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Human activity recognition in
video

1.1 Introduction

In contrast to many computer vision applications, such as HCI where the person is interacting
with a computer via gestures, in surveillance or sports footage the zoom level often results in
the imaged person being low/medium resolution e.g. 150 pixels high. This presents a unique
challenge to any computer vision system due to the lack of fine detail with which to operate in
order to interpret quite sophisticated behaviour. Due to the increasing interest in the automatic
interpretation of human activity in video this challenge has recently begun to be addressed.
The scientific state-of-the-art in video interpretation has started to move beyond the analysis
of simple trajectories of tracked people. This chapter introduces computer vision techniques
to help researchers progress towards the construction of a system for articulating higher-level
descriptions of human activity in video. In this chapter a number of practical techniques
are used including: mean-shift applied to video data, optic flow, skin detection, projective
geometry and data fusion.

1.1.1 Chapter overview

The chapter opens by describing an efficient method for tracking objects in video which can
be implemented to operate at frame-rate on modest hardware and also made robust to occlu-
sion. Section 1.3 then describes a method for interpreting the type of activity that a person
may be undertaking at any one instant, for example: walking, running etc. This is based on
the computation of optic flow vectors between successive person-centred images of the target
derived from the video tracker. Recognising that the perceived focus-of-attention of an indi-
vidual is a significant clue to interpreting and predicting the actions of that person, section
1.4 describes a method for estimating the gazing-direction of the person from low-resolution
face images. Illustrative examples from the surveillance domain are given throughout.

Practical Image Processing and Computer Vision N.M.Robertson/M.Varga (ed.)
c© XXXX John Wiley & Sons, Ltd
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1.2 Colour-based tracking in video

1.2.1 Introduction

(a) (b) (c) (d)

Figure 1.1 Automatic initiation of targets using background subtraction is possible when the
camera is static.

By tracking an object repeated measurement of the location of a moving target through-
out the frames of a video is achieved. Tracking is often a challenging task since the target
may change in shape or appearance as the target orientation varies in relation to the camera.
Additionally, there may be some small unwanted per-frame camera motion e.g. camera-shake
caused by wind, for example. There may also be intentional motion due to smooth panning
by an experienced operator to centre a moving target. Using colour alone to define the target
provides invariance to shape changes so long as the appearance of the true target remains
sufficiently different from background clutter.

When the images are acquired from a static camera, the target of interest can be ini-
tiated using background subtraction. Figure 1.1(a-d) illustrate the sequence of processing
steps required to achieve this:

1. Obtain a reference “background” frame with no moving foreground objects (Figure
1.1(a)),

2. Subtract the foreground pixels (Figure 1.1(b)) directly to obtain the raw difference
image (not shown),

3. Threshold the difference image and compute the connected components (Figure 1.1(c)),

4. Compute the blob orientation and location (Figure 1.1(d)),

5. Initiate the target model i.e. extract the histogram from the bounding region (Figure
1.1(d)).

1.2.2 The mean-shift algorithm
The target model is thus defined as a set of pixels extracted from one image. When using the
mean-shift algorithm the target is represented by a histogram only. The distribution of colour
pixels is significant, but the original spatial arrangement of the target pixels to another is not.
The mean-shift algorithm uses the Battacharyya coefficient as the similarity measure between
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two distributions which are discretised into u bins: p(y) at the current image window centred
at y and q, the target model histogram. This is given by:

ρ(p, q) =
∑

u

√
puqu (1.1)

which is maximised using an efficient iterative algorithm introduced by Comaniciu in
(Comaniciu 1999). Each pixel, x, in a window (centred on the current target location y0) is
assigned a weight:

wx =
∑

u

δ[I(x)− n]
√

qu/pu(y0) (1.2)

The new estimate of the target position is computed as:

y1 =
∑

x xwxk(x, y)∑
x wxk(x, y)

(1.3)

where k is a kernel which weights pixels close to the centre of the current window higher
than those at the edge. A Gaussian kernel is therefore appropriate. The iteration stops when
|y1 − y0| < ε, where ε is a predefined threshold, typically 1 pixel.

