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Abstract

In this paper we develop a system for human behaviour
recognition in video sequences. Human behaviour is mod-
elled as a stochastic sequence of actions. Actions are de-
scribed by a feature vector comprising both trajectory in-
formation (position and velocity), and a set of local motion
descriptors. Action recognition is achieved via probabilis-
tic search of image feature databases representing previ-
ously seen actions. A HMM which encodes the rules of the
scene is used to smooth sequences of actions. High-level be-
haviour recognition is achieved by computing the likelihood
that a set of predefined Hidden Markov Models explains the
current action sequence. Thus, human actions and behav-
iour are represented using a hierarchy of abstraction: from
simple actions, to actions with spatio-temporal context, to
action sequences and finally general behaviours. While the
upper levels all use (parametric) Bayes networks and belief
propagation, the lowest level uses non-parametric sampling
from a previously learned database of actions. The com-
bined method represents a general framework for human
behaviour modelling. In this paper we demonstrate the re-
sults chiefly on broadcast tennis sequences for automated
video annotation.

1. Introduction
In a system for high-level visual scene understanding, the
role played by humans in the scene is almost certainly of
paramount importance. In particular, a method for classi-
fying an instantaneous human action, or even better, de-
termining a behaviour that may comprise several actions
in sequence, would inevitably be a core building block of
the system. In this paper we present progress towards such
a system by demonstrating how a non-parametric learning
and classification technique for actions, can be combined
with a simple, yet effective, parametric representations of
action sequences, which we use to describe behaviours.

The lowest level of our system, for recognising simple
actions (e.g. walking versusrunning, versusstanding is

based on the technique described by Efroset al [5] who
showed how action recognition can be structured as a search
over a comprehensive training database. Though their work
was effective for matching frames in video sequences ac-
cording to similar gross properties of inter-frame motion,
the instantaneous action descriptors used are only effective
if the training set is very large indeed. In many applications,
including our own, there is a need to achieve similar recog-
nition rates but with a much smaller training set. To this end
we show how a simple extension to their “blurry motion
channel” descriptor can effectively disambiguate between
types of action even though the intra-sequence description
of each frame of different actions are very similar.

Efros et al deliberately used position independent de-
scriptors, and made no attempt to reason at a higher level
about the actions. We are explicitly interested in higher-
level reasoning about action context. In particular the spa-
tial context (where an action happened) and the temporal
context (when it happened, and more interestingly, where
it occurred in a sequence of actions) are vital for higher
level reasoning and thus we take steps to represent both.
To this end we consider position and velocity information
as additional features; these too are compared against a
training database to elicit (respectively) qualitative position
and direction labels. In a simple urban surveillance sce-
nario these qualitative descriptors might be, for example,
nearside-pavement, on the road, far-side pavementfor po-
sition, left-to-right, away, towards(etc) for direction.

The results of the three database searches are then fused
using a simple Bayes net to provide a distribution over
possiblespatio-temporal actions(an example of a spatio-
temporal action might bewalking, left-to-right, near-side
pavement).

Taking the maximum likelihood (ML) spatio-temporal
action at each instant in a sequence yields a commentary
of the (estimated) observed activity. If instead the action
distributions are used as input to a hidden markov model
which encodes the known “rules” of the scene then a max-
imum a posteriori action sequence results. As a final level
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of abstraction, we then use further HMMs to characterise
high-level behaviour which corresponds to certain patterns
of activity.

Our approach differs from much previous use of HMMs
[2][11][8] in that our HMM input/ouputs are distributions
over action types rather than low-level visual features. Ab-
stracting the input/output variables in this way means that
less training data is required for the HMMs, or indeed they
are sufficiently simple that they can be modelled manually
using “expert” knowledge.

In summary we make the following contributions:

• Recent results in data-driven human action recogni-
tion [5] have been extended: a concatenated local mo-
tion descriptor gives more effective discrimination in
smaller datasets by improving temporal context,

• By representing position and velocity, in addition to lo-
cal motion, spatial context is given which is important
for higher level reasoning,

• Inspired by Sidenbladh’s [16] method for generating
a set of particles representing a distribution over tra-
jectories, we structure the search over actions using
a PCA decomposition of the database. This yields
an efficient search which isO(logN) compared with
O(N), which for our application means 20x faster than
for nearest-neighbour) and additionally by including a
stochastic element to the search we can easily obtain a
likelihood distribution over possible actions,

• The use of a Bayes net for fusion of non-parametric
database search results for action recognition

• Smoothing of action sequences using a HMM which
encodes the basic rules of the scene produces a robust
text commentary of observed activity,

• Higher level reasoning about scene context by repre-
sentation of behaviours as action sequences, with rep-
resentation and recognition of these is achieved via
HMMs. Human level descriptions are achieved by ab-
stracting the actions as a precursor.

