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Structure from Motion Causally
Integrated Over Time

Alessandro Chiuso, Paolo Favaro, Student Member, IEEE,
Hailin Jin, and Stefano Soatto, Member, IEEE

Abstract—We describe an algorithm for reconstructing three-dimensional structure and motion causally, in real time from monocular
sequences of images. We prove that the algorithm is minimal and stable, in the sense that the estimation error remains bounded with
probability one throughout a sequence of arbitrary length. We discuss a scheme for handling occlusions (point features appearing and
disappearing) and drift in the scale factor. These issues are crucial for the algorithm to operate in real time on real scenes. We describe
in detail, the implementation of the algorithm, which runs on a personal computer and has been made available to the community. We
report the performance of our implementation on a few representative long sequences of real and synthetic images. The algorithm,
which has been tested extensively over the course of the past few years, exhibits honest performance when the scene contains at least
20-40 points with high contrast, when the relative motion is “slow” compared to the sampling frequency of the frame grabber (30Hz),
and the lens aperture is “large enough” (typically more than 30° of visual field).

Index Terms—Structure from motion, real-time vision, shape, geometry.

1 INTRODUCTION

I nferring the three-dimensional (3D) shape of a moving
scene from its two-dimensional images is one of the
classical problems of computer vision and is known as
“structure from motion” (SFM). Among all possible ways in
which this can be done, we distinguish between causal
schemes and noncausal ones. More than the fact that causal
schemes use—at any given point in time—only information
from the past, the main difference between these two
approaches lies in their goals and in the way in which data
are collected. When the estimates of motion are to be used
in real time, for instance, to accomplish a control task, a
causal scheme must be employed since “future” data are
not available for processing and the control action must be
taken “now.” In that case, the sequence of images is often
collected sequentially in time, while motion changes
smoothly under the auspices of inertia, gravity, and other
physical constraints. When, on the other hand, we collect a
number of “snapshots” of a scene from disparate view-
points and we are interested in reconstructing it, there is no
natural ordering or smoothness involved; using a causal
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scheme in this case would be highly unwise, and batch
optimization based on bundle adjustment will naturally
achieve better performance.

No matter how the data are collected, SFM is subject to
fundamental tradeoffs, which are a severe obstacle to real-
time real-world operation as we articulate in Section 1.2.
This paper aims at addressing such tradeoffs: It is possible
to integrate visual information over time, hence, achieving a
global estimate of 3D motion, while maintaining the
correspondence problem local. Among the obstacles we
encounter is the fact that individual points tend to become
occluded during motion, while novel points become visible.
While we show how visual information can be integrated,
we have to tone down our hopes of being able to do so
optimally, for there exists no known finite-dimensional
optimal solution to this problem. Therefore, we have to
resort to approximations. It is our goal to provide algorithms
that work in practice as well as in theory; our contributions
in the matter of analysis can be summarized as follows: On
the observability of 3D structure and motion, we provide a
simpler proof of the (well known) global observability; we
then prove uniform observability, which we use to
characterize the minimal realization of the model. These
results are crucial for proving the stability of the estimation
algorithm that we propose (a nonlinear filter). Finally, we
describe a complete real-time implementation of the algo-
rithm, which includes an approach to causally handle
occlusions and partial self-calibration.

1.1 A First Formalization of the Problem
Consider an N-tuple of points in the three-dimensional
Euclidean space, represented as a matrix

X= [X1X2 . XN] c ]]E{3><JV
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and let them move under the action of a rigid motion
represented by a translation vector 7" and a rotation matrix
R. Rotation matrices are orthogonal with unit determinant
{R | RRT =TI and det(R) = 1}. Rigid motions transform the
coordinates of each point via R(t)X' + T(t). Associated to
each motion 7', R there is a velocity, represented by a vector
of linear velocity V' and a skew-symmetric matrix & of
rotational velocity." Under such a velocity, motion evolves
according to

eV R(t).

T(t+1)= ea(t)T(t) + V(@) ;

The exponential of a skew-symmetric matrix can be
computed conveniently using Rodrigues’ formula:

R(t+1) =

0 &
ol + 2 (1= cos(lel)
for ||w|| # 0, otherwise e’ = I. We assume that, to an extent
discussed in later sections, the correspondence problem is
solved, that is we know which point corresponds to which
in different projections (views). Equivalently, we assume
that, we can measure the (noisy) projection

e’ =1+

y'(t)=m(R®X' +T(t)) +n'(t) eER* Vi=1...N,

where we know the correspondence y’ «» X'. We take as
projection model an ideal pinhole, so that

. T
. o [xix
y' =n(X') = [—1 —2]
X, X!

This choice is not crucial and the discussion can be easily
extended to other projection models (e.g., spherical, ortho-
graphic, paraperspective, etc.). We do not distinguish
between y' and its projective coordinate (with a 1
appended), so that we can write X' =y'X}. Finally, by
organizing the time-evolution of the configuration of points
and their motion, we end up with a discrete-time, nonlinear
dynamical system:

Xi(t+1) :Xl(t) X'(0) = X},
T(t+1) = e OT(t) + V() T(0) =Ty
R(t+1) = e“UR(1) R(0) = Ro
V(t+1)=V(t)+av(t) V(0) =V
(t + 1) = w(t) + ay,(t) , w(0) = wy
R(t)X'(t) +T(t)) +n'(t) n'(t) ~ N(0,%,),

where ~ N(M, S) indicates that a vector has a Gaussian
distribution with mean M and covariance matrix S. In the
above system, o is the relative acceleration between the
viewer and the scene. If some prior modeling information is
available (for instance, when the camera is mounted on a
vehicle or on a robot arm), this is the place to use it.
Otherwise, a statistical model can be employed. In

1. Skew-symmetric 3 x 3 matrices are represented using the
“hat” notation { 0 e o }

ag [

ay a 0
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particular, we can formalize our ignorance on acceleration
by modeling o as a Brownian motion process.” In principle,
one would like, at least for this simplified formalization of
SFM, to find the optimal solution. Unfortunately, it can be
shown that there exists no finite-dimensional optimal filter
for this model.?

