the most accurate model at 
predicting passive eye-scan patterns [12]. The Harel et al. method uses a similar basic 
feature extraction method but then forms activation maps in which “unusual” 
locations in a feature map are assigned high values of activation. Harel uses a 
Markovian graph-based approach based on a ratio-based definition of dissimilarity. 
The output of this method is an activation measure derived from pairwise contrast. 
Finally, the activation maps are normalized using another Markovian algorithm which 
acts as a mass concentration algorithm, prior to additive combination of the activation 
maps.  Testing of these models in [12] found that the Itti and Harel models achieved, 
respectively, 84% and 96-98% of the ROC area of a human-based control experiment 
based on eye-fixation data under passive observation conditions. Harel et al. explain 
that their model is apparently more robust at predicting human performance than Itti 
because it (a) acts in a center-bias manner, which corresponds to a natural human 
tendency, and (b) it has superior robustness to differences in the size of salient regions 
in their model compared to the scale differences in Itti’s. 

Both models offer high coincidence with eye-fixation from passive viewing 
observed under strict conditions. The use of both models therefore provides a 
pessimistic (Itti) and optimistic (Harel) estimation of saliency for passive attentional 
guidance for each image. 



The impact of tasking on visual salience: There is at present no corresponding 
model of task performance on the saliency map of an image but there has been much 
work performed in this field, often using eye-tracker data and object learning  
[13,14,15,16]. It is known that an observer acting under the influence of a specific 
task will perceive the bottom-up effects mentioned earlier but will impose constraints 
on his observation in an effort to priority-filter information. These impositions will 
result from experience and therefore are partially composed of memory of likely 
target positions under similar scenarios. (In Figure 4 the green regions show those 
areas which became salient due to a task constraint being imposed.) 

2. Experimental Setup 

Given that modeling the effect of tasking on visual salience is not readily 
quantifiable, in this paper eye-tracker data is used to construct a “task probability 
surface”. This is shown (along with eye-tracker points) in Figure 3, where the higher 
values represent the more salient locations, as shown in Figure 2. The eye-tracker data 
generated by Henderson and Torralba [16] is used to generate the “saliency under 
task” of each test image. This can then be used to gauge the resilience of the interest-
points to top down factors based on real task data. The eye tracker data gives the 
coordinates of the fixation points attended to by the participants. This data, collected 
under a search-task condition, is the “total task saliency”, which is composed of both 
the bottom-up factors as well as the top down factors. 
Task Probability Surface Construction: The three tasks used to generate the eye-
tracker data were: (a) “count people”, (b) “count cups” and (c) “count paintings”. 
There are 36 street scene images, used for the people search, and 36 indoor scene 
images, used for both the cup and painting search. The search target was not always 
present in the images. A group of eight observers was used to gather the eye-tracker 
data for each image with an accuracy of fixation of +/- 4 pixels. (Full details in [17].) 

To construct the task surfaces for all 108 search scenarios over the 72 images, the 
eye tracker data from all eight participants was combined into a single data vector. 
Then for each pixel in a mask of the same size as the image, the Euclidean distance to 
each eye-point was calculated and placed into ranked order. This ordered distance 
vector was then transformed into a value to be assigned to the pixel in the mask using 

the formula  in which, d is the distance to eye point, i and N is the 

number of fixations from all participants. The closer the pixel to an eye-point cluster, 
the lower the P value is assigned. When the pixel of the mask coincides with an eye-
point there is a notable dip compared to all other neighbours because d1 in the above 
P-formula is 0. To avoid this problem, pixels at coordinates coinciding with the eye-
tracker data are exchanged for the mean value of the eight nearest neighbours, or the 
mean of valid neighbours at image boundary regions. The mask is then inverted and 
normalised to give a probabilistic task saliency map in which high intensity represents 
high task saliency, as shown in Figure 3. This task map is based on the ground truth of  
the eye-tracker data collected from the whole observer set focussing their priority on a  



 

 
Fig. 3. Original image with two sets of eye tracking data superimposed representing two 
different search tasks. Green points = cup search, Blue points =painting search. (Centre top) 
Task Map derived from cup search eye-tracker data, (Centre bottom) Task Map generated from 
painting search eye-tracker data. (Top right) Thresholded cup search. (Bottom right) 
Thresholded painting search.  