1.2.3 Mean-shift in scale-space
A search in scale-space is interleaved between each step of the gradient-descent in position
(which is described above). In order to achieve this, a set of Gaussian kernels are defined
with:

{σs = σ0 ∗ bs,−n ≤ s ≤ n} (1.4)

where b > 1 is the base of the logarithmic scale and n defines range of the search in scale
around the current scale σ0. Collins suggest choosing b = 1.1 and n = 2 (Collins 2003). The
effect of tracking in scale, as well as image space, can be significant as the tracker is less
likely to be seduced by passing objects. This is illustrated in Figure 1.2where, when a person
is tracked without adjusting the scale parameter, the passing vehicle attracts the tracker due
to the similarity in colour. By tracking in scale-space as well as position the tracking is
more robust because the true position of the tracked object is located more accurately. It is
desirable that as much of the background be eliminated from the target as possible when the
target-centred image will be used for further processing, such as for recognising actions - the
subject of section 1.3.

1.2.4 A strategy for dealing with occlusion
While the basic mean-shift algorithm offers a degree of robustness to occlusion, as shown
in Figure 1.3, it will, as with most simple appearance-based tracking algorithms, fail where
the target is completely occluded. In order to provide robustness to occlusion Bibby and
Reid (Bibby and Reid 2005) proposed a simple improvement to the standard mean-shift
approach: when the Battacharyya coefficient drops below a certain value, the search win-
dow is expanded and the Battacharyya coefficient for a grid of windows around the current
location is computed. Provided the target has not disappeared altogether or moved outwith
this wider search region, the location can often be recovered. An example of the utility of
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Without scaling

With scaling

Figure 1.2 Tracking in scale as well as position can prevent the track becoming seduced by
passing objects.

this method in a surveillance context is shown in Figure 1.4 where the tree in the scene has
the potential to completely occlude the target which in this case is a person. The standard
mean-shift algorithm fails when the target is completely occluded because the search win-
dow does not extend to the point where the target reappears. The position update has no better
estimate than the current location since the true model has disappeared and, in general, all
of the local background represents an equally dissimilar colour histogram compared to the
target histogram. By expanding the search window when the histogram similarity measure -
the value of the Battacharyya coefficient - falls below a specified threshold it is possible to
recover the true target location.

1.3 Action recognition
Using the mean-shift tracking algorithm, the following information for each target in every
frame can be extracted: position, velocity and the bounding-box of the target. In addition to
the target’s place and speed it is very much of interest to classify the action of the person
being tracked e.g. walking or running.

One of the most promising methods for doing this is based on identifying the domi-
nant components of motion between frames for a certain activity class. For example, one
expects that when comparing walking and running the legs or arms have a sufficiently dif-
ferent motion between such that it is possible to disambiguate the two automatically. Efros
et al. (Efros 2003) developed a simple, yet effective, local motion descriptor based on coarse
optic flow which is extracted from a stabilised target window. This pre-processing step is
achieved by segmenting the target from the background and centering the “mass” of the tar-
get in the window using the centroid of the blob computed using a connected-components
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Stills from sequence

Target 1

Target 2

Figure 1.3 The mean-shift target tracking algorithm has a degree of robustness to partial
occlusion provided the targets are suitably distinct in appearance.

Without occlusion recovery

With occlusion recovery

Figure 1.4 The addition of an occlusion-reasoning step enables tracking recovery when the
target becomes completely obscured.
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Figure 1.5 Fixating on a target using a colour-based tracker. The extracted target image is
shown in the expanded images along various points of the target centroid trajectory, showing
tracking successfully in scale and image-space.

algorithm.
This local motion descriptor is then compared to the entries in a database of previously-

seen motion descriptors that have been hand-labelled with the corresponding actions. The
nearest-neighbour match therefore provides an action label for the current data. Note that
more efficient search techniques may be employed but are not described here (for more detail
see Robertson and Reid (2006)).