1.2 Tradeoffs in Structure from Motion

The first tradeoff involves the magnitude of the baseline and the
correspondence problem: when images are taken from disparate
viewpoints, estimating relative orientation is simple, given
the correspondence. However, solving the correspondence
problem is difficult, for it amounts to a global matching
problem which spoils the possibility of use in real-time
control systems. When images are collected closely in time, on
the other hand, correspondence becomes an easy-to-solve
local variational problem. However, estimating 3D motion
becomes rather difficult since—on small motions—the noise
in the image overwhelms the feeble information contained in
the 2D motion of the features.*

No matter how one chooses to increase the baseline in
order to bypass the tradeoff with correspondence, one
inevitably runs into deeper problems, namely, the fact that
individual feature points can appear and disappear due to
occlusions, or to changes in their appearance due to
specularities, changes in the light distribution, etc. To
increase the baseline, it is necessary to associate the scale
factor to an invariant of the scene. Therefore, in order to
process that information, the scale factor must be included
in the model. This tradeoff is fundamental and there is no
easy way around it: information on shape can only be
integrated as long as the shape is visible. We choose to
address this problem by associating the scale factor to a
“reference feature” chosen automatically among the visible
ones. When that feature disappears, the reference switches
to (the best current estimate of) another feature. Any error
in the localization of that feature results in a global error,
which increases every time the reference feature switches,
effectively causing a slow drift in the estimates. Such a drift
is unavoidable (no matter what the algorithm or the choice
of reference for the scale factor), but can be compensated for
“a posteriori,” for instance, if a feature previously used as a
reference becomes visible again, so that the trajectory can be
recomputed. This global registration is a higher-level
process that we do not address in this paper.

2. We wish to emphasize that this choice is not crucial towards the
conclusions reached in this paper. Any other model would do, as long as
the overall system is observable.

3. There are numerous reasons why the above formalization is altogether
simplistic from the point of view of vision scientists, chief in the fact that the
position of N points in space is hardly a satisfactory representation of the
shape of a scene. Furthermore, we have assumed that the scene is a single
rigid object (or that it has been segmented into rigid objects and we restrict
the attention to one of them), and that we know the correspondence between
points; assumptions that are all but unrealistic in any scene of practical
interest. However, at least for this simple instantation of SFM, we would
like to offer a provably stable, robust, and efficient algorithm.

4. There are many heuristics to bypass this tradeoff. For instance, one
could track individual featurepoints from frame to frame in a sequence, but
discard intermediate frames and start processing data only when the
baseline is “large enough.” A more principled way to proceed is to increase
the baseline by integrating visual information over time. Notice that time-
integration does not mean time-averaging: if the noise is such that the
residual cost being minimized is flat, averaging is meaningless. A scheme
for time integration of visual information must result in an effective increase
of the baseline, while using information from each frame.
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1.3 Relation to Previous Work and Organization of
the Paper

We are interested in estimating motion so that we can use
the estimates to accomplish spatial control tasks such as
moving, tracking, manipulation, etc. In order to do so, the
estimates must be provided in real time and causally, while
we can rely on the fact that images are taken at adjacent
instants in time and the relative motion between the scene
and the viewer is somewhat smooth. Therefore, we do not
compare our algorithm with batch multiframe approaches
to SFM (such as those based upon multilinear geometry).
This includes iterative minimization techniques such as
“bundle adjustment.” If one can afford the time to process
sequences of images offline, of course a batch approach that
optimizes simultaneously on all frames will perform better.”

Our work falls within the category of causal motion
and structure estimation (also referred to as “recursive,”
or improperly, “Kalman filter-based” methods), that has a
long history. To our knowledge, Dickmanns and Graefe
[10], and Gennery [13], were the first to address the
causal estimation of motion, confined to structured
environments (objects with known shape in the case of
Gennery, freeways in the case of Dickmanns and Graefe).
The past 15 years have seen a proliferation of recursive
schemes to estimate Euclidean structure from known
motion [22], motion from known structure [5], [28], or
both simultaneously [1], [3], [11], [12], [14], [15], [17], [19],
[20], [23], [27], [29], [31], [32], [36], [37], [38], [39], [40]
[41], and references therein. The first attempts to prove
stability of the schemes proposed are recent [26].
However, few of the schemes cited address occlusions
[8], which makes them prone to the tradeoffs just
described and, therefore, hardly usable in realistic scenes
where occlusions are the norm. The first attempts to
handle occlusions in a causal scheme® came only a few
years ago: McLauchlan et al. [23] proposed a filter with
variable states, that however requires a batch initializa-
tion, while Soatto and Perona [35] proposed several
schemes in which the problem of occlusions was
bypassed by eliminating structure from the model. Cui
et al. [8] have also proposed a method to handle
occlusions, although that relies on a batch step to estimate
interframe motion and, therefore, suffers the tradeoffs
described in Section 1.2. Our approach is similar in spirit
to the work of Azarbayejani and Pentland [3], extended to
handle occlusions. In addition, the model in [3] is
subminimal which results in an incorrect weighting of
the measurements (see the Appendix and Fig. 2 for more
details).

Part of this study is concerned with analysis. In the
appendix, we analyze the conditions that are necessary in
order to be able to causally reconstruct structure and
motion. We prove uniform observability, which is crucial
for the proof of stability of the algorithm that we propose.
The other part, which represents the core of the paper, is
concerned with the implementation of a system for function-

5. One may argue that batch approaches are now fast enough to be used
for real-time processing. However, speed is not the problem, robustness
and delays are.