The remainder of the paper is structured as follows. We
begin with a review of relevant prior art, then turn to a more
detailed description of each of the stages of our algorithm.
Section 2.2 deals with the low-level non-parametric action
recognition stage, and describes in particular how we have
implemented an efficient probabilistic search of an exem-
plar training database in order to sample from the action
(and qualitative position and direction) distribution(s). Sec-
tions 2.3-2.4 describe the Bayes Networks that fuse the low-
level data, smooth the action sequences and finally infer
high-level behaviour. Section three gives experimental re-
sults and we conclude in section four.
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Figure 1: This schematic diagram illustrates the relationship
between image features, actions, action sequences and the
high-level parameterisation of behaviour. Databases of the
position, velocity and motion-descriptor features are pre-
pared in advance and are hand-labelled with qualitative de-
scriptions of place, direction and simple-action. Distrib-
utions over each of these features are computed via non-
parametric sampling of the databases. These distributions
are combined using a simple Bayes Net which produces a
distribution over spatio-temporal actions. Sequences of ac-
tions can be smoothed using HMMs if the rules of the scene
are known. This provides a text commentary of observed
activity in human-readable, qualitative terms. Sequences of
action are also encoded as HMMs allowing higher-level de-
scriptions of overall activity to be inferred. These HMMs
are encoded using the spatio-temporal actions and not di-
rectly from image data. They are thus general and can be
used between similar scenes.
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Throughout the paper we use sequences from either a
simple urban surveillance scenario or sports footage. In
our examples we assume the urban data represents on of
a small set of simple actions such aswalking, running,
standing, ditheringand a reasonable range of qualitative
positions i.e.nearside-pavement, road, driveway, farside-
pavementand directions i.e.left-to-right, acrossetc. This
set of sequences is used to test the simple-action match-
ing and action recognition steps. A richer set of simple-
actions is found in tennis. Using our method we show that
an intermediate representation of action can provide an au-
tomatic commentary. This commentary can be improved by
smoothing the action sequences using an HMM which en-
codes expert knowledge about shot transitions e.g. that a
serve starts a point and that a non-shot (e.g.running) fol-
lows a shot.

1.1. Previous Work
There has been much reported in the recent literature about
methods for training recognition systems using large train-
ing data sets (e.g. [21]). This approach is beneficial in the
case where not much is known about the class of object
that one wishes to detect. In fact, there is an increasing
number of papers describing techniques for action recogni-
tion which involve no complex models of activity. Recently
Zhonget al [23] demonstrated detecting unusual activity by
classifying motion and colour histograms into prototypes
and using the distance from the clusters as a measure of
novelty. Sidenbladh and Black have shown that a compre-
hensive example set of joint angles can be used to aid human
body tracking [16]. Also Zelnik-Manor and Irani [22] used
a distance metric to identify examples of actions in video.
Of most direct relevance is the recent work of Efroset al
[5] which demonstrated that the general actions of people at
medium scale (around 30 pixels high) can be distinguished
by representing the action as a set of blurry motion channels
derived from the optical flow between successive frames of
the sequence. These non-parametric approaches do not ex-
ploit the spatio-temporal relationship between actions and
as such do not analyse high-level behaviour.

The AI Lab at MIT has developed an entirely automated
system for visual surveillance and monitoring of an urban
site [8]. While this is an interesting example of engineer-
ing computer vision solutions it does not attempt toexplain
observed behaviour.

