
What are you looking at? Gaze estimation in
medium-scale images

Abstract

In this paper we describe a new method for estimating where a person is
looking in images where the head of a person is typically 20 pixels high.
We use a feature vector based on skin detection to estimate the orientation
of the head, which is discretised into 8 different orientations, relative to the
camera. A fast sampling method returns a distribution over head pose. The
general direction of the person is estimated based on velocity. We show that,
by combining direction and head pose using a Bayesian Network gaze is
determined more robustly than using each feature alone. We demonstrate
this technique on surveillance and sports footage.

1 Introduction

In applications where human activity is under observation, be that CCTV surveillance or
sports footage, knowledge about where a person is looking i.e. their gaze provides ob-
servers with important clues which enable accurate explanation of the scene activity. It
is possible, for example, for a human readily to distinguish between two people walk-
ing side-by-side but who are not “together” and those who are acting as a pair. Such a
distinction is possible when there is regular eye-contact or head-turning in the direction
of the other person. In soccer head position is a guide to where the ball will be passed
next i.e. an indicator of intention, which is essential for causal reasoning. In this paper
we present progress towards automatically inferring gaze direction in images where any
one person represents only a small proportion (the head is around 20 pixels high) of the
frame.

The first component of our system is a descriptor based on skin colour. This descriptor
is extracted for each head in a large training database and labelled with one of 8 distinct
head poses. This labelled database is then queried to find either a nearest-neighbour match
for a previously unseen descriptor or (as we discuss later) the above is non-parametrically
sampled to provide an approximation to a distribution over possible head poses.

Recognising that general body direction plays an important rôle in determining where
a person can look, we combine direction and head pose using Bayes’ rule to obtain the
joint distribution over head pose and direction, resulting in 64 possible gazes (since head
pose and direction are discretised into 8 sectors each, shown in figure 1).

The paper is organised as follows. Firstly we highlight relevant work in this, and
associated, area(s). We then describe how head-pose is estimated in section 2. In section
3 we provide motivation for a Bayesian fusion method by showing intermediate results
where the best head-pose match is chosen and, by contrast, where direction alone is used.
Section 3 also discusses how we fuse the relevant information we have at our disposal
robustly to compute a distribution over possible gazes, rejecting non-physical gazes and



reliably detecting potentially significant interactions. Throughout the paper we test and
evaluate on a number of datasets and additionally summarise comprehensive results in
section 4. We conclude in section 5 and discuss potential future work in section 6.

1.1 Previous work

For human action recognition at a distance Efros [6] showed how to distinguish between
human activities such as walking, running etc. by comparing gross properties of motion
using a descriptor derived from frame-to-frame optic-flow and performing an exhaustive
search over extensive exemplar data. Head pose is not discussed in [6] but the use of
a simple descriptor invariant to lighting and clothing is of direct relevance to head pose
estimation. Dee and Hogg [5] developed a system for detecting unusual activity which
involves inferring which regions of the scene are visible to an agent within the scene. A
Markov Chain with penalties associated with state transitions is used to return a score for
observed trajectories which essentially encodes how directly a person made his/her way
towards predefined goals, typically scene exits. In this work, clearly gaze inference is
vital, but this is inferred from trajectory information alone which can lead to significant
interactions being overlooked. In fact, many systems have been created to aid urban
surveillance. The AI Lab at MIT has developed an entirely automated system for visual
surveillance and monitoring of an urban site [9] but it appears that only trajectories are
utilised. The same is true in the work of Buxton (who has been prominent in the use
of Bayesian networks for visual surveillance) [2], Morellaset al [18] and Makris [15].
Johnson and Hogg’s work [12] is another example where trajectory information is only
considered.

Gee and Cipolla’s [8] gaze determination method based on the 3D geometric rela-
tionship between facial features was applied to paintings to determine where the subject
is looking. In medium-scale images locating significant features such as the eyes and
corners of the mouth as used in [8] is an impossible task. Related work has tackled ex-
pression recognition using information measures. Shinohara and Otsu demonstrated that
Fisher Weights can be used to recognise “smiling” in images. Unsurprisingly, the main
application focus of gaze recognition work has been Human-Computer Interfaces and
the technical aspects have focused on detecting the eyeball primarily. Matsumoto [16]
computes 3-D head pose from 2-D features and stereo tracking. Perez et al. [21] focus
exclusively on the tracking of the eyeball and determination of its observed radius and
orientation for gaze recognition. Kaminski et al. [13] have achieved a very similar goal
but using a single image while retaining a face and eye model. While this is most useful
in HCI where the head dominates the image and the eye orientation is the only cue to in-
tention, this approach is too fine-grained for surveillance video where it must be assumed
the eye is aligned with head-pose.