6. There are several ways of handling missing data in a batch approach:
since they do not extend to causal processing, we do not review them here.

ing in real time on real scenes. We discuss our scheme for
handling occlusions, drift in the scale factor and tuning of
the filter. We then report some experiments with the
scheme proposed. We have made our implementation
available to the public [18], so that readers can test first-
hand the performance and robustness of our scheme (or
lack thereof).

2 REALIZATION

In order to design a finite-dimensional approximation to the
optimal filter, we need an observable realization of the
original model. Observability in SFM was addressed first in
1994, [9], [33] (see also, [34] for a more complete account of
these results). The concept of observability in batch SFM
(i.e., when there are no causality constraints) reduces to a
uniqueness question that has been studied extensively in
the literature of photogrammetry (see [24] and references
therein).

2.1 Minimal Realization
In Appendix A, we prove the following:
Proposition 1. The model:

yo(t+1) =y(t) i=4...N y;0) =y
pl(t+1)=p'(t) i=2...N p'(0)=p
T(t+1) =exp(@®)T(t) + V() T0) =T,
Q(t 4 1) = Logsos) (exp(w(t)) exp(Q(t)) 0(0) =Q
V(it+1)=V({) + av(t) V(0) =Vp
w(t+1) = w(t):l— ay,(t) w(0) = wp
¥(t) = n(exp@O) 0 (B + T(O) +ni(t) i=1..N
(2)

is a minimal realization of (1). The notation Logsos)(R)
stands for Q such that R = e and is computed by inverting
Rodrigues” formula. Q is called the “canonical exponential
representation” of R.

Remark 1. Notice that in the above model the index for yj,
starts at 4, while the index for p' starts at 2. This
corresponds to choosing the first three points as
reference for the similarity group and is sufficient to
guarantee that the representation is minimal. As ex-
plained in Proposition 4, this can be done without loss of
generality and is not affected by noise in the measure-
ments nor by the mutual position of the points (as long as
they are not collinear).

In the model (2), we are free to choose the initial conditions
Qo, Ty, which we will therefore let be Qy = T = 0, thereby
choosing the camera reference at the initial time instant as
the world reference. In Appendix B, we prove the following:

Proposition 2. The linearized filter based upon the model (1) is
stable with probability one.

In order to avo/i\d confusion, we shall denote with
vo(tlt), p(tlt), T(t]t), Q(t|t), V(¢|t), w(t|t) the estimates up to
time ¢, obtained by the filter based upon model (2), of
Yo(t) = yo, p(t) = po, T(t), (1), V(2), w(?).
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2.2 Extensions

As we have anticipated, the model proposed can be
extended to account for changes in calibration. For instance,
if we consider an imaging model with focal length7 1,

f1X1X0]"

TH(X) = X,

where the focal length can change in time, but no prior
knowledge on how it does so is available, one can model its
evolution as a random walk f(t +1) = f(t) + as(t)as(t) ~
N(0, O'?c) and insertitinto the states of themodel (1). Aslongas
the overall system is observable, the conclusions reached in
the appendix will hold. It is possible to prove that this is the
case for the model just described. Another imaging model
proposed in the literature is the following [3]:

[X1)"
1+ 6X;

for which similar conclusions can be drawn.

m3(X) =

2.2.1 Saturation and Pseudomeasurements

As an alternative to rendering the model observable by
eliminating states, it is possible to design a nonlinear filter
directly on the (unobservable) model (1) by saturating the filter
along the unobservable components of the state space. As we
discuss in Appendix A, one can saturate the states corre-
sponding to y,y2, i and p'. This guarantees that the filter
initialized at yy, po, V0, Q, vo, wp evolves in such a way that

yo(tlt) (t]t) = o

In fact, let ;) be the variance of the initial condition and ¥,
the variance of the model error. It is simple to prove that if we
set to 0 the columns and rows of /) and ¥,, corresponding to

=y0, Yo (tlt) = y5, yo(tlt) = yi, o'

vi,i=1...3, and p', we are guaranteed that the gain
corresponding to the update equations for y,i = 1...3 and
p' is zero.

Yet another alternative to render the model observable is
to add pseudomeasurement equations

pt =1, yh(t) =y'(0)i =1,2,3,

where 1 is an arbitrary (positive) constant and y’(0) are the
measurements associated to the first three noncollinear
points, one can guarantee that the resulting model is
observable. Since measurements are noisy, in general, there
will not exist a rigid motion that maps the noisy points to the
true ones. As a consequence, there will be a bias in the
estimation process. One way to prevent the filter from
diverging is to set the covariance of the measurement noise
associated with the pseudomeasurements to a small positive
value. One should note that observability is not affected by
the presence of measurement noise in the model.

2.3 Subminimal and Nonminimal Models

Most recursive schemes for causally reconstructing struc-
ture and motion available in the literature represent
structure using only one state per point (either its depth

7. This f is not to be confused with the generic state equation of the filter
in Section 3.3.

in an inertial frame, or its inverse, or other variations on the
theme). This corresponds to reducing the number of the
states of the model (2), with the states y}, substituted for the
measurements y'(0), which causes the model noise n(t) to
be nonzero-mean.® When the zero-mean assumption,
implicit in the use of the Kalman filter, is violated, the
filter settles at a biased estimate. When adding new points,
such biases add up to catastrophic consequences, as we
show in Fig. 2. Note that this effect is not visible on short
sequences, which is probably why it has not been noticed
by Azarbayejani and Pentland [3]. In this case we say that
the model is subminimal.

On the other hand, when the model is nonminimal—-
such is the case when we do not force it to evolve on the
observable base of the state-space bundle—the variance of
the estimation error along the components of the state
parallel to the fibers explodes (see [7] and the appendix for
more details on this issue, as well as Fig. 2).