particular search task. It should be noted that the constructed maps are derived from a 
mathematically plausible probability construction (the closer the eye-point to a 
cluster, the higher the likelihood of attention). However, the formula does not 
explicitly model biological attentional tail off away from eye-point concentrations, 
which is a potential source of error in subsequent counts. 
Interest-points vs. Saliency: The test image data set for this paper comprises 72 
images and 108 search scenarios (3x36 tasks) performed by 8 observers. In doing so, 
the bottom-up and task maps can be directly compared. The Itti and Harel saliency 
models were used to generate bottom-up saliency maps for all 72 images. These are 
interpreted as the likely passive viewing eye-fixation locations. Using the method 
described previously, the corresponding task saliency maps were then generated for 
all 108 search scenarios. Finally, the interest-point detectors were applied to the 72 
images (an example in Figure 1). The investigation was to determine how well the 
interest-points match up with each viewing scenario surface – passive viewing and 
search task in order to assess interest-point coincidence with visual salience. We 
perform a count of the inlying and out lying points of the different interest-points in 
both the bottom-up and task salincy maps. Each of these saliency maps are 
thresholded at different levels i.e. the X% most salient pixels of each map for each 
image is counted as being above threshold X and the interest-points lying within 
threshold are counted. This method of thresholding allows for comparison between 
the bottom-up and the task probability maps even though they have different 
underlying construction mechanisms. X = 10, 20, 30, 40 and 50% were chosen since 
these levels clearly represent the “more salient” half of the image to different degrees. 
This quantising of the saliency maps into contour-layers of equal-weighted saliency is 
another possible source of error in our experimental setup, although it is plausible. An  



 

Fig. 4. An illustration of the overlap of the thresholded passive and task-directed saliency maps. 
Regions in neither map are in Black. Regions in the passive saliency map exclusively are in 
Blue. Regions exclusively in the task map Green. Regions in both passive and task-derived 
maps are in Red. The first row shows Itti saliency for cup search (left) and painting search 
(right) task data. The second row shows the same for the Harel saliency model. For Harel vs. 
“All Tasks” the average % coverages is Black – 30%, Blue – 20%, Green – 20%, Red – 30%, 
(+/- 5%). For Harel (at 50%), there is a 20% attention shift away from the bottom-up-only case 
due to the influence of a visual search task.  

example of thresholding is shown in Figure 2. In summary, the following steps were 
performed: 

1. The interest-points were collected for the whole image set of 72 images. 
2. The Itti and Harel saliency maps were collected for the entire image set. 
3. The task saliency map surfaces were calculated across the image set (36 x 

people search and 2 x 36 for cup and painting task on the same image set). 
4. The saliency maps were thresholded to 10, 20, 30, 40 and 50% of the map 

areas. 
5. The number of each of the interest-points lying within the thresholded 

saliency maps was counted. 
It can be seen in Figure 1 that the interest points are generally clustered around 
visually “interesting” objects i.e. those which stand out from their immediate 
surroundings. This paper analyses whether they coincide with measurable visual 
saliency. For each image, the number of points generated by each interest point 
detector was limited to be equal or slightly above the total number of eye-tracker data 
points from all observers attending the image under task. For the 36 images with two 
tasks applied, the number of “cup search” task eye-points was used for this purpose.  

The bottom-up models of visual saliency are illustrated in Figure 2, both in their 
raw map form and at the different chosen levels of thresholding. In Figure 3 the eye-
tracker patterns from all eight observers are shown superimposed upon the image for  



    
Fig. 5. The results of the bottom up saliency map by Itti (left) and Harel (right) models 
computed using the entire data set in comparison to the interest-point detectors. The bar indices 
1 to 5 correspond to the 10 to 50 surface percentage coverage of the masks. The main axis is 
the percentage of interest points over the whole image set that lie within the saliency maps at 
the different threshold levels. The bars indicate average overlap at each threshold. Errors are 
gathered across the 72 image set: standard deviation is plotted in black. 

two different tasks. The derived task-saliency maps are also shown, as are the task 
maps at different levels of thresholding. Note how changing the top down information 
(in this case varying the search task) alters the visual search pattern considerably. 
Figure 4 shows the different overlaps of the search task maps and the bottom-up 
saliency maps at 50% thresholding. There is a noticeable difference between the 
bottom-up models of passive viewing and the task maps. Note that the green-shaded 
pixels in these maps show where the task constraint is diverting overt attention away 
from the naturally/contextually/passively salient regions of the image.  

3. Results and Discussion 

Coincidence of Interest Points with Passive Saliency: The full count of interest-
point overlap with the two models of bottom-up saliency at different surface area 
thresholds across the entire image set is shown in Figure 5. In comparing the interest-
point overlap at the different threshold levels it is important to consider what the 
numbers mean in context. In this case, the chance level would correspond to a set of 
randomly distributed data points across the image, which would tend to the threshold 
level over an infinite number of images. Therefore at the thresholds in this 
investigation the chance levels are 10, 20, 30, 40, and 50% overlap corresponding to 
the threshold levels. If the distribution of interest-points is notably above (or below) 
chance levels, the interest-point detectors are concentrated in regions of saliency (or 
anti-saliency/background) and they can be considered statistical saliency detectors. 
Considering first the Itti model, it is clear that in general the mean percentages of data  
points are distributed in favour of lying within salient regions. For example, the SURF 
model (best performer) has 29% of SURF interest-points lying within the top 10% of 
ranked saliency points, 49% of SURF points distributed towards the top 20% of  