In order to obtain this action descriptor, the optic flow between consecutive frames of a
sequence is computed. Optic flow is ideal for this purpose because it is photometrically invari-
ant and invariant to clothing or appearance (Lucas 1981). Invariance is essential because a
general description of the motion of a person is required to match the action between different
people even though they may vary in size and appearance.

1.3.1 Optic flow
Optic flow is a measure of image-velocity. In estimating optic flow the aim is to compute an
approximation to the 2-D motion-field which is a projection of the 3-D velocities of surface
points onto the image plane (Horn 1986; Verri and Poggio 1987). There exist a number of
methods for estimating the optic flow field. Barron et al. have reported on a comprehensive
study of the most common methods in each of these categories (Barron 1994). While they
do not conclude that one method is consistently superior than all others, it is apparent from
the experiments performed that the Lucas and Kanade technique (Lucas 1981) is among the
best for the quantitive experiments performed by Barron et al. (Barron 1994). The average
error across synthetic and real sequences was reported as 1.06o. The Lucas-Kanade algorithm
gives the best performance i.e. the angular error is proved to be the smallest of all common
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optic−flowinput frames channels

(a) (b) (c)

Figure 1.6 The action-recognition descriptor is computed from optic flow vectors between
successive images of a tracked person.

optic flow measures, according to Barron et al.
The results of the Lucas-Kanade method applied to images of a person walking are shown

in Figure 1.6. As can be seen from this example, optic flow reveals how pixel information is
translated in an image between successive frames. For a given input pair of images, which
are shown in Figure 1.6(a), the flow vectors are computed. These are superimposed on one
image and shown in Figure 1.6(b). The Gaussian blurred optic flow in the x and y direction is
further split into the four (blurred) non-negative channels which are shown in Figure 1.6(c).
When combined these blurry motion channels comprise a descriptor of instantaneous action
defined which can be used as the basis for human action-recognition, which is described in
more detail in the next section.

1.3.2 From flow-vectors to action descriptors
The optic flow vector-field F is split into two scalar fields which are the horizontal and
vertical components of the optic flow field, Fx and Fy . These are then half-wave rectified
into positive channels F−x , F+

x , F−y and F+
y such that:

Fx = F+
x − F−x (1.5)

Fy = F+
y − F−y (1.6)

Each of the channels is blurred with a Gaussian kernel and normalised, producing the
four motion descriptors for every frame of the sequence F̂ b+

x , F̂ b−x , F̂ b+
y and F̂ b−y .

A version of normalised cross-correlation is further employed such that, if the four motion-
channels for frame i of a sequence A are defined to be ai

1, a
i
2, a

i
3 and ai

4 (similarly for frame
j of the sequence B), then the similarity between motion descriptors centred at frames i and
j is given by:
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S(i, j) =
∑
t∈T

4∑
c=1

∑
x,y∈I

ai+t
c (x, y)bj+t

c (x, y) (1.7)

and, when the matrix A1 is defined as the concatenation of all a1 vectors (similarly for
the other channels, and for sequence B), the frame-to-frame similarity matrix between the
two sequences is:

S = AT
1 B1 + AT

2 B2 + AT
3 B3 + AT

4 B4 (1.8)

T is defined in the work of Efros et al. as “the temporal extent of the descriptor”. Although
equation 1.7 implies that, by varying T , temporal context can be achieved, in practice, T is
defined when the descriptor is computed, initially.

For frame-to-frame optic flow, therefore T = 1, or at most T = 2. It is not explained
that, unless encoded in the descriptor itself, that Efros et al. intended this term to allow for
temporal context in the descriptor, as this is not discussed in the work of (Efros 2003).

Further, Efros et al. recognise that if the sequences A and B are similar but occur at dif-
ferent rates the similarity matrix will have strong responses along the off-diagonal elements
and so S is convolved with a kernel which is a weighted-sum of near-diagonal lines:

K(i, j) =
∑
r∈R

w(r)χ(i, rj) (1.9)

where R is a range of rates.