3 IMPLEMENTATION: OCCLUSIONS AND DRIFT
IN SFM

Occlusions: Point Features Appearing
and Disappearing
When a feature point, say X!, becomes occluded, the
corresponding measurement y'(¢) becomes unavailable. It is
possible tomodel this phenomenonby setting the correspond-
ing variance to infinity or, in practice, ¥,; = M, for asuitably
large scalar M > 0. By doing so, we guarantee that the
corresponding states y; (¢|t) and p'(t|t) will not be updated.
An alternative, which is actually preferable in order to
avoid useless computation and ill-conditioned matrix
inversions, is to eliminate the states y, and p' altogether,
thereby reducing the dimension of the state-space. This is
simple due to the diagonal structure of the model (2): the
states p', yf) are decoupled and, therefore, it is sufficient to
remove them, and delete the corresponding rows from the
gain matrix L(t) and the model error variance ¥,,(t) for all ¢
past the disappearance of the feature (see Section 3.3).
When a new feature point appears, on the other hand, it is
not possible to simply insertitinto the state of the model, since
the initial condition is unknown. Any initialization error will
propagate onto the current estimate of the remaining states,
through the update equation of the filter, and generate a
spurious transient. We address this problem by running a
separate filter in parallel for each new feature point using the
current estimates of motion from the main filter in order to
reconstruct the initial condition. Such a “subfilter” is based
upon the following model, where we assume that N, features

3.1

appear attime 7, fori =1,2,...,N-and t > 7:
y;’(t+1):y;<f’)+7/yf(1,) Y (0)~N(y' (1), i)
A1) =0 ()1 PO)~N (L (0)) 3)

¥ ()= (exp(@(tl1)) [exp(@(rim)] [yf(f)ﬂf() T(r|r) |+ T(t)+n (1)

Note that the motion parameters do not appear in the state;
as a consequence, all points are decoupled, which renders

8. In fact, if we call n(0) the error in measurmg the position of the ith
point at time 0, we have that V tE[n(t)] = n'(0).
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the state estimation very efficient. In practice, rather than
initializing p to 1, one can compute a first approximation by
triangulating on two adjacent views, and compute the
covariance of the initialization error from the covariance of
the current estimates of motion. Several heuristics can be
employed in order to decide when the estimate of the initial
condition is good enough for it to be inserted into the main
filter. A natural criterion is when the variance of the
estimation error of p! in the subfilter is comparable with the
variance of pg for j # 1 in the main filter. The last step in
order to insert the feature ¢ into the main filter consists in
bringing the coordinates of the new points back to the initial
frame. This is done by

X = [ep@n)] sk TG @

When inserting new features, their variance has to be
initialized as well. This can be simply approximated from
(4) just using Gauss’ formula, i.e., linearizing (4) around the
current estimate and computing the variance as if X’ were a
linear function of Q(7|7), ¥, p., T(r|7).

3.2 Drift

The only case when losing a feature constitutes a problem is
when it is used to fix the observable component of the state-
space (in our notation, i=1,2,3) as explained in the
appendix.” The most obvious choice consists in associating
the reference to any other visible point. This can be done by
saturating the corresponding states and assigning as reference
value the current best estimate. In particular, if feature i is lost
attime 7, and we want to switch the reference index to feature
j, we eliminate yj, p' from the state, and the corresponding
blocks from ¥, and P(7),and set rows and columns of X, and
P(7) corresponding to yg, ¢’ to zero. Therefore, following the
discussion in Section 2.2, we have that

V(T +t|r +1) = y)(r|7)V t > 0. (5)

If y) (7|7) was equal to y}, its “true” value, switching the
reference feature would have no effect on the other states,
and the filter would evolve on the same observable
component of the state-space determined by the reference
feature i. However, in general the difference yé(ﬂr)iyé -
y)(7|7) is a random variable with variance

¥, = P 3.3j-13j-3..3j-1-

Therefore, switching the reference to feature j causes the
observable component of the state-space to move by an
amount proportional to 37 (7|7). When a number of switches
have occurred, we can expect, on average, the state-space to
move by an amount proportional to the product of | ;| and
the number of switches. As we discussed in Section 1.2, this
is unavoidable. What we can do is at most to try to keep the

9. When the scale factor is not directly associated to one feature, but is
associated to a function of a number of features (for instance, the depth of
the centroid, or the average inverse depth), then losing any of these features
causes a drift.

bias to a minimum by switching the reference to the state
that has the lowest variance.'°

Of course, should the original reference feature ¢ become
available, one can immediately switch the reference back to
it, and, therefore, recover the original base and annihilate
the bias.

3.3 Complete Algorithm

Let f and h denote the state and measurement model, so
that (2) can be written in concise form as

{ Et+1) = f(&) +w(t)
y(t) = h(&(1)) +n(?)

With respect to (2), we have added the model noise
w(t) ~ N(0,%,) which accounts for modeling errors.

w(t) ~ N(0,%,)
n) ~ N0, 5. O

Initialization. Choose the initial conditions

yo=y'(0), py =1,Ty = 0,2 =0,y = 0,wy = 0,
Vi=1...N.

For the initial variance P, choose it to be block diagonal
with blocks ¥,:(0) corresponding to yj, a large positive
number M (typically 1,000-10,000 units of focal length)
corresponding to p', zeros corresponding to T and 2 (fixing
the inertial frame to coincide with the initial reference
frame). We also choose a large positive number W for the
blocks corresponding to V' and w (typically 100-1,000 units
of focal length).

The variance %, (t) is usually available from the analysis of
the feature tracking algorithm. We assume that the tracking
error is independent in each point and, therefore, %, is block
diagonal. We choose each block to be the covariance of the
measurement y'(¢) (in the current implementation they are
diagonal and equal to 0.5 pixel std.). The variance X,,(¢) is a
design parameter that is available for tuning. We describe the
procedure in Section 3.4.

Finally, set

o . T T
{€(0|O)=[ 4() ). 'yA[n ,03, cee

T
o0 To 90, Vi Wil
P(0]0) = Py,

where £(t|7) denotes the estimate of £(t) given the measure-
ments up to time 7.

