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Abstract – In this paper we present a new method to pro-
vide situation awareness via the automatic recognition of
behaviour in video. In contrast to many other approaches,
the presented method does not require many training exem-
plars. We introduce Probabilistic Behaviour Signatures to
represent the goals of a person agent as sets of features.
We do not assume temporal ordering of observed actions
is necessary. Inference is performed using an extension of
the Rao-Blackwellised Particle Filter. We validate our ap-
proach using simulated image trajectories which represent
three high-level behaviours. We compare performance to
a trained Hidden Markov Model Particle Filter (HMM PF)
and show that our approach achieves 92% accuracy at video
frame rate. Our method is also significantly more robust
than the HMM PF in the presence of noise.

Keywords: Bayesian inference, behaviour analysis, visual
surveillance, security

1 Introduction
Closed circuit television (CCTV) has been extensively de-
ployed for video surveillance, yet it presents several chal-
lenges for people tasked with monitoring activity. Fore-
most is the challenge of maintaining situation awareness
over a number of different sources: detailed inspection of
one video feed causes activities in other videos to be missed.
A further complexity is the recognition of ambiguous multi-
agent events and distributed sensing. In distributed surveil-
lance individual activity may present no obvious threat but
aggregated together a threatening pattern emerges. The au-
tomated recognition of human behaviour could potentially
help alleviate these problems and has been a growing area
of research in recent years.

Plan recognition researchers such as Geib and Kautz
have made significant advances in human behaviour recog-
nition [8]. While some work has remained more theoret-
ical, others have developed techniques in practical appli-
cations [12]. However, there has been limited progress in
applying these techniques to automated visual surveillance.
Bui and Venkatesh addressed indoor surveillance scenar-

ios using a distributed network of cameras, but recogni-
tion was based on agent trajectories within a known envi-
ronment and cannot be directly applied to less constrained
problems [18, 17, 1]. Distributed events detected from mul-
tiple sources may not be observed in any defined tempo-
ral order which is a problem for current methods, such as
HMMs. There has been significant progress in low-level vi-
sual surveillance techniques such as detecting object aban-
donment, irregular behaviour and feature tracking, but rel-
atively little progress in fusing these techniques with high
level reasoning [23, 10, 21].

Many researchers have also made extensive use of proba-
bilistic techniques that learn parameters from large training
corpora [12, 9]. Annotated libraries of video surveillance
do not exist for many interesting behaviours, making there
no clear path for training high-level probabilistic models.
This problem is compounded when dealing with military
or counter-terrorism applications, where data availability is
also restricted by operational factors.

In this paper we present a new probabilistic framework
for high-level event recognition with direct applications in
automated video surveillance. In summary, the contribution
of this work is:

• A general framework that does not require extensive
training corpora;

• A recognition algorithm that facilitates distributed,
multi-agent, event recognition by removing action con-
tinuity (i.e. temporal) constraints;

• An efficient inference mechanism which extends the
Rao-Blackwellised Particle Filter.

We validate our approach in a simulated surveillance sce-
nario that is representative of a real-world application. (In
future, low-level detections will come direct from video.)
We compare classification accuracy and speed against a
trained Hidden Markov Model Particle Filter, and show that
our approach offers superior performance under noisy con-
ditions.



Figure 1: A simple plan hierarchy representing the decom-
position of a high-level goal into 5 low-level sub-goals.
Curved lines denote temporal dependence.

The next section discusses related work in the areas of au-
tomated surveillance, behaviour recognition in data-scarce
environments, probabilistic inference, and object recogni-
tion. Section 2 will then formally introduce the problem
and our approach; Probabilistic Behaviour Signatures. This
will include a description of the high-level behaviour repre-
sentation, and its formal specification within a hierarchical
Dynamic Bayesian Network. We use a Rao-Blackwellised
Particle Filter to perform efficient inference on our frame-
work and will introduce its application in Section 2.3. Fi-
nally, Section 3 will introduce our validation domain in an
entry point security application, and Sections 4 and 5 will
conclude and discuss our plans for future work.

1.1 Related Work
Detecting low-level events in video has received consider-
able attention and produced many generic algorithms. This
has included events with clear applications in visual surveil-
lance, such as object abandonment [10] and tracking [21].
However, there has been more limited progress towards
recognising high-level events, which requires human-like
reasoning about low-level activities.