1.3.3 Observations and results
It should be borne in mind that this action-recognition method works well when a newly-
observed sequence for which one wishes to find a best match is represented in the example
set which has been previously compiled. If the database of exemplars is small, then there
is an increased risk of a mismatch. For every example sequence in the exemplar set (which
may be regarded as a “database”), the best match can be found at any time step by using the
similarity matrices of equation 1.8 as a lookup table.

For illustration, these matrices are shown in Figure 1.7 for a new sequence compared
to four exemplar sequences. In this example, the database comprises 4 sequences and the
frame-to-frame similarity matrices are shown for each of these models given the new input
sequence (shown in middle row). Note that for the best-matching sequence there is evidence
of periodic structure in the similarity matrix (left “walk-LR”). The best matching frame in the
database at each new input frame is chosen from the similarity matrices. The input frames are
at the top and, directly below, the best matching frame is shown. The different backgrounds
clearly indicate these are different frames from separate sequences. For completeness, in the
third row it is shown that matching is effective despite the fact that the appearance of each
person is quite different.

A final illustration drawn from a second scene which has a considerably richer set of
actions is shown in figure 1.8. The example set is comprised of 27 different types of spatio-
temporal activity with a range of person-centred actions from walking in a variety of direc-
tions relative to the camera to running and standing still, loitering etc. A new example of
the action “walking” is matched into the exemplar database by taking the ML match from
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walk−awaywalk−LR walk−RL walk−towards

ne
w

 s
eq

example seq

Matches in example data

New sequence

Matching between different people

Figure 1.7 Similarity matrices which compare each motion descriptor to each example in the
database, can be used to pick the most similar match from those actions already observed.

Figure 1.8 Action recogntion using data gathered from a CCTV camera.

the previously-seen examples at each frame. The input is on the top row of the sequence of
person-centred frames, with the nearest-matching exemplar frame directly beneath.
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1.4 Gaze-direction estimation
In applications where human activity is under observation, be that CCTV surveillance or
sports footage, for example, knowledge about where a person is looking (i.e. their gaze) pro-
vides observers with important clues which enable accurate explanation of the scene activity.
It is possible, for example, for a human readily to distinguish between two people walking
side-by-side but who are not “together” and those who are acting as a pair. Such a distinc-
tion is possible when there is regular eye-contact or head-turning in the direction of the other
person. In soccer or rugby, for example, head position is often a guide to where the ball will
be passed next i.e. it is an indicator of intention. In all but the most highly-skilled teams,
where awareness of a team-mate’s position appears to be intuitive, a player at least glances
in the direction of the intended pass. This is essential for higher-level processing and video
understanding.

This section describes a method for automatically inferring gaze direction in images
where any one person represents only a small proportion of the frame. Typically in surveil-
lance images, the head ranges from 20 to 40 pixels high.

1.4.1 Previous work in gaze-direction estimation
Determining the instantaneous focus of a person’s attention in surveillance images is a chal-
lenging problem that has received little attention despite the necessary components existing
for some time in the image processing literature. This problem was first addressed by the
author (Robertson et al. 2005; Robertson and Reid 2006). Although there has been some
interesting related work reported in the literature.

Everingham and Zisserman (Everingham and Zisserman 2005) developed a technique for
overlaying 3-D head models on faces, with a resolution in the range 15 to 200 pixels high as
a means to identifying people in broadcast video sequences. This could have potentially been
extended to determine where the person is looking but the crucial drawback with Everingham
and Zisserman’s work in relation to surveillance video is the fact that they search for faces of
a specific character whose appearance is known a priori and for whom a 3-D face model has
been constructed in advance. This would clearly be impossible in a surveillance application
where nothing is known about the appearance of the person under observation before they
appear in the video.

Closely related in technical approach to the work of this chapter is that of Efros et
al. (Efros 2003) for recognition of human action at a distance which was described in section
1.3. Head pose is not discussed by Efros (Efros 2003) but the use of a descriptor invariant to
lighting and clothing is of direct relevance to head pose estimation and has inspired aspects
the algorithm described in this section.