Skin detection has received much attention in the Computer Vision community [3]
[10] [11], but it is clear that determining gaze in surveillance images is a challenging
problem that has received little or no attention by the vision community. We recognise
that skin detection alone will be too error-prone when the skin region is very small as a
proportion of the image. However, additional cues such as direction can help to disam-
biguate gaze using even a very coarse head-pose estimation. By combining this informa-
tion in a principled (i.e. probabilistic, Bayesian) fashion, gaze estimation at a distance
becomes a distinct possibility as we demonstrate in this paper.
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Figure 1: The figure on the left shows the images which result from the mean-shift image
patch tracker and, below each, the weight image which represents the probability that
each pixel is skin. This is our feature vector which we use to determine eight distinct
head poses which are shown and labelled on the right. The same points on the “compass”
are used as our discretisation of direction i.e. N, NE, E, etc.

2.1 Head pose feature vector

Though people differ in colour and length of hair and some people may be wearing hats it
is reasonable to assume that the amount of skin that can be seen and the position of the skin
pixels within the frame is a relatively invariant cue for a person’s coarse gaze in a static
image. To obtain this descriptor there is a small degree of manual intervention required.
First, a mean-shift tracker [4] is hand-initialised on the head. While we anticipate this
could be done automatically in the future by modelling the person as distinct “blocks”
e.g. head and torso, in this work we concentrate on gaze estimation and assume we have
a coarse estimate of which part of a moving “blob” is the head. Second, because there is
no specific region of colour-space which represents skin in all sequences it is necessary
to define a skin histogram for each scenario. We hand-select a region of one frame in the
current sequence to compute a (normalised) skin-colour histogram in RGB-space, with
10 bins. We then compute the probability that every pixel in the head images which the
tracker produces is drawn from this predefined skin histogram1. Each pixel in each head
image is drawn from a specific RGB bin and so is assigned the relevant weight which
can be interpreted as a probability that the pixel comes from the skin model. The weight
image therefore defines our feature vector for head orientation per frame. An example is
shown in figure 1.

1This will be recognised as a similar approximation to the Battacharyya coefficient as implemented in the
meanshift algorithm [4]:wimage=

√
pskin/qimage.
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Figure 2: The original target frame (bottom-left) is used to compute a descriptor similar
to those shown in figure 1, representing skin pixels. This descriptor is then represented
as a set of Principal Components and the exemplar database formulated as a binary tree
split on the sign of those components. The leaf nodes are indices into matching frames.
10 samples of the database for an input frame and corresponding feature vector are shown
here with matching frames and assigned probabilities of a match with the input frame.

2.2 Training data

We assume that we can distinguish head pose to a resolution of 45 degrees. There is
no obvious benefit to detecting head orientations at a higher degree of accuracy and it
is unlikely that the coarse target images would be amenable in any case. This means
discretising the 360 degrees orientation-space into 8 distinct views as shown in figure 1.
(In this first attempt we have not made provision for scale changes.) The training data we
select is from a surveillance-style camera position and around 100 examples of each view
are selected. The head was tracked and the example labelled accordingly. The weight
image for each frame is then computed and this feature vector stored in our exemplar
set. The same example set is used in all the experiments reported(e.g. there are no
footballers in the training dataset used to compute the gaze estimates presented in figure
7).

2.3 Matching head poses

The descriptors for each head pose are (20×20=)400 element vectors. With 8 possible
orientations and 100 examples of each orientation searching this dataset rapidly becomes
an issue. Although linear-time nearest-neighbour search is not intractable unless near
real-time performance is desired we consider a tree-search method for two reasons. We



Figure 3: Detecting head pose in different scenes using the same exemplar set. The main
image shows the frame with the estimated gaze angle superimposed, the pair of images
directly beside each frame shows the input image that the head-pose detector uses (top)
and the best (ML) match in the database with corresponding label (bottom).

elect to structure the database using a binary-tree in which each node in the tree divides
the set of exemplars below the node into roughly equal halves. Such a structure can be
searched in roughly logn time to give an approximate nearest-neighbour result. We do
this for two reasons: first, even for a modest database of 800 examples such as ours it
is faster by a factor of 10; second, we wish to frame the problem of gaze detection in a
probabilistic way and Sidenbladh [23] showed how to formulate a binary tree search in a
pseudo-probabilistic manner. This tehcnique was later applied to probabilistic analysis of
human activity by [22]. We achieve recognition rates of 80% using this method with 10
samples. An example of such a distribution in this context is shown in figure 2. Results
of sampling from this database for a number of different scenes are shown in figure 3.