Transient. During the first transient of the filter, we do not
allow for new features to be acquired. Whenever a feature is
lost, its state is removed from the model and its best current
estimate is placed in a storage vector. If the feature was
associated with the scale factor, we proceed as in Section 3.2.
The transient can be tested as either a threshold on the
innovation, a threshold on the variance of the estimates, or a
fixed time interval. We choose a combination with the time set
to 30 frames, corresponding to one second of video. During
this first phase, one can also remove from the state the biases
v}, since their measurement error is negligible compared to

10. Just to give the reader an intuitive feeling of the numbers involved,
we find that in practice the average lifetime of a feature is around 10-
30 frames depending on illumination and reflectance properties of the scene
and motion of the camera. The variance of the estimation error for yj is in
the order of 1075 units of focal length, while the variance of ' is in the order
of 107 units for noise levels commonly encountered with commercial
cameras.
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the model error, as an anonymous reviewer has suggested.
These states must be reinserted during the regular operation
of the filter to guarantee stability during the addition of new
features to the state.

The camera may stop moving or undergo purely
rotational motion, without consequences during the regular
operation of the filter. If that occurs before the filter has
reached steady-state, convergence will not occur and the
filter has to be reinitialized.

The recursion to update the state £ and the variance P
proceeds as follows (see (6)):

Prediction.
{ E(t+1[t) = fE(EI) ®)
P(t+1|t) = F(t)P(t|t)FT(t) + X,.
Update.
E(t+ 1t +1) =€t +1)t) + L(t + 1)
(utt+1) = h(Et+112)) ©
P(t+1|t+1) =D(t+1)P(t + 1]t)

&~ —

TT(t41) + Lt + )Xt + D)LT(t + 1)

Gain.

At +1D)=H(t+1)Pt+ 1) H (t+1) + 2, (t+ 1)

Lit+1D)=Pt+1[t)HT(t + DA (t+ 1) (10)
D(t+1)=I—-L{t+1)H({t+1)
Linearization.
F(t)= 5 (E(t]1)) )
H(t 4+ 1)=22(E(t + 1]t)).

The detailed calculations of the linearization above are
reported in [7].

Regime. Whenever a feature disappears, we simply
remove it from the state as during the transient. However,
after the transient a feature selection module works in parallel
with the filter to select new features so as to maintain roughly
a constant number (equal to the maximum that the hardware
can handle in real time), and to maintain a distribution as
uniform as possible across the image plane. We implement
this by randomly sampling points on the plane, searching
then around that point for a feature with enough brightness
gradient (we use an SSD-type test [21]).

Once a new point-feature is found (one with enough
contrast along two independent directions), a new filter
(which we call a “subfilter”) is initialized based on the
model (3). We denote (see (3)) with pi(¢|t)y’(¢|t) the
estimate (at time t) of the position of the ith new feature
in the reference frame of the camera at time 7. The estimate
is computed by means of an Extended Kalman Filter based
on the model (3). Its evolution is given by
Initialization.

(1) 0 } (12)

Prediction.
yi(t+1[t) = yi(tft)
p5(t+1[t) = pl(t]t) t>T1 (13)
Pi(t + 1]t) = Pi(t}t) + Su(t).
Update.
yr(t+1t+1) | _ |yt +1]t)
pp(t+ 1t +1) py(t +11t)
+ Lt +1)(y'(t+1) —y'(t + 1]t)),
where
y(t+1t) ==

<exp(§z(t 10t + 1)) [exp(Qr]r)]

[y (1)l (1) — T(rlr)] + Tt + 1]t + 1>>,

and P! is updated according to a Riccati equation in all
similar to (9).

After a probation period, whose length is chosen
according to the same criterion adopted for the main filter,
the feature is inserted into the state using the transforma-
tion (4). The initial variance is chosen to be the variance of
the estimation error of the subfilter.

3.4 Tuning

The variance X, (t) is a design parameter. We choose it to be
block diagonal: we assign the blocks corresponding to T'(t)
and Q(t) to 1075 We choose the remaining parameters
using standard statistical tests, such as the cumulative
periodogram [4]. The idea is that the parameters in X, are
changed until the innovation process e(t)=y(t) — h(£(t)) is
as close as possible to being white. The periodogram is one
of many ways to test the “whiteness” of a stochastic process.
We choose the blocks corresponding to yj equal to the
variance of the measurements, and the elements corre-
sponding to p' all equal to o,. We then choose the blocks
corresponding to V' and w to be diagonal with element o,
and then we change o, relative to 0, depending on whether
we want to allow for more or less regular motions. We then
change both, relative to the variance of the measurement
noise, depending on the level of desired smoothness in the
estimates.

Our tuning procedure typically settles for values in the
order of 1072 to 1073 units of focal length for o, and in the
order of 107% to 10~® units of focal length for o,.

4 EXPERIMENTS

The complexity of SEFM makes it difficult to demonstrate the
performance of an algorithm by means of a few plots. This
is what motivated us to 1) obtain analytical results, which
are presented in the appendix and 2) make our real-time
implementation available to the public, so that the
performance of the filter can be tested first-hand [18]. In
this section, for the sake of exemplification, we present a set
of representative experiments that illustrate the perfor-
mance of the filter on real and synthetic datasets. In Fig. 2,
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Fig. 1. Structure error and drift. Three different motions are tested on the same simulated scene with known ground truth. Ten trials of 800 frames
each are performed. The error in mutual distance between the estimates and the ground truth of a set of 40 points is plotted. (a) Shows the structure
error for forward translation (periodic translation along the z-axis). (b) Shows the shape error for sideway translation (periodic translation along the
x-axis). (c) Shows the shape error for fixating motion (points rotating rigidly around an axis passing through their center of mass). Mean and standard
deviation, both computed across the set of points at the last frame and across the last 400 frames, are all below one millimeter. The experiment is
performed offline, and only unoccluded features are considered. Scale drift. (d) During a sequence of 200 frames, the reference feature is switched
20 times. The mean of the shape error drifts away, but at a slow pace, reaching about one centimeter by the end of the sequence.

we compare the performance of filters based on a minimal
and subminimal model, as described in Section 2.3.

