Hydrological modelling via aerial image segmentation

Neil Robertson Heriot-Watt University

Joint Research Institute in Signal and Image Processing www.erp.ac.uk

Collaborator credits

- Roland Burkhard Heriot-Watt University
- Andres de Moran Madrid
- Tak Chan City University, Hong Kong

Related publications

- IEEE ICIP 2009, Robertson & Chan
- AGILE 09, Robertson, de Moran, Burkhard, Chan

Objectives

Technical objectives

- Connecting images to hydrological modelling
- Provide "first approximation" solution to the real Land Use classification
- Which doesn't require lots of training
- Discover how a coarse segmentation of remotely-sensed images impacts the surface water flow estimate

Not to solve image segmentation

Social objectives

- Automatic flood risk analysis
- Flooding has greater consequences in poor regions
- GIS metadata requires labelling
- Lack of trained manpower and resources for manual labelling

Toolkit for Developing nations

Data

City of Zurich dataset

- 4000 x 4000 pixels
- 200 tiles in the test dataset
- 5 classes drawn from original 34
- Holderbach catchment

Official Land Use

- Highly detailed
- Labour intensive
- Classes relate to social use of area ...
- ... not to areas visibly distinct

Holderbach catchment

- Has a significant flood risk
- Highly delayed overland rainfall run-off
- Physical areas are assigned run-off coefficients
- Physical areas linked to GIS cells
- These are the input to model

Run-off coeff (by %)

The classes for segmentation

Can not detect same level of detail as official land use and achieve technical objectives ...

Detailed	Simplified
Building.AgricultureForestryGardening	
Building.Annexe	
Building.Commerce	
Building.HotelRestaurant	5-Building
Building.IndustryCommerce	5-Duilding
Building.PublicAdministration	
Building.Residential	
Building.Transportation	
paved.other_paved.Athletics	
paved.other_paved.BuildingPeriphery	
paved.other_paved.Carpark	
paved.other_paved.other_paved	
paved.Pavement	
paved.Pond	A-Payed
paved.Railways	-Faveu

The classes for segmentation

Building

Forest

Grass

Topsoil

Paved

Segmenting Aerial Images

Colour

- Assume given classes are definitive
- Convert to LAB colour
- Compute "distance" from each pixel to each class
- Smooth locally with median filter

Entropy

- Use initial colour results as input -> patches
- Compute local entropy given each patch
- Compute "distance" from each patch to each class

Simple ML estimator

Compute distribution for each pixel over each class and feature

$$p_{ij}^f(c|\dot{d_{ij}})$$

- Currently use 2 features ...
- General scheme: weight the distributions

$$C_{ij} = \operatorname{argmax} \prod_{f} p_{ij}^{f}(c|d_{ij})$$

Gradients: minor refinement

- Intra-patch gradient of Grass is large extract
- Distinguish between Paved & Topsoil at previous stage,
- Remove to leave buildings heuristic

Final result

How well do we do?

At best, compared to hand-labelled ground truth:

Topsoil	Till	Forest	Paved	Building
80	93	93	56	65

By overall image "type":

Image \ Class	Topsoil	Till	Paved	Building	Total
Mainly Topsoil	63	85	56	60	66
Mainly Till	63	89	38	65	84
Mainly Urban	64	79	51	63	62
Even Distribution	80	93	41	64	84

No distinct feature for some classes

Input

Soil Grass

Paved Building

Hydrological Modelling

Segmentation input to WetSpa

Water

Radiation

- GIS distributed catchment model (Wang et al. 1996)
- Predicts water and energy transfer between soil, plants, atmosphere
- Regional level in fixed daily timescale
- Runoff defined in each cell and result computed

Official Land Use

Reclassification for WetSpa input

Official, reclassified

Automatically derived

Results

Main peak is Total flow (m³/s)

"True" flow

Conclusion

Segmentation

- Simple, fast segmentation applied to large dataset
- Minimal training
- Tolerable results compared to hand-labelled data
- Weakness: colour dependent; few features; not fast

Hydrological modelling

- Land use classes can be significantly reduced
- Surprisingly good results using coarse remote sensing
- We overestimate
- Ambiguity between buildings/paved
- They have similar run-off coefficients -> result not affected