Dee and Hogg (Dee and Hogg 2004) developed a system for detecting unusual activ-
ity which involves inferring which regions of the scene are visible to an agent within the
scene. A Markov Chain with penalties associated with non-hidden state transitions is used to
return a score for observed trajectories. The state transition penalties essentially encode how
directly a person made his/her way towards predefined goals, typically scene exits. In their
work, gaze inference is vital, but gaze is inferred from trajectory information alone which
can lead to significant interactions being overlooked, as shown later in this chapter, because
the assumption that the head is always aligned with body-direction is not robust.
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In contrast, there has been considerable effort to extract gaze direction from relatively
high-resolution faces, motivated by the drive toward ever better Human/Computer Interfaces
(Gee and Cipolla 1994; Matsumoto 2000; Perez 2003).

1.4.2 Skin detection

The lowest level of this approach is based on skin detection. Because of the significant interest
in detecting and tracking people in images and video, skin detection has naturally received
much attention in the image processing and computer vision community (Chai and Ngan
1998; Hidai 2000; Jebara 1997). However skin detection alone is error-prone when the skin
region is very small as a proportion of the image. That said, contextual cues such as direction
can help to disambiguate gaze using even a very coarse head-pose estimation. By combin-
ing this information in a principled i.e. probabilistic, Bayesian fashion, gaze estimation at a
distance becomes a distinct possibility as discussed later in the chapter (see section 1.4.4).

The aim is to determine which pixels in an image correspond to skin and non-skin. Per-
haps the most straightforward method is to construct a look-up table by deciding in advance
in which regions of a given colour-space skin colour is found. This method was used by Chai
and Ngan (Chai and Ngan 1998). This technique is unreliable in very low resolution images,
however. Hidai et al. (Hidai 2000) defined an ideal skin colour using an average of exemplar
face images from which they defined skin and non-skin pixels via non-parametric matching.
Parameterised techniques usually involve multi-variate Gaussians, the parameters of which
are learned using the Expectation-Maximisation algorithm (Jebara 1997).

Although people differ in colour and length of hair and some people may be wearing hats,
beards etc. it is reasonable to assume that the amount of skin that can be seen, the position
of the skin pixels within the frame and the proportion of skin to non-skin pixels is a rela-
tively invariant, if coarse, cue for a person’s gaze direction in a static image. This descriptor
is obtained in a robust and automatic fashion as follows. First, a mean-shift tracker (Comani-
ciu 1999) is automatically initialised on the head by using naive background subtraction to
locate people and subsequently modelling the person as distinct “blocks”, the head and torso.
Second, the head is centred within the tracker window at each time step which stabilises the
descriptor ensuring consistent position within the frame for similar descriptors. That is, the
head images are scaled to the same size and, since the mean-shift tracker tracks in scale-space
a stable, invariant, descriptor is obtained. Third, there is no specific region of colour-space
which represents skin across all sequences and therefore it is necessary to define a skin his-
togram for each scenario by hand-selecting a region of one frame in the current sequence to
compute a normalised skin-colour histogram in RGB-space. (It has been demonstrated that
there is no difference in the performance of skin detectors based on colour-regions when RGB
or YCbCr, HSV etc. colour-spaces are used (Phung 2003).) The weights (skin/non-skin prob-
abilities) are then computed for every pixel in the stabilised head images which the tracker
automatically produces to indicate how likely it is that it was drawn from this predefined skin
histogram. This will be recognised as a similar approximation to the Battacharyya coefficient
as implemented in the mean-shift algorithm above. Using the knowledge of the background
the foreground is segmented out of the tracked images. Every pixel in the segmented head
image is drawn from a specific RGB bin and so is assigned the relevant weight which can be
interpreted as a probability that the pixel is drawn from the skin model histograms.
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compute p(skin)

selected skin region

weight image

Skin model histogram

entire image

Head image histogram

Figure 1.9 Computing the probability of skin pixels using a pre-defined reference histogram.