4.1 Structure Error

One of the byproducts of our algorithm is an estimate of the
position of a number of point-features in the camera
reference frame at the initial time. We use such estimates
for a known object in order to characterize the performance
of the filter. In particular, we randomly generate a cloud of
points within a sphere of radius 0.25 m centered about 1 m
away from the camera, and use a point with depth 1 m to fix
the scale factor. We run the filter on a sequence of 800 frames
and plot the mean and standard deviation of the error
between the estimated structure and the ground truth in
Fig. 1. It can be seen that the error, despite an arbitrary
initialization, remains well below 1 mm. In the case of
forward translation, the filter occasionally displays signifi-
cantly higher reconstruction errors, which we attribute to

the presence of local minima observed and described by [6],
[25]. The performance displayed is typical of several
experimental trials we performed on both real and synthetic
image sequences with ground truth. In Fig. 3 we show an
equivalent plot for an experiment performed on real images
with our real-time implementation of the algorithm on a
similar scenario. We place an object on a turntable and
measure the pose error at zero after the object has
undergone one cycle of a periodic motion. The norm is
computed in the same way as in the simulation experiment.
Interestingly, the reconstruction error is smaller for the real
experiments. This is due to the high noise level used in our
simulation experiments.

4.2 Motion Error
We have run experiments with three different periodic

motions (forward translation, sideway translation and fixat-
ing motion) which are representative of the behavior of our
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Fig. 2. Comparison between minimal and the subminimal models. A number of points move according to the motion in (a) (exponential
coordinates of rotation are in solid lines, components of the translation vector are in dotted lines). New features are inserted approximately every 10
frames (insertion times have a Poisson distribution with intensity 10). The 2-norm of the translation error for the minimal filter (dotted line). New
features are inserted approximately every 10 frames (insertion times have a Poisson distribution with intesity 10). The 2-norm of the translation error
for the minimal filter (dotted line) and a subminimal implementation (solid line) is shown in the (b). Rotation error, measured by the Frobenius norm
11— RTRHf-, (R is the estimated rotation and R is the true one) is shown in (c), and velocity error is shown in the (d). As it can be seen, a subminimal
model eventually saturates and results in very large errors (note that the scale is logarithmic), while the minimal model maintains a bounded error as

predicted by the analysis in the appendix.

algorithm. Exploiting the periodic nature of motion, it is
possible to determine the accuracy of the motion estimates by
measuring the distance between the estimated pose (rotation
and translation) of the camera and its initial position. In
particular, the translation error is the £? norm of the
difference between the estimated translation and the true
one (zero), while rotation error is measured by the Frobenius
norm of the discrepancy between the true rotation R and the
estimated one R : ||[I — RR”||%. In particular, in this case,
R = 1. As it can be seen, the errors are comparable for the
three types of motion. Note that although structure estimates
for forward translation are prone to local minima, as we have
discussed, such local minima are not visible in the motion
estimates, as one would expect after the analysis in [6], [25]. In
Fig. 3, we show that this distance is around 2 c¢m for all the
three motions.

Notice that in these experiments we have fixed the scale
factor using a point in the scene with depth 1 m.

4.3 Scale Drift

In order to quantify the drift that occurs when the reference
feature becomes occluded, we have generated a sequence of
200 frames and artificially switched the reference feature
every 10 frames. The mean of the structure error is shown in
Fig. 1. Despite being unavoidable, the drift is quite modest,
around 1 c¢m after 20 switches. When a subminimal model is
used, the norm of the estimation error grows as a result of
the drift, and the filter eventually becomes saturated, as it
can be seen in Fig. 2.

5 CONCLUSIONS

The causal estimation of three-dimensional structure and
motion can be posed as a nonlinear filtering problem. In this
paper, we have described the implementation of a real-time
algorithm whose global observability, uniform observabil-
ity, minimal realization and stability have been proven. The
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Fig. 3. Motion error (top). The three types of motion considered in Fig. 1 are periodic. The motion estimation error is thus defined as the
repositioning error of the camera after a number of complete cycles indicated in abscissa. As it can be observed, mean and std for translation are
around 2 ¢cm and 1 cm, respectively, (a) and around 0.03 and 0.02 rads, respectively, for rotation (b). Real sequence (bottom). The experimental
conditions simulated in the experiments reported on the top plots have been recreated on a real scene. A box with dimension 15 e¢m x 20 ¢cm x 30 em
is rotated on a turntable. The camera is positioned about 1m away from its center. We rotate the box by 90 degrees, and record the sequence for
10 times. For each trial, we repeat the sequence backwards as if the box were rotated back to the initial position. The repositioning error of the
camera is shown. As one can see, the error is comparable with that in the tests on the synthetic data and, indeed, it is consistently smaller. This is
due to the high level of noise used in the simulation experiments. For the purpose of comparison, we manually preprocess the data and only point
features that survive from the beginning to the end of the experiment are used (40 for each trial). Note that the scale factor is fixed at 1 m.

filter has been implemented on a personal computer, and
the implementation has been made available to the public.
The filter exhibits good performance when the scene
contains at least 20-40 points with high contrast, when the
relative motion is “slow” (compared to the sampling
frequency of the frame grabber), when the scene occupies
a significant portion of the image and the lens aperture is
“large enough” (typically more than 30° of visual field).

APPENDIX A

OBSERVABILITY

Let a rigid motion g € SE(3) be represented by a translation
vector T' € R? and a rotation matrix R € SO(3), and let o # 0
be a scalar. The similarity group, which we indicate by g, €

SE(3) xR\{0} is the composition of a rigid motion and a
scaling, which acts on points in R® as follows:
9a(X) = aRX + aT.