A number of parametric methods have been formulated
for recognising action. Brand and Kettnaker use HMMs for
this purpose [2]. Buxton has been prominent in the use
of Bayesian networks for visual surveillance [3]. Morel-
las et al in their DETER system [13] also show that they
can automatically evaluate the threat posed by observed ac-
tivity using a complete, real-time system deployed in en-
vironments such as car parks and oil pipelines. Makris

[11] also uses HMMs for detailed modelling of trajecto-
ries from learned geometric route data. Multiple HMMs
are used to capture the temporal variation between trajecto-
ries. This work may not be applicable to real-life data and
the HMMs suffer from being unable to provide any high-
level description of behaviour [11]. Porikli and Haga [15]
include object-based and frame-based features. This infor-
mation is parameterised by an HMM and distances between
HMM models form the basis of an eigenvector decompo-
sition technique to optimise the number of clusters of ac-
tions. Related to Markov Modelling, Town [20] learns a
Bayesian Network from an “ontology” using the K2 algo-
rithm. The ontology comes directly from hand-labelled por-
tions of video. Town shows good classification results for
the sequence from which the ontology was derived but there
is no attempt to generalise behaviour beyond this. Galata,
Johnson and Hogg [6] [9] use Vector Quantisation (VQ)
in order to group and classify trajectory data. As Stauffer
points out the predetermined number of probability distrib-
utions which results from quantising again on the initial VQ
can cause difficulty when comparing inputs grouped into
separate pdfs [18]. The work of Johnson is a notable attempt
to introduce the concept of action and behaviour into classi-
fication systems [9]. The idea that object shape is significant
is addressed in Johnson and Hogg’s work but shape and tra-
jectory information is not maintained independently. While
the parametric approaches demonstrate success in classify-
ing complex activity, there is a tendency to use the parame-
terisation as a “black-box”. This means that a lower-level
description is not derived, certainly not in human-readable
terms. In this work we use intermediate levels of abstraction
from simple-actions (e.g.walking) through spatio-temporal
action (e.g.walking-on-the pavement) to sequences of ac-
tion i.e. behaviour (e.g.crossing-the-road).

2. Action and behaviour recognition
The main components of our behaviour recognition method
are illustrated in figure 1. These are (i) action recognition
via non-parametric matching of trajectory data and instan-
taneous motion descriptors, fused via a simple Bayes net;
(ii) smoothing of the action recognition sequence using an
HMM which encodes known rules for action transitions;
(iii) behaviour classification using HMMs.

2.1. Target description
Using a standard mean shift tracking algorithm [4], we
extract the following information for each target for each
frame: position, velocity and a window around the target
(see fig 1). In addition to the target’s place and speed we are
also interested in the identification of the action of the per-
son we have tracked e.g.walkingor running. A simple and
effective method to do this was suggested by Efroset al [5].
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In that work a local motion descriptor based on coarse optic
flow is extracted from a target window. This local motion
descriptor is compared against a dataset of previously seen
local motion descriptors that have been hand-labelled with
their corresponding actions. The nearest-neighbour match
provides an action label for the current data. In our exper-
iments we have found that if the database contains only a
small number of examples of a certain action the risk of the
nearest-neighbour being incorrect is greatly increased. In
order to add temporal context and mitigate against this type
of confusion, we create a richer feature descriptor by con-
catenating the coarse motion descriptors from a number of
consecutive frames, typically 5, to form a motion feature
vector at each frame. An example showing the benefits of
this enhancement is shown in figures 3 and 4.

Efroset al deliberately discarded all positional informa-
tion. In contrast we have argued in section 1 that such
information is important in placing an action in its spatial
context. To that end we also create additional databases of
previously seen trajectories (position and velocity). In each
case the feature vector is the concatenation of a few (typi-
cally five) frames worth of position (respectively velocity)
data, and the database examplars are labelled with qualita-
tive position (respectively, qualitative direction) labels. The
databases of position, velocity and local motion are main-
tained independently, and the set of “normal” actions is the
set of combinations of the qualitative labels attached to the
exemplars in the feature databases.

Matches from the position, velocity and motion-
descriptor databases are fused using a simple Bayes net de-
scribed in Section 2.3. Prior to that, we discuss the database
organisation and search techniques. This is not trivial for
two reasons (i) the volume of data from the blurry motion
descriptors presents a challenge for efficient search: there
are 30000 entries in a single local motion feature vector for
a30×50 pixel target; (ii) for more effective data fusion (and
necessarily for appropriate use of a Bayes net) we do not
simply want a nearest-neighbour (i.e. maximum likelihood)
match, but rather a distribution over possible matches.