Some mean-shift implementations suggest a histogram discretised into 20 bins for each
dimension of colour space. So if a 3-D histogram is computed with axes along the R, G and
B dimensions of the colour-space then the histogram is an 8000-element volume. The actual
skin-colour occupies a very small region of this volume. A significant amount of computa-
tional effort is therefore expended computing this large histogram for each step of the tracker
since the weights are computed at each frame.

It is therefore expedient to split the RGB space into three independent histograms, com-
pute the likelihood that each pixels R, G and B value was drawn from that histogram and
multiply together to obtain a likelihood that each pixel was drawn from the overall (RGB)
skin histogram. For every bin i (typically there are 10 bins) in the predefined, hand-selected
skin-colour histograms qR, qG and qB the histograms of the tracked image pR, pG and pB a
weight, wi, is computed:

wi =
√

qR,i

pR,i
·
√

qG,i

pG,i
·
√

qB,i

pB,i
(1.10)

Every foreground pixel in the tracked frame falls into one of the bins according to its RGB
value and the normalised weight associated with that pixel is assigned to compute the overall
weight image, as shown in Figure 1.9. The non-skin pixels are assigned a weight that the
pixel is not drawn from the skin histogram. This non-skin descriptor is necessary because it
encodes the “proportion” of the head which is skin, which is essential as people vary in size
and scale. Each descriptor is scaled to a standard 20× 20 pixel window to achieve robust
comparison when the head sizes vary.

Figure 1.10 shows the images which result from the mean-shift image patch tracker
(col. 1). Background subtraction is applied (col. 2) and the descriptor is normalised by center-
ing the head in the window and resizing. The weight image which represents the probability
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Head−pose Descriptor

Input Foreground Skin Pixels Non−skin Pixels

1/4 right

back

1/4 left

side RL side LR

3/4 right

face

3/4 left

Figure 1.10 (Left) The head-pose descriptor is defined using the skin and non-skin which
defines the proportion of skin to the size of the head. (Right) Head-pose is discretised into 8
distinct poses.

that each pixel in the head is skin is computed (col. 3). From this, non-skin probability can
be easily computed (col. 4). Non-skin is significant as it captures proportion without the need
for scaling. The concatenation of skin and non-skin weight vectors is the feature vector which
is used to determine eight distinct head poses which are shown and labelled on the in Figure
1.10.

A set of training exemplars are identified and labelled. Algorithm 1 describes the process
for the extraction of training data. Varying lighting conditions should be accounted for by
representing the same head-pose under light from different directions in the training set. The
same points on the “compass” are used as the discretisation of direction i.e. N, NE, E, etc.

Algorithm 1 To obtain head-pose training data
1: Track head in a video sequence
2: Centre head within tracker window at each frame
3: Define skin histogram for sequence (by hand, if necessary)
4: Segment the foreground in every image
5: For every pixel belonging to the foreground compute p(skin) and p(non-skin)

Once more, the nearest-neighbour match in the exemplar dataset can be found for any
given input. Examples of successful matching using this descriptor are shown in figure 1.11
with the estimated gaze-angle superimposed on the images. Note that the same set of training
examples is used across a variety of test datasets.
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Figure 1.11 Detecting head pose in different scenes using a standard set of training examples.

1.4.3 Rectification to the ground-plane
Gaze inference is only of use if it can be estimated from the gazing direction what it is
that a person can see or, even better, what he/she is looking at. The human visual system
has a field-of-view of 105o (Prothero and Hoffman 1995). Picking an arbitrary visual range
therefore allows the 2-D visual field to be drawn on the images. Note that there is no occlusion
reasoning about the field-of-view so this is an idealised indication of what can be seen. What
can truly be seen by the person is in the world and not the image plane. Therefore it is
important that some effort is invested to correct for various perspective effects, if the gaze
area in pixels is to be used for further processing/reasoning.

Computing a planar homography

The homography computation allows the image to be “ortho-rectified”. That is, to warp the
original image in such a way that the view is as though the image was capture by a camera
whose image plane is parallel to the ground-plane. This is done by computing the planar
projective transformation which is a linear transformation on homogeneous 3-vectors repre-
sented by a non-singular 3× 3 matrix. For details see (Hartley and Zisserman 2003).