 
Fig. 6. The overlap of the interest-points with the task probability surfaces across the all 108 
search scenarios. The bar indices 1 to 5 correspond to the 10 to 50 surface percentage coverage 
of the masks. The main axis is the percentage of interest points over the whole image set that lie 
within the task maps at the different threshold levels. The bars indicate average overlap at each 
threshold. Errors are gathered across all 108 tasks: standard deviation is plotted in blue. 

saliency points and 86% of the SURF points lie within the top 50% of saliency points. 
Overlap with the Harel model is better than for the Itti map. This is interesting 
because the Harel model was found to be more robust than Itti’s model in predicting 
eye-fixation points under passive viewing conditions. The overlap levels of the SIFT 
and SURF are almost identical for Harel, with 46%, 68% and 93% of SIFT points 
overlapping the 10%, 20% and 50% saliency thresholds, respectively. All of the 
values are well above mere coincidence with very strong distribution towards the 
salient parts of the image. They are therefore a statistical indicator of saliency. For 
each saliency surface class, the overlaps of SIFT, SURF, FAST and Harris-Laplace 
are similar while the MSER and Kadir-Brady detectors have lower overlap. 
Coincidence of Interest Points with Task-Based Saliency: The interest-point 
overlap with levels of the thresholded task maps is illustrated in Figure 6: bottom up 
and task data is combined in Figure 7. As illustrated in Figure 4, the imposition of a 
task can promote some regions that are “medium” or even “marginally” salient under 
passive conditions to being “highly” salient under task. The interest-points remain 
fixed for all of the images. This section therefore needs to consider the chance overlap 
levels as before, but also how the attention-shift due to task-imposition impacts upon 
the count relative to the passive condition. The detectors are again well above chance 
level in all cases, with both SIFT and SURF the strongest performers, with 30%, 48% 
and 83% of SIFT points overlapping the 10%, 20% and 50% thresholds respectively. 
In the task overlap test, the Kadir-Brady detector performs at a similar level of 
overlap to the others - in contrast to the passive case, where it has the poorest overlap. 
The Kadir-Brady “information saliency” detector clearly does highlight regions that 
might be of interest under task, while not picking out points that are the best overlap 
with bottom-up models. K-B saliency is not the best performer under task and there is 
not enough information in this test to draw strong inference as to why this favourable 
shift should take place.  



 
Fig 7. The average percentage overlaps of the interest-points at different threshold levels of the 
two bottom-up and the task saliency surfaces. The difference between the passive and task 
cases is plotted to emphasise the overlap difference resulting from the application of “task”. 

Looking at Figure 4 this should not be surprising since there exist conditions where 
the bottom-up and task surface overlap changes significantly: between 8% and 20% 
shift (Green, “only task” case in Figure 4) for coverage of 10% and 50% of surface 
area. Figure 7 reveals that the average Itti vs. interest-points overlap is overall very 
similar to the aggregate average task vs. interest-points overlap (between approx. +/- 
7% at most for SIFT and SURF) implying that any attention shift due to task is 
directed towards other interest-points that do not overlap with the thresholded bottom-
up saliency. Considering the Harel vs. task data, the task factors do reduce the surface 
overlap compared to the Harel surfaces by around 12% to 20% for the best 
performers, but very low for the Kadir-Brady. The initial high coincidence with the 
Harel surfaces (Figure 5) may cause this drop-off, especially since there is a task-
induced shift of around 20% in some cases by the addition of a task (Figure 4). 

4. Conclusion 

In this paper the overlap between six well-known interest point detection schemes, 
two parametric models of bottom up saliency and task information derived from 
observer eye-tracking search experiments under task were compared. It was found 
that for both saliency models the SURF interest-point detector generated the highest 
coincidence with saliency. The SURF algorithm is based on similar techniques to the 
SIFT algorithm, but seeks to optimize the detection and descriptor parts using the best 
of available techniques. SIFT’s Gaussian filters for scale representation are 
approximated using box filters and a fast Hessian detector is used in the case of 
SURF. Interestingly, the overlap performance was superior for the supposedly more 
robust saliency model for passive viewing, Graph Based Visual Saliency by Harel et 
al. Interest-points coinciding with bottom-up visually-salient information are valuable 
because of the robust description that can be applied to them for scene matching. 



However, under task the attentional guidance surface is shifted in an unpredictable 
way. Even though statistical coincidence between Interest-points and the task surface 
remain well above chance levels, there is still no way of knowing what is being 
shifted where. The comparison of Kadir-Brady information-theoretic saliency with 
verified passive visual saliency models shows that Kadir-Brady is not in fact imitating 
the mechnisms of the human visual system, although it does pick out task-relevant 
pieces of information at the same level as other detectors.  
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