2.2. Database creation and search
In [16] a large database of high-dimensional points is struc-
tured as a binary tree via principal component analysis of
the data set. The children of each node at leveli in the
tree are divided into two sets: those whoseith component
(relative to the PCA basis) is larger and those whose value
is smaller than the mean. (Although Beis and Lowe re-
ported a variant on the k-d tree algorithm [1] and Neneet
al [14] proposed a simple algorithm which uses a Euclid-
ean distance measure but is efficient for dimensions greater
than 15, where most algorithms are impractical, McNames
provided an overview of a number of common algorithms’
performance which demonstrated that a Principal Compo-

nents Tree search outperforms the other well-known meth-
ods [12].) In Sidenbladh’s application each data point com-
prised the concatenated joint angles over several frames of
human motion capture data. The method, however, ap-
plies equally well to our application of image feature data.
If Ψ̄ = 1

n

∑n
i=1 Ψi is a lengthdm vector representing

the mean of all the sequences of motion descriptors and
Â = [Ψ̂i, . . . , Ψ̂n] is a dm × n matrix containing all the
sequences with the mean motion subtracted, by applying
SVD we write Â = UΣV T where thedm × n matrix U
contains the principal components of̂A and Σ is diago-
nal matrix containing the standard deviationσl accounted
for by the principal componentsl = 1, . . . , n. Any se-
quence in the database can be approximated byΨmatch =
Ψ̄+Ucmatch. Analogously an input motion can be approx-
imated asΨinput = Ψ̄ + Ucinput. The firstb = log2(n)
(wheren is the number of time intervals in the training data)
components are organised into a binary tree the nodes of
which are split on the basis of the sign of the coefficients
ci = [ci,1, . . . , ci,b]. The search of the tree is randomised
by the inclusion of a random perturbation of the traversal
of the tree drawn from a Gaussian distribution. At the leaf
nodes a linear search takes place if there is more than one
match. The probability of these matches is computed on
the basis of how “close” the match in the database is to
the input i.e. p(match|input) = exp−( |match−input|

σ )2.
This search method is used for two reasons: it is more ef-
ficient and the ability to return multiple neighbours repre-
sents a distribution over possible actions i.e. a likelihood.
The best match for the components of the current obser-
vation is found in the example database for each sample
of the tree. The search time is improved by a factor of 20
and, since we sample many times, the search provides a set
of particles which represents a distribution over matches of
position, velocity and motion-descriptor into frames of the
previously seen examples. An example of such a distribu-
tion is shown in figure 2. The database was created using 60
minutes of automatically tracked (but hand-labelled) data,
and was tested using novel sequences of similar actions.

2.3. Action likelihood computation
A simple-action we define as a target-centred action such
as walking. This can be estimated by sampling from
the motion-descriptor database alone. By fusing the like-
lihoods of the matches from the position, velocity and
motion-descriptor exemplars we compute the probabil-
ity of a spatio-temporal action such aswalking-left-to-
right-on-nearside-pavement. We use a (trivially) simple
Bayes Net to effect this information fusion: if the spatio-
temporal action is denoteda, x is the qualitative posi-
tion, v is the qualitative direction, andm is the sim-
ple action, then assuming conditional independence yields
p(a, x, v, m) = p(a)p(x|a)p(v|a)p(m|a). The distribu-
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Figure 2: Database searching results. The top row shows
the input figures from which the optic-flow motion chan-
nels are computed. The sampling of the database (which
is represented as a binary tree search of Principal Compo-
nents) is shown in the graph (bottom) with the exemplars at
the leaf nodes superimposed. As we expect the most likely
simple-action is indeedwalking(peak on the left) but this is
not unambiguous.

Figure 3: Matching optical flow based motion descriptors
without large volumes of representative data sets can result
in ambiguous matches as shown here. For each pair the
input is shown on the left and the ML exemplar from the
sampling of the motion-descriptor database is shown on the
right (see figure 2).

Figure 4: We concatenate the motion-descriptor data from
5 consecutive frames which provides temporal context and
results in the ML matching exemplar being less ambiguous
as manifested by the fact that the motion does not reverse in
this case (c.f. figure 3).

tionsp(xm|xi), p(vm|vi) andp(mm|mi) are estimated by
sampling from the databases. We compute the marginal dis-
tributionp(a) since, for any given datad (herex, v andm),
p(d|a) = p(a|d)p(d)

p(a) . p(a|d) is specified in the conditional
probability table for the nodea, p(d) is defined from the fre-
quency of occurrence of datad in the training set andp(a)
is uniform in most cases. Figures 6 and 5 illustrates this
process for two different applications. Figure 5 highlights
the significance of each input for successful action classifi-
cation.