Plan recognition researches such as Bui and Liao have of-
ten used a hierarchical structure to model human behaviour
[12, 1]. For example, Figure 1 illustrates this approach by
decomposing the goal Gain Access into five sub-goals. In-
stead of having a fixed temporal order, denoted by curved
lines in the figure, a training corpus is often used to learn
the probability of transitioning from one sub-goal to another.
This allows a model to remain robust to observation noise,
and encapsulates the inherent variability seen in human be-
haviour.

Nguyen et al. used this kind of representation to address
the problem of recognising high-level goals from video data
using a network of video cameras [17, 1]. This involved a
complex environment of rooms and corridors, which were
segmented into small cells to facilitate agent tracking. In
later work they went on to reduce the amount of training
data required by sharing activity models between different
high-level behaviours [18].

Data Scarcity: A major shortfall with previous research lies
with the necessity to learn behaviours from training data,
and although Nguyen et al. reduced the amount of data re-

quired, there remains an open question of what to do when
training data is simply unavailable. Research within other
data scarce environments such as counter-terrorism has also
failed to provide a solution to this problem [7, 22].

Xiang and Gong side step the issue by modelling ‘nor-
mal’ behaviours for which training data is easier to obtain
[23]. Activities with a low probability can then be flagged as
abnormal. Because semantic meanings cannot be attached
to the abnormal activities, they cannot be reasoned about
at a higher level. Although data mining might still be able
to identify higher-level behaviours it would not be possi-
ble to explain the reasoning, and the signal to noise ratio in
distributed (multi-source) multi-agent environments makes
high recognition accuracy unlikely.

Robertson et al. demonstrated an alternative approach to
anomaly detection by using high-level rules that can easily
be defined by an expert [20]. Rules give the advantage that
they facilitate explaining events back to a surveillance oper-
ator, who may then confirm and act if necessary. However,
they are also limited in variability and are thus affected by
noise.

Dee and Hogg showed that interesting behaviour can be
identified from video using motion trajectories [3]. Their
run-time model identified regions of the scene that were vis-
ible or obstructed from the agent’s location, and produced
a set of goal locations that were consistent with the agent’s
direction of travel. Goal transitions were penalised and thus
irregular behaviours were identified via their high-cost.

Probabilistic Inference: Yin et al., amongst others, have
used DBNs for behaviour recognition using wireless net-
works [24]. Geib and Goldman use Hidden Markov Models
(HMMs), which are a simple form of DBN, when they intro-
duced the idea that observing an action produces a ‘pending
set’ of available actions [9]. They associate these pending
sets with discrete states and determine the high-level goal
that most likely produced the observation sequence. In our
work we use a similar concept, but rather than producing a
set of pending actions, our system starts with a complete set
of actions and reduces the set by those already observed. We
then estimate the probability of each observed action, rather
than using trained HMMs.

The Forward-Backward algorithm is frequently employed
for HMM inference, although its runtime performance can
be impacted for long observation sequences [11]. Further-
more, the Bayesian Filter and Particle Filter, which are
efficient alternatives to the HMM, also become infeasible
for a large group of problems. This led Doucet et al. to
develop the Rao-Blackwellised Particle Filter (RBPF) [5, 4].
They show that the RBPF gives more accurate estimates
than a standard Particle Filter, and is more efficient than
a Bayesian Filter. Bui and Venkatesh harnessed these
benefits to perform efficient behaviour recognition, and
have been followed by a number of other researchers [12, 1].

Object Detection: Object detection is concerned with
learning and detecting the presence of objects in static im-



ages and video. Identifying a robust modelling approach is a
key challenge in this domain, as objects may undergo opera-
tions such as rotation and translation. This challenge has led
to the development of a number of different techniques for
identifying invariant object features. For instance, it is not
uncommon to transform an object image into the frequency
or scale domains [14, 15], where invariant salient features
can be more readily identified.

An alternative feature based approach was also suggested
by Csurka et al., who identified similarities between object
detection and text categorisation [2]. They report promising
results using bags of unordered visual features, using a sim-
ilar concept to text document key-words. Our work applies
a similar concept to behaviours by using sets of temporally
unordered features to represent them.