We also define an action of g, on SE(3) as g¢.(¢) =
{aRT" + oT,RR'} and an action on se(3), represented by
V and w, as g.(v) = {aV,&}. The similarity group, acting on
an N-tuple of points in R?, generates an equivalence class:
X] = {Y eR**¥"|39,]Y = 9.X}. Two configurations of
points X and Y € R*>¥ are equivalent if there exists a
similarity transformation g, that brings one onto the other:

Y =g.X.
Consider a discrete-time nonlinear dynamic system of

the form
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1) = F(E0) €)= &
Lo s (15

y(t) = h(&(?)

and let y(¢; ty, &) indicate the output of the system at time ¢,
starting from the initial condition & at time t;. In this
section, we want to characterize the states ¢ that can be
reconstructed from the measurements y. Such a character-
ization depends upon the structure of the system { f, 7} but
not on the measurement noise, which is therefore assumed
to be absent for the purpose of the analysis in this section.

Definition 1. Consider a system in the form (15) and a point in
the state-space &,. We say that & is indistinguishable from &,
if y(t;to, &) = y(t;to, &)V t, to. We indicate with T(&) the
set of initial conditions that are indistinguishable from &.

Definition 2. We say that the system (15) is observable up to a
(group) transformation 1) if

Z(&) = [So]={& | Fpsil&y = (&)}

Clearly, from measurements of the output y(¢) over any
period of time, it is possible to recover at most the
equivalence class where the initial condition belongs, which
is Z(&), but not & itself. The only case when this is possible
is that the system is observable up to the identity
transformation. In this case, we have Z(&) = {&} and we
say that the system is observable.
For a generic linear time-varying system of the form

{ Et+1)=F)&t) &(to) =&
y(t) = H(t)&(t)

the k-observability Grammian is defined as

(16)

14k

My ()= " @] () H" (t)H (1)

where ®,(t) =1 and ®,(t)=F(i —1)...F(t) for i >t. The
following definition will come handy in Appendix B.

®,(t),Vk > 0,

Definition 3. We say that the system (16) is uniformly
observable if there exist real numbers my > 0, my > 0 and
an integer k > 0 such that ¥ tmyI < M,(t) < mol.

Before stating our result on observability we need to
impose some restrictions on the admissible motions. These
restrictions essentially mean that the visible points are in
front of the camera at a finite distance, the translation is not
identically zero, and that we are not moving towards any
point in the scene. This condition will be also necessary to
have a well defined linearization.

Definition 4. We say that a motion {V,U} is admissible if V (t)
is not identically zero (i.e., there is an interval (a,b) such that
V(t) #0, t € (a,b)), ULV is not along the direction of any
point of the structure, and the corresponding trajectory of the
system (2) is such that ¢ < pi(t) < C,Vi=1,...,N,Vt>0
for some constants ¢ > 0, C' < oo.

The following proposition revisits the fact that, when points
are in general configuration,'' stucture and motion are
observable up to a (global) similarity transformation.

11. We define that points are in general configuration when they do not lie
onto any quadric surface containing the origin, or any of its degenerate
cases (planes, lines, etc.), and they are in a number N > 9.

Proposition 3. The model (1), where the points X are in general
confiquration, is observable up to a similarity transformation
of X provided that motion is admissible (see Definition 4). In
particular, the set of initial conditions that are indistinguish-
able from {X,, Ty, Ry, vy}, where e* = {Vp, Uy}, is given by

{RXoa+ Ta, Tya — RyR' Ta, RoR' ),
where e = {Vya,,Up}, R € SO(3), T €R* and o > 0.
Proof. Suppose there exist two initial conditions
{XlaTlaRlvvl}

and {Xs,Ts, Rs,v2} such that they generate the same
measurements for all times ¢. In particular, at time ¢t =0
this is equivalent to the existence Vi=1,...,N, of
scalings A'(0), such that

RoXh + Ty = (R X! 4 Ty) A(0).
Consider time t =1, the indistinguishability condition
can, therefore, be written as

LQ(RQX.[ +T) =€ (R1X +T)AY(1).

Since all the points have to be visible, we have Vi =
.,N,A"(0) > 0 and A(1) > 0. Given Xy, T, Ry, vy, in
order to find the initial conditions that are indistinguish-
able, we need to find Vi =1,..., N, Xy, Tb, Ry, va, AY(0)
and A'(1) such that, after some substitutions, we have

Vi=1,...,N,e" ((Ri X} + T1)A(0))
= (" (RX +Ty) ) A1),

Making the representation of SE(3) explicit, we write the
previous conditions as:

UZXiAi(OHVQ:UlXiAi( )+ VIA' (1)i=1,2,...,N, (17)

where X'=R, X! + T}, e = {V;,U1} and € = {V3, Us}.
Taking the inner product of both sides of (17) with
Vo x (UlXi + V1), we have the following identities:

(U XN V(UL X'+ Vi) = 0i = 1,2,..., N, (18)

where the hat notation is used for the cross product.
Adding (18) to its transpose, we obtain:

(X" (U VQUl URUDX +2X) 07 (e x V) (g,
=0i ..., N.

This is a quadric equation in X’ and, by the assumption
of general configuration, it is not satisfied unless:

UTVLU, = UTU,
U3 (Vo x V1) = 0.

(20)
(21)
The latter constraint implies that 1, = al) for some
a # 0, since by assumption both V; and V4 are nonzero.

Multiplying both sides of (20) on the left by U, and on the
right by UJ, we have

VU UL = UUT V. (22)
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Multiplying both sides of (17) on the left by U;Ul and
recalling that V» = aVj, we have:

(A(0)I — A (1)U ) UL X

. (23)
( A1) — >U1UV2 i=1,2,...,N
Multiplying both sides of (23) on the left by V, and
employing the identity (22), we get:

(A(0)] — AMULUNBUIX =0 i=1,2,...,N. (24)

Since points are in general configuration, there exist at
least two points X! and X? such that the vectors W, =
VU, X' and Wy = VU, X2 are nonzero and independent
from each other. We have

U,UT [AY ()W A2(1)W?] = [AY(0)Wy A%(0)Ws).