2.4. Action sequences
Since the behaviour in tennis is well-bounded we can reli-
ably extract exemplars of all the expected shots. A com-
mentary at the action (shot) and behaviour (play) level
should then be possible since all known activity is repre-
sented in our hand-labelled model. Since the series of ex-
pected shottypesis well-established (e.g. a serve starts a
point, a shot is followed by a non-shot period while the op-
posing player returns etc.) we smooth the shot commentary
using a HMM which encodes the rules. Results of shot-
matching and the resulting commentary are shown in fig-
ures 7.

2.5. Behaviour parameterisation
At each time step then we have computed the most likely
action. The sequence of actions and their likelihoods over
a number of time steps is used to find the most likely be-
haviour by computing the likelihoods of predefined behav-
iour HMMs1 explaining the current action sequence. These
HMMs are learned from an “ideal” example which has been
automatically tracked and labelled. We use a likelihood
ratio to manually compare competing behaviour models.
The likelihood ratio for comparing two hypothesesH and
H ′ is computed asLR = 2(log(p(H)) − log(p(H ′))),
which has a chi-squared distribution parameterised by the
difference in the model order. IfLR is greater than the
95% confidence value of the chi-squared distribution for
δ = |O(H) − O(H ′)|, the the result is statistically signifi-
cant. An example of this high-level classification is shown
in figure 7.

3. Experiments and results
We apply the technique to tennis video in order to clas-
sify each players’ shots and producing an automatic text
commentary. This presents a significant challenge due to
the rich set of simple actions and the ambiguity due to
both players. Following automatic tracking of players in

1Theory and implementation details are not discussed here. For further
reading see [7]
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database matches

distribution over all actions

walk−nearside−pavement
run−nearside−pavement

input frame

Figure 5: Fusing position, velocity and motion-type infor-
mation independently aids action classification. It might
be assumed that position is the most significant compo-
nent of the action-recognition stage. In fact, velocity and
motion-type are equally important. In this example the ML
motion-type is (incorrectly) classified aswalking. When
the resulting distributions from each of the inputs (i.e. po-
sition, velocity and motion-type) are fused the ML estimate
is now (correctly)running-on-nearside-pavement. The ac-
tion probability distribution is shown here when velocity is
excluded (red) and included (blue). The next most likely
actions involve either thenearside-pavementor walking.

input frame

baseline−forehand

matches in database

position

velocity

motion−type

Figure 6: Distribution of action likelihoods. There are 33
possible shots resulting from combinations of positions and
shot -types in our exemplar set. The closest ML matches in
the databases for this frame are shown next to the still image
in the order position, velocity and shot-type. The distribu-
tion over all shots is shown in the graph. The most likely
shot is computed to bebaseline-forehandwhich is the cor-
rect result. Note that the ML estimate for velocity appears
to be incorrect but the overall (ML) action classification is
correct.

video of 4 different professional tennis matches, we manu-
ally segmented the sequences into a exemplars of standard
tennis shots and created independent databases of the po-
sition, velocity and simple-action motion descriptors. The
shots we extract exemplars for are labelled with the follow-
ing qualitative descriptions:forehand, backhand, forehand-
volley, backhand-volley, serve, smash. In addition we pro-
vide examples of non-shots labelledrunning, walking and
waiting-for-serve. Shot example databases are created for
each player i.e. facing the camera (farside court) and fac-
ing away from the camera (nearside) which significantly re-
duces ambiguity in the choice of simple-action (a backhand
by a player facing one direction is, motion-wise, very simi-
lar to a forehand from the other viewpoint). Taken with the
labelled position examplesbaseline, midcourt, backcourt
and net, we have 33 possible actions for each player, in-
cluding the null hypothesis.