2 Probabilistic Behaviour Signatures
To introduce the concept of Probabilistic Behaviour Signa-
tures (PBS) the structure in Figure 1 must be redefined in
the context of temporal events. Consider the simple seman-
tic concept Move to Security, and denote the observance of
some sequence of actions that achieves this sub-goal as a
low-level event. A high-level event is defined to be a se-
quence of low-level events that achieve some goal, and thus
can be modelled using the same hierarchical structure as
Figure 1.

To represent behaviours without learning the temporal
structure we draw our motivation from object detection.
Although the similarity between recognising objects and
human behaviour is not always apparent, Patron et al.
have previously highlighted that many of the challenges are
shared [19]. Recognising these similarities, we argue that
like objects, human behaviours can also be represented us-
ing a set of salient features. These may be identified by
breaking the temporal relationships between different hu-
man activities, and is akin to splitting pixel relationships in
the object recognition domain [14, 15]. By removing these
temporal constraints the representation changes from “Ex-
pect these ordered events” to “Expect these events“, and the
resulting behaviour signature becomes similar to an object’s
feature vector.

It is important to acknowledge that a behaviour signature
may not be unique: two behaviours with identical compo-
nents but different temporal structures will produce the same
behaviour signature. However, it is important to remember
that in modelling human behaviours in a surveillance setting
the set of all possible behaviours is significantly reduced to
those of interest, in which it is not unreasonable to assume
that they have different compositions.

2.1 Formal Definition
To formally define a behaviour signature let us denote the
set of sub-goals that a system can reliably detect α, where
each sub-goal is detected via some low-level event recogni-
tion algorithm. If a high-level event B (Goal) is composed
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Figure 2: Dynamic Bayesian Network for a high-level event.
Low-level events feed into the bottom layer, while the top
and middle layers estimate the expected and previously ob-
served events.

of some sequence of sub-goals a1, a2, ..., an, where each el-
ement ai ε α, then B can be represented by a target set of
features T : ti ∈ α ∀ i.

The agent’s progress towards B can be measured by im-
posing a weak temporal ordering on the behaviour signature
features. We make the simplifying assumption that each fea-
ture (sub-goal) is only performed once (although Section 5
discusses approaches for removing this assumption).

To impose this ordering the previously performed sub-
goals are tracked. Define the observation sequence
O = (o1, o2, ..., oK), where subscripts denote discrete time
and each element ot ∈ α. The set C can be defined to rep-
resent the set of currently achieved sub-goals, where each
element of C must be an element of T. As each element of O
is observed, the number of elements in C will increase, and
in a fully observable world, T\C = {} once all sub-goals in
T have been performed.

2.2 Dynamic Bayesian Network
This approach can be represented using the DBN shown in
Figure 2. Each node represents an element of the agent’s
state, while edges denote the dependencies between the
nodes [16]. The dashed line distinguishes the boundary be-
tween two time slices, t− 1 and t.

To introduce each element of the DBN we refer to Figure
1. At time-step zero an agent performing the Gain Access
goal would select its first sub-goal as Enter Agent, which
can be referred to as their current desire. The agent then
performs some activity that achieves that desire before
selecting their next desire according to the goal. In this
example the second desire would be Move to Security.

Activity observations: Recognition commences at the bot-
tom of the DBN by calling upon low-level event detection
from exterior modules. These events could be readily de-
tected by using a number of existing techniques, such as
agent tracking and image segmentation [6, 21, 13]. Our
framework does not limit the complexity of these modules



and thus any abstract activity could be provided as an ob-
servation, whether detected by human operators or compu-
tational modules.

In order to address multi-agent scenes, each observation
must be attributed to some recognised entity, such as a sin-
gle agent or group. Although this requirement does apply
some pressure upon event recognition modules, this is not
an unrealistic assumption. Tao reported a recognition rate of
79% for occlusive scenes with as many as 48 different enti-
ties [21]. We use this rate as an assumed lower bound for all
the recognition modules, even though related literature has
reported tracking accuracies as high as 95% [6].

An observation is thus constructed as follows. An agent
identifier, used for entity association, a module identifier
to indicate the source of the observation, and a set of one
or more possible sub-goals that can be achieved by the
event. That is not to say that every possible sub-goal for
an event must be specified, but rather, a distinction should
be made for the sake of the expert defining the behaviours.
For example, an event representing communication with a
security guard might be represented by just two sub-goals;
Show Pass and Make Delivery. However, this distinction
is only made so that a higher level event can be described
more naturally by the expert.