3 Gaze estimation

3.1 Bayesian fusion of head-pose and direction

The naive assumption that direction of motion information is a good guide as to what
a person can see has been used in figure 5. However, it is clear the crucial interaction
between the two people is missed. To address this issue we compute the joint probabil-
ity over direction,d, and head-pose,h. The distributionp(hm|hi) is estimated by sam-
pling from the databases wherehm andhi are the ML matches and the input respectively.
P(dm|di) is computed using a linear functionp(d) = 1− dθ

45 wheredθ = |θtrue−θnearest|
whereθnearestis the projection to the nearest discrete compass point andθtrue is the head-
ing computed from the trajectory of the tracked target. For any given dataD (hereh and
d), p(g|D) = p(D|g)p(g)

p(D) . The priorp(D) is uniform and the likelihoodp(D|g) is defined
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Figure 4: In this example, the ML match for head pose is incorrectly chosen as “back”
and the direction correctly identified as “S”. Due to the low prior on this combined gaze
(it is not possible to turn the head through 180 degrees) this gaze is rejected as the most
likely at the fusion stage. The MAP gaze is chosen as “Face, ” as shown in the bottom-
left image which is a very good approximation to the true gaze as observed in the video
sequence.

as a zero-mean Gaussian centred on the current best estimate of head-pose and direction
of motion. The prior on gaze is defined using a table which lists expected (i.e. physically
possible) gazes and unexpected (i.e. non-physical) gazes. TypicallyP(g= gexpected) = 0.8
and, for non-physical gazes where|θhead−θdirection|> 90,P(g = gunexpected) = 0.2.

Now we compute a distribution over all 64 possible gazes resulting from possible
combinations of 8 head poses and 8 directions. This posterior distribution allows us to
maintain probabilistic estimates without committing to a defined gaze which will be ad-
vantageous for further reasoning about overall scene behaviour. Immediately though we
can see that gazes which we consider very unlikely given our prior knowledge of human
biomechanics (since the head cannot turn beyond 90 degrees relative to the torso [20])
can be rejected in addition to the obvious benefit that the quality of lower-level match
(i.e. p(hmatch|hinput) can be incorporated in a mathematically sound way. An example is
shown in figure 4.

4 Results

We have tested this method on various datasets (see figures 5, 6 and 7). The first dataset
provided us with the exemplar data for use on all the test videos shown in this paper. In
the first example in figure 5 we show significant improvement over using head-pose or
direction alone to compute gaze (c.f. figure 5,top-left). The crucial interaction which
conveys the information that the people in the scene are together is the frequent turning of
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Figure 5: First we estimate gaze using the head-pose estimate alone (top-left), resulting
in a non-physical gaze (second frame) since the head must turn through more than 90
degrees but there is no mechanism for rejecting such a gaze (even if the likelihood is
objectively very low) when the direction of the person is not incorporated into the gaze
estimation calculation. Computing gaze using only the direction-of-motion estimated
from the trajectory results in critical interactions being missed (top-right). In this example
the tracked person turns to look at the other person on his right twice. This is not detected
(see frame 2) and, moreover, it is estimated that the second personis in view in images
3 and 4, which is incorrect. By fusing directon-of-motion information and head-pose
estimates the MAP gaze is much improved and the crucial interaction is captured (middle).
We show the error between the MAP estimate and the ground truth in the graphs below.
The mean of the absolute value errors here is 22.27 degrees, the median zero degrees. This
error corresponds to one half of our discretisation of head angle (which is 45 degrees), and
is a clear improvement on using the ML head-pose or direction estimate alone. Moreover
the errors are isolated and Markov smoothing (either Kalman Filter or HMM) of the head-
pose could well improve the results even further. The frames for which the head is turned
are clearly evident since the angle relative to zero degrees vertical in the image plane
increases.



Figure 6: Second surveillance sequence. The same training data set as used to obtain the
results above is used to infer head pose in this video. The ground truth is estimated by
hand from the images. The mean error is 5.64 degrees, the median 0.5 degrees.

Figure 7: This final example demonstrates the method in soccer footage.



the head to look at each other. We reliably detect this interaction as can be seen from the
images and the estimated head angle relative to vertical. The second example is similar
but in completely different scene. The skin histogram is recomputed for this video but the
training data remains the same. Once more the interaction implied by the head turning to
look at his companions is determined. Finally we demonstrate the method on sports video
in figure 7.

5 Conclusions

In this paper we have demonstrated that a simple descriptor, readily computed from
medium-scale video, can be used to estimate head pose robustly. In order to speed up
non-parametric matching into an exemplar database and to maintain probabilistic esti-
mates throughout we employed a fast pseudo-probabilistic binary search based on Princi-
pal Components. To resolve ambiguity, improve matching and reject known implausible
gaze estimates we used a simple application of Bayes’ Rule to fuse priors on direction-
of-motion and head-pose, evidence from our exemplar-matching algorithm and priors on
gaze (which we specified in advance). We demonstrated on a number of different datasets
that this gives acceptable gaze estimation for people being tracked at a distance.

6 Future work

One source of error is the video tracker which can produce inconsistency in the positions
of the skin pixels in the target frame. Matches are to some degree dependent on the
location of the skin pixels in the centre of the frame and tracking inconsistency can cause
discrepancies to arise. This needs to be investigated.

It seems to us the work reported here would be most useful in a causal reasoning con-
text where knowledge of where a person is looking can help solve interesting questions
such as, “Is person Afollowing person B?” or determine that person C looked right be-
cause a moving object entered his field-of-view. We are in the process of combining this
advance with our reported work on human behaviour recognition [22] to aid automatic
reasoning in video.
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