The easiest way to compute the projective transform required to rectify an image is to
select, in the image, a set of points corresponding to a planar section of the world. Image
coordinates and world coordinates are selected as shown in Figure 1.12. The control points
shown in Figure 1.12 are on a plane which has been warped by perspective effects in the
imaging process. By computing the inverse transform it is possible to undo the effect of
perspective.

It is important to note that the rectification achieved in this way does not require any
knowledge of the camera’s parameters or the pose of the plane. The effect of this on a full
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Figure 1.12 The rectification of an image to the ground plane is achieved by computing the
projective transform between point correspondences.

frame in shown in Figure 1.12. However one does not want to compute the entire frame’s
projection, just the gaze so that one can determine what can really be seen in the world by
the person. This is demonstrated in Figure 1.13. Figure 1.13(a) illustrates the gaze with no
projection of the onto the ground-plane and no compensation of the gaze angle (relative to the
camera-centred frame). In Figure 1.13(b) gaze is projected onto ground-plane but perspec-
tive alterations in the assigned angle are not computed. In Figure 1.13(c) the gaze angle is
computed using the projection from camera-frame to world-frame to create the final estimate
of what the person can see.

Correcting gaze angles under perspective imaging

In order to display where the person is looking in the images angles are assigned to the
discretised head-poses shown in Figure 1.10 according to the “compass” e.g. N : 0o etc.
However, when the field-of-view is superimposed on the image (and, more importantly, when
visibility of other objects in the scene is determined using this field-of-view) it is important
to correct for the fact that the camera is not fronto-parallel to the scene as for the acquisition
of training data. The assigned angles must then be corrected for the projection of the camera
at each time step depending on the location of the person on the ground-plane in the image.

In order to choose the correct frame of reference there is no need to perform full cam-
era calibration but rather to compute the projective transform (H : image→ground-plane)
by hand-selecting 4 points in the image as described above and shown in Figure 1.14. The
vertical vanishing point, (v), is computed from the manual selection in the image of 2 lines
which are known to be normal to the ground plane and parallel in the world. (See (Hartley
and Zisserman 2003) §8.6 for details on how this relates to the “footprint” of the camera on
the reference ground-plane). The angle θ between the projection of the optic-rays through the
camera centre, Hv, and the image centre, Hc, and the point at the feet of the tracked person,
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(a) (b) (c)

Figure 1.13 Progression of improvements for visualising the gaze estimate.
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Figure 1.14 When assigning angles to the matched discretised head-poses one must com-
pensate for the camera projection since the angles assigned to head-poses do not in general
correspond to vertical in the image plane.

Hp, is the angle which adjusts vertical in the image to “North” in the ground plane reference
frame i.e.

θ = cos−1[(Hc×Hv).(Hv ×Hp)] (1.11)

1.4.4 Bayesian fusion of head-pose and direction
The naive assumption that direction of motion information is a good guide to what a person
can see has been used to generate the estimated focus-of-attention in the first row of Figure
1.15. However, it is clear the crucial interaction between the two people is missed. To address
this issue one may compute the joint posterior distribution over direction of motion and head
pose. The priors on these are initially uniform for direction of motion, reflecting the fact that
for these purposes there is no preference for any particular direction in the scene, and for head
pose a centred, weighted function that models a strong preference for looking forwards rather
than sideways. The prior on gaze is defined using a table which lists expected (i.e. physically
possible) gazes and unexpected (i.e. non-physical) gazes.
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Define g as the measurement of head-pose, d is the measurement of body motion direc-
tion. G is the true gaze direction and B is the true body direction, with all quantities referred
to the ground centre. The joint probability of true body pose and true gaze is then given by:

P (B,G|d, g) ∝ P (d, g|B,G)P (B,G) (1.12)

Now given that the measurement of direction d is independent of both true and measured
gaze G, g once true body B pose is known,

P (d|B,G, g) = P (d|B) (1.13)

Similarly the measurement of gaze g is independent of true body pose B given true gaze
G, i.e.