Desire: Moving up the DBN hierarchy the middle layer
represents the agent’s current desire as an abstract sub-goal
that is independent of the implementation. Furthermore, it
should only be as specific as required. The sub-goal Enter
Agent might match both a pedestrian or vehicle, while the
more specific sub-goal Enter Small Agent might only match
a pedestrian.

Given the previous definitions of T and C as the target
and currently achieved feature sets, a simple function can
be used to determine the conditional probability distribution
of D (desire). The function f(T,C, α) is a distribution over
the elements of α such that each element αj ∈ α ∈ T\C
has equal probability, while all other elements have 0
probability.

Goal Representation: The top layer in the DBN repre-
sents the agent’s high-level goal using a Behaviour Signa-
ture. This is referenced as T , and is considered the target
feature set. The sub-goals currently achieved are also repre-
sented at this layer and denoted C.

2.3 Inference
The DBN in Figure 2 is a finite state Markov chain and
could be computed analytically. However, given our tar-
get application of visual surveillance, which has the require-
ment of near real-time processing, we adopt a particle fil-
tering approach to reduce the execution time. In Particle
Filtering the aim is to recursively estimate p(x0:t|y0:t), in
which a state sequence {x0, ..., xt} is assumed to be a hid-
den Markov process and each element in the observation se-
quence {y0, ..., yt} is assumed to be independent given the
state (i.e. p(yt|xt)) [5].

We utilise a Rao-Blackwellised Particle Filter (RBPF) so
that the inherent structure of a DBN can be utilised. We wish
to recursively estimate p(xt|y1:t−1), for which the RBPF
partitions xt into two components xt : (x1t , x

2
t ) [4]. This

paper will denote the sampled component by the variable rt,
and the marginalised component as zt. In the Bayesian net-
work in Figure 2, rt : 〈 Ct, Tt 〉 and zt : Dt. This leads to
the following factorisations:

p(xt|y1:t−1) = p(zt|rt, y1:t−1)p(rt|y1:t−1) (1)

= p(Dt|Ct, Tt, y1:t−1)p(Ct, Tt|y1:t−1) (2)

The factorisation in 2 utilises the inherent structure of the
Bayesian network to perform exact inference on D, which
can be efficiently performed once 〈 Ct, Tt 〉 has been sam-
pled. Each particle i in the RBPF represents a posterior es-
timate (hypothesis) of the form hit : 〈 Ci

t , T
i
t , D

i
t, W

i
t 〉,

whereWt is the weight of the particle calculated as p(yit|xit).
For brevity we will focus on the application of the RBPF

to our work, but refer the interested reader to [1, 4] for a
generic introduction to the approach.

2.4 Algorithm
Our particle filter algorithm proceeds as follows. At time
step zero, the prior distribution is sampled to equally dis-
tribute the target sets and set C = {}. For all other time
steps, the RBPF first samples 〈Ci

t , T
i
t 〉 from the weighted

distribution at t − 1. Each particle then predicts the new
state 〈Ci

t+1, T
i
t+1〉 using transition probabilities to be de-

fined shortly.
After this initial sampling is complete,

the Rao-Blackwellised posterior is calculated:
p(zit|rit, y1:t−1) = p(Di

t|Ci
t , T

i
t , y1:t−1). The value

ofDi
t (the agent’s next desire) is then predicted according to

the Rao-Blackwellised posterior. At this point each particle
has a complete state estimate xit, and can be weighted
according to the distribution:

p(yt|xit) = p(At|Ci
t , T

i
t , D

i
t) (3)

The final step in the algorithm is to calculate the tran-
sition probability p(Ci

t+1|Di
t). This step ensures that

the algorithm is robust to activity recognition errors by
estimating p(Ci

t+1|Di
t) from the true positive rate of the

activity recognition module. Recall that in section 2.2 it
was specified that observations must provide the identity of
the recognising module, with the intention that this be used
to lookup its true-positive detection rate. The transition
probability is therefore encapsulating the probability that
the agent really has performed the predicted feature Di

t,
observed via At

1.