Testing is performed using previously unseen footage
from a 5th match involving two previously unused players.
Figure 6 shows an example of the spatio-temporal action se-
lection performed by the first two levels of our system. Note
that although the figure shows the maximum likelihood es-
timate, the system in fact retains a distribution over possible
spatio-temporal actions.
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key frames in tennis play

37 128

160195

Frame 117, P2 plays  Midcourt forehand

Frame 167, P1 plays  Backhand at net
Frame 184, P1 plays  Running at net

Frame 45, P2 plays  Walking at baseline

Frame Shot
1 - 49 Player 1 Service
1 - 18 Player 2 Waiting at backcourt
19 - 41 Player 2 Baseline backhand
50 - 70 Player 1 Walking at net
81 - 113 Player 1 Backhand at net
42 - 91 Player 2 Walking at baseline
92 - 134 Player 2 Baseline backhand
114 - 122 Player 1 Walking at net
123 - 140 Player 1 Backhand at net
135 - 200 Player 2 Waiting at backcourt
141 - 146 Player 1 Walking at net
147 - 155 Player 1 Backhand at net
Overall play Serve-and-volley

Figure 7: A tennis play with the tracks of the players su-
perimposed. The matches in the position, velocity and
shot database are shown at critical points in this play. The
commentary automatically generated is displayed above the
matches from the database. The text commentary automati-
cally produced from this tennis play is shown below the fig-
ures. The shot sequence arising from the video is smoothed
using an HMM which encodes expert knowledge about ten-
nis shot sequences. In the commentary the misclassified
shots are shown in italics.

walk−at−net

Unsmoothed Shot Sequence
run−at−net

net−backhand

baseline−forehand

walk−at−net

net−backhand

service

Smoothed Shot Sequence

Figure 8: Smoothing the shot sequence which arises from
the spatio-temporal action-recognition phase (see figure 1)
provides consistency across the shot choice and allows im-
portant expert knowledge to refine the shot selection. In
this example here the player (which is player 1 in figure 7)
is known to be serving and HMM for a serving player is
used to smooth the shot sequence. The improvements can
be seen by comparing the unsmoothed (left) and smoothed
(right) sequences in particular the serve is no longer omitted
and the shot to non-shot transition is observed.

3.1. Tennis commentary
A simple commentary can be obtained from the first two
levels of our system by simply selecting the ML action at
each instant. This however neglects that in many scenar-
ios domain knowledge can be used to improve these esti-
mates. In our tennis case-study we use a hidden markov
model loosely to encode the “rules” of engagement: aserve
starts each point, that a shot exists for a typical number of
frames, that position on the court must go through phys-
ically possible transitions (midcourt isen routeto the net
from the baseline) and that a non-shot always follows a shot
(and vice-versa). This HMM effectively acts as a smooth-
ing prior, ensuring that invalid shot transitions are penalised
and that a maximum a posteriori action sequence results.
An example of this process is shown in figure 7 with the
smoothed commentary provided as a text output at the bot-
tom of the figure. A play is represented by a sequence of
shots from both players. Two HMMs are created to repre-
sent types of play,baseline-rallyandserve-and-volley, from
ideal, hand-selected action sequences. As the play unfolds
in a new video sequence we choose the HMM play model
which best explains the sequence of shots.

4. Conclusions
In this paper a method for action recognition is reported.
The particular features we have chosen to use to construct
a feature-level description are easy to obtain and photomet-
rically invariant, but one is certainly not limited to these
features. The inclusion of a description of local motion
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raised three issues: 1. searching a large database effec-
tively; 2. ensuring temporal consistency of model choice
when the example data is sparse; 3. combining independent
descriptions of action in a principled way to describe ac-
tion and behaviour. We combined disparate ideas from the
literature for each of these problems in a novel way and
the results demonstrated the efficacy of these solutions. We
showed that by creating a framework for the propagation of
uncertain information in a principled fashion coupled with
a method for incorporating expert domain knowledge it is
possible to classify human action non-parametrically and
deal with ambiguity. Where the goal is to explain, at a high
level, human behaviour in video, the use of compact behav-
iour HMMs which model behaviour as a sequence of ac-
tions allows for a rich description of behaviour which could
be a significant component of a system for high-level rea-
soning.

Though we have demonstrated the system with applica-
tion to video annotation system, we could equally apply the
techniques to abnormality detection.

Video annotation and/or novelty detection are simply
means to a grander goal of developing a system which can
explainwhat is being observed, not simplydetectwhat has
been previously observed. Our current research is examin-
ing the use of Coupled Hidden Markov Models as a means
of representing causal relationships between agents in the
scene. It may be possible to extend the idea of statistically
parsing dynamic scenes to extract the rules which are in op-
eration in each environment. These rules could be used in a
rule-based system for automatic surveillance. Arising from
the tennis sequences is the interesting potential for building
a tool to search video on the basis of 2D+t information.
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