P (g|B,G) = p(g|G) (1.14)

Then:

P (B,G|d, g) ∝ P (g|G)P (d|B)P (G|B)P (B) (1.15)

It is assumed that the measurement errors in gaze and direction are unbiased and normally
distributed around the respective true values

P (g|G) = N (G, σ2
G), P (d|B) = N (B, σ2

B) (1.16)

(actually, since these are discrete variables a discrete approximation is used).
The joint prior, P (B,G) is factored as above into

P (B,G) = P (G|B)P (B) (1.17)

where the first term encodes the knowledge that people tend to look straight ahead (so the
distribution P (G|B) is peaked around B, while P (B) is taken to be uniform, encoding the
belief that all directions of body pose are equally likely, although this is easily changed: for
example in tennis one player is expected to be predominantly facing the camera).

While for single frame estimation this formulation fuses the measurements with prior
beliefs, when analysing video data one can further impose smoothness constraints to encode
temporal coherence: the joint prior at time t is in this case taken to be

P (Gt, Bt|Gt−1, Bt−1) = P (Gt|Bt, Bt−1, Gt−1)P (Bt|Bt−1) (1.18)

where the assumption that the current direction is independent of previous gaze is used.
Although it is recognised that this may in fact be a poor assumption in some cases since
people may change their motion or pose in response to observing something interesting while
gazing around. It is also assumed that the current gaze depends only on current pose and
previous gaze. The former term, P (Gt|Bt, Bt−1, Gt−1), strikes a balance between between
the belief that people tend to look where they are going, and temporal consistency of gaze
via a mixture i.e.

Gt ∼ αN (Gt−1, σ
2
G) + (1− α)N (Bt, σ

2
B) (1.19)
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The joint distribution for all 64 possible gazes resulting from possible combinations of
8 head poses and 8 directions is now computed using this result. This posterior distribution
allows the probabilistic estimates to be maintained without committing to a defined gaze
which will be advantageous for further reasoning about overall scene behaviour. Immediately
though it can be seen that gazes which are considered very unlikely given the prior knowledge
of human biomechanics (since the head cannot turn beyond 90o relative to the torso (Pang
2004)) can be rejected, in addition to the obvious benefit that the quality of lower-level match
can be incorporated in a mathematically sound way. An illustrative example is shown in
Figure 1.15. In this video sequence there is an interaction between two people in the frames.
The fact that they look at each other is the prime indicator that they are “together”. On the
first row the gaze from body direction alone is estimated. On the second row gaze is estimated
using head-pose alone, which gives an improved result, as far as detecting the interaction is
concerned, but this is still prone to some errors. In the third row of Figure 1.15 it can be seen
that fusing the head-pose and body-direction estimates gives a significantly improved result
when it is the interaction that is required to be identified. That is, the “head angles” graph
clearly shows two main head-turning events, the first short, the second longer. The angle-error
is computed by comparing the estimated head-angles to hand-labelled ground-truth.

1.5 Conclusion
This chapter has described the scientific state-of-the-art for human activity recognition in
surveillance video sequences. The emphasis has been on achieving canonical descriptions
of “instantaneous” motion-type and focus-of-attention. A common theme in the technical
approach is the development of a descriptor which can be readily computed from low/medium
resolution images of people.

Further avenues for research based on the work of this chapter include:

• Use of contextual information, such as position and velocity, to articulate text “com-
mentary” on activity. This could be particularly effective in generating automatic sports
commentary, for example.

• For reasoning about human activity, the action/gaze recognition algorithms could be
viewed as providing data at the sensors of the system which could then be used as
input to a higher level video understanding component, perhaps based on Bayesian
networks.
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Body−direction only

Head−pose only

Body−direction and Head−pose combined

Angle errorHead angles

Figure 1.15 Fusion of body-direction with head-pose improves the gaze-estimate.
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