1An alternative approach to setting the transition probability is to use
the probability of the activity module itself.
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Figure 3: The three high-level surveillance events used throughout the paper. (a) Gain Access, (b) Leave Without Entry,
and (c) Sneak Behind Obstruction

3 Experiments
To validate the proposed approach we conducted experi-
ments on the behaviours in Figure 3 using simulated obser-
vations. Observations represent the output from low-level
activity recognition modules, for example ’EnterPedestrian’
and ’MoveFromRoadToSecurity’. The accuracy rate of each
module (see section 2.2) was used to insert spurious obser-
vations as noise at rates of 0, 16 and 28%.

Figure 3 is a schematic of three agent behaviours at the en-
try point to a secure site, where a security guard approves or
denies access. In the Gain Access event (a) an agent moves
towards the security guard, shows ID and then moves on
through the entry. In event (b) the agent also moves towards
the security guard, but then leaves the scene without pass-
ing through the entry. In both of these scenarios an agent
may be a pedestrian or a vehicle. In the third event (c) a
small agent (pedestrian) attempts to move through the entry
without consulting the guard by using a large agent (vehi-
cle) as an obstruction. These events are simplistic in nature
but contain features that are representative of more complex
scenarios. The events incorporate multi-agent behaviour and
a large degree of overlap, as is frequently the case in real-
world scenarios.

We use a HMM Particle Filter (HMM-PF) as a compar-
ative baseline to our method. Like the RBPF this filter
performs approximate inference through sampling, but uses
learnt HMMs to make state predictions. Three HMMs were
used for this purpose, one for each high-level event, and
were each individually trained using 1000 simulated noisy
training sequences. Although an exact Bayes Filter may
produce more accurate estimates than the HMM-PF, using
an approximate inference mechanism allows a fairer com-
parison with the PBS Particle Filter (PBS-PF).

In the first set of experiments we compare the probabil-
ity of each model while observing a known behaviour. This
allows us to asses the impact of the representation on the
normalised likelihoods. We also compare classification per-
formance at different levels of noise, and finally compare the
runtime efficiency of each algorithm by varying the number
of particles.
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Figure 4: Normalised HMM-PF likelihood while observing
a Gain Access behaviour.

3.1 Comparing Model Likelihood
Figure 4 shows the baseline (HMM-PF) probability of each
behaviour as the number of observations increases. In this
example, the Gain Access behaviour was observed under
zero noise (no incorrectly detected low-level events). This
figure highlights the similarity between Gain Access and
Leave Without Entry, which can only be distinguished after
the third event. In contrast, Figure 5 shows inference us-
ing the PBS-PF under the same conditions and shows a dis-
tinct difference between the two approaches. The PBS-PF
shows that Leave Without Entry has a higher likelihood than
Gain Access for the first three observations, despite both
behaviours being identical up until the fourth event. The
reason for this affect is that Leave Without Entry has fewer
features than Gain Access, giving each posterior probabil-
ity p(D|C, T ) a higher value. This means that each Leave
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Figure 5: Normalised PBS-PF likelihood while observing a
Gain Access behaviour.

Without Entry particle making a correct feature prediction
will gain a higher joint probability than a Gain Access parti-
cle, leading ultimately to the effect observed.

Although at first this might seem like a flaw in the PBS ap-
proach, this is not an undesirable feature. Assume that after
three low-level events no further observations are made. If
Leave Without Entry were being observed, this indicates that
two features were missed, while three features must have
been missed for Gain Access. If we are assuming that fea-
tures can be reliably detected, as specified in Section 2.2, it
is true that Leave Without Entry should be more probable.

3.2 Recognition Performance
We evaluate the recognition performance by comparing the
average classification accuracy under varying levels of ob-
servation noise. This comparison was conducted at 5 frames
per second (fps) and is illustrated in Figure 6. At low
noise levels both techniques perform identically by achiev-
ing 100% accuracy. At a noise level of 28% the HMM-PF
accuracy drops to 70%, while the PBS-PF still maintains
85% accuracy. These results demonstrate that the PBS-PF is
robust to noise and can perform at least as well as a trained
HMM-PF. By increasing the size of the HMM training cor-
pus the HMM-PF performance does improve. However, the
reported performances already required an unfeasibly large
number of training sequences (1000 per behaviour).

3.3 Runtime Performance
Figure 7 compares the average runtime efficiency of the two
algorithms under 16% noise and using 3000 particles. The
figure shows that for each observation, both algorithms com-
plete in under 300 milliseconds, although the PBS-PF gives
approximately a 3-fold increase over the HMM-PF. This is
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Figure 6: Comparing the runtime efficiency of the HMM
Particle Filter and PBS Particle Filter at 5 frames per second

to be expected as the PBS-PF algorithm is more complex,
but it is encouraging to see that the PBS-PF has linear run-
time.

Figure 8 compares the average accuracy of the models as
the number of particles is altered. This has the effect of re-
ducing runtime at the expense of accuracy. It is clear that
even when very few particles are used (200), the PBS-PF is
able to perform well at all three noise levels. It achieves ac-
curacies of 67% and 84% at noise levels of 16% and 28%
respectively. Sharp increases in accuracy to 81% and 91%
respectively are also observed as the number of particles is
increased to 1000, while the improvement in accuracy is
more gradual after this point. Under zero noise accuracy
quickly changes from 99% at 200 particles to 100% by 500
particles, and then maintains this accuracy throughout.

To relate these results to actual algorithm speed, which
is very important for real-time surveillance, Figure 9 com-
pares the average accuracy of both techniques in terms of
frame rate. When the observations contain 16% noise the
HMM-PF maintains a 100% accuracy at all frame rates. The
PBS-PF also achieves a 100% accuracy up until 6 fps, and
drops slightly to 92% at 22 fps. At the higher noise level
of 28% the PBS-PF out-performs the HMM-PF baseline at
reasonable frame rates. The baseline only achieves a 70%
accuracy, while the PBS-PF gives at least a 10% improve-
ment at ≥ 80% until approximately 16 fps. At higher frame
rates the PBS-PF gives a constant 69% accuracy which is
comparable with the HMM-PF.

4 Conclusion
In this paper we have argued that data scarcity prevents
the advancement of high-level automated visual surveillance
using probabilistic techniques, and that anomaly detection
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Figure 7: Comparing the runtime efficiency of the HMM
Particle Filter and PBS Particle Filter with 3000 particles

side-steps the issue for low-level events. To overcome the
problem of data scarcity we introduced the Probabilistic Be-
haviour Signature Particle Filter (PBS-PF) for performing
high-level event recognition. This approach replaces learnt
temporal models with an on-line feature based alternative.

We validate the PBS-PF by comparing its performance
against a trained HMM-PF. The behaviours used incorpo-
rated multi-agent activity and a large degree of similarity,
and are therefore representative of extended, complex sce-
narios. This work shows that:

• PBS-PF out-performed the baseline at medium frame
rate (16 fps, 28% observation noise)

• Both algorithms are comparable (≈ 70% accuracy) at
high frame rate (24 fps, 28% noise), yet the PBS-PF
required no training.

• PBS-PF delivered a 90% classification accuracy at
medium noise (24 fps, 16% observation noise)

Although this paper has focused on a visual surveillance
application the PBS-PF is widely applicable to other do-
mains. We propose that the intelligence analysis commu-
nity in particular could benefit from the PBS-PF by elimi-
nating the need for an expert to set probabilistic parameters
(e.g. [22]). Furthermore, our temporally unconstrained rep-
resentation facilitates the use of both mixed and distributed
surveillance. Traditional observation sources such as video
provide a continuous source of data, yet radio reports can
be ad-hoc, and distributed cameras can observe temporally
misaligned multi-agent behaviour. Because PBS represent
features instead of ordered actions, the approach should not
be adversely effected by these attributes.
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Figure 8: The average accuracy of the PBS Particle Filter
with different numbers of particles

5 Future Work
We will extend this work in the future to further test the PBS-
PF performance at increasing levels of behaviour complex-
ity. Clearly, implementing real low-level activity recogni-
tion modules to provide a realistically noisy data source for
the high-level inference is a priority. One of the assumptions
of our existing model is that each activity is only performed
once. When a feature is observed it becomes an element
of the Current Features set and in doing so, gains a zero
probability of being observed again. It is clear that in many
behaviours this assumption is not always valid and needs
to be addressed in future work. We propose that one way
of doing this would be to flag certain features as repeatable
and allowing some finite or infinite number of repetitions.
This would also require a new Rao-Blackwellised posterior
calculation to take account of the repetitive features.
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