This implies that A'(0) = A'(1) and A%(0) = A?(1) since
UQUIT is a rotation matrix and the scalings are strictly
positive. Hence, UZUIT =1, ie.,, Uy =U, It follows
immediately that A/(0) = A/(1) = a,i =1,2,..., N from
(17), under the condition that {Vi,U;} is admissible.
Going back to RoX) + Ty = (R; X! + Ty)A'(0), we con-
clude that R, =R, R”, for some Re SO(3), X;=
(RX, +T)a for some T €R?, and Ty = (T} — RiR'T)av.
This concludes the proof. ]

(25)

The following proposition states that it is possible to make
the model observable by fixing the direction of three points
and one depth in the structure. It is closely related to what
some authors call invariance to “gauge transformation” [24].
Without loss of generality (i.e., modulo a reordering of the
states), we will assume the indices of such three pointstobe 1,
2, and 3. We consider a point X as parameterized by its
direction y and depth p, so that X = yp.

Proposition 4. Given the direction of three noncollinear points,
y', ¥?, y® and the scale of one point, p' > 0, and given vectors
@', i =1...N, there exist at most 4 sets of motions g =
{T,R} € SE(3) and corresponding scales o €R such that
aRy'p'+al =¢',Vi=1...N > 3.

Proof. Suppose that the statement holds for N = 3, then it
holds for any N > 3, as any additional equation of the
form ¢’ = aRy'p’ + aT is linear in the variable X'=y’p’
and, therefore, can be solved uniquely. Since X} = p', the
latter is uniquely determined and, so, is y’ = X . There-
fore, we only need to prove the statement for N =3

¢! = aRy'p' + T
¢* = aRy*p* + ol (26)
¢® = aRy?p? + oT.

Solving the first equation for a" and substituting it into
the second and third equation, we get
¢* = aR(y'p! —y*p’)

¢ —
{ ¢t =" = aR(y'p' —y’p’).
Noticing that RTR = I, we get

(27)

(@' = 1) (¢! — ¢%) = 2 (y'p! = ¥*02) (v' 0 —¥*p?) (28

(0" = 6" (¢! — ¢*) = aP(y'p! - y‘p‘) (y p -y'r’)  (29)

(@' = ") (o' = 6%) = *(y'p' = ¥*0") (v'0" = ¥*), (30)
Solving p* and o? from (20) and (3 ) we have

5w (' =) (8" — 6" — ! y Yoy Y
Py Yt = plyly?

1 -y e -y

o @ -e-)

Plugging these two expressions into (29), we get a
fourth-order equation for p*> only which, in general,
yields 4 possible solutions for p?, each of which in turn
gives a unique solution for p?, but 2 for «. Therefore, we

will have at most 8 sets of solutions for p?, p?,
Once p?, p?, and « are determined, R can be uniquely

p

and a.

computed from (27) and then T can be computed from
any of the (26). This concludes the proof. O
Proposition 4 suggests a way to render the model (1)
locally observable by eliminating the states that fix the
unobservable subspace.
Corollary 1. The model (2), which is obtained by eliminating
vi,¥2,y5, and p' from the state of the model (1), is locally

observable.
Let
T T 7 T
5 [yg 7"'7Yév 7p27"'7pA7TT7QT7VT7wT}
be the state vector of a minimal realization, and F(t)= %(f),

- Om

measurement equation in (2), respectively. Here, we just

denote the linearization of the state and

wish to remark that, in order for the linearization to be well-
defined, we need to ensure that the depth of each point p'(t)
is strictly positive as well as bounded. This is a reasonable
assumption since it corresponds to each visible point being
in front of the camera at a finite distance. Therefore, we
restrict our attention to motions that guarantee that this
condition is verified, i.e., satisfy Definition 4.

Proposition 5. Lef F(t)i%(?, H(t)iag—(g£>

tion of the state and measurement equation in (2), respectively.

denote the lineariza-

Let N > 5, assume the motion is admissible and points are in
general configuration, then the linearized system is uniformly
observable.

Proof. Let k = 1. To guarantee that M, (¢) is bounded from
below, let us first show that the matrix

O1()=[H" ) FT(¢)H" (t + 1)]"
has full column rank for all values of ¢, since
Mi(t) = 01 (1) 01 ().

The first 3N — 7 columns of Oy (t) are
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i 0 0 0 0 0 0
0 0 ot 0 0 0
op?
0 0 0 % 0 0
on(t)* on(t)*
0}’4 0 0 0 D_p" 0
0 an(t)N ) N N ()N
(‘)y;\ (‘)p'\ (31)
0 0 0 0 0 0
0 0 an(t+1)2 0 0 0
o7 .
0 0 0 07((1+1)3 0 0
o
on(t+1)* on(t+1)?
6—}"1 0 0 0 6p| 0
an(t+ )N an(t+ )N
L © T oyN 0 0 0 - o

Under the condition that the motion is admissible and
points are in general configuration, one can verify that
the above matrix has full column rank. Similarly, it can
be verified that the remaining 12 columns of O(t)
have rank 12 and are, in general, independent from the
first 3N — 7 columns. Therefore, O;(t) has rank 3N + 5
and, thus, M;(t) is positive definite. This guarantees
that in any finite interval M, (¢) is strictly positive
definite as long as the estimate of the state trajectory is
admissible itself. The upper bound for Af;(tf) comes
from the fact that all components of O;(t) are bounded
from above when the motion is admissible, which
concludes the proof. ]

APPENDIX B
STABILITY

To streamlipe the notion, we call the estimation error
E(t)=£(t) — &(t), and P(t) its variance at time ¢. The initial
conditions for the estimator are

£(0) =
{ P(0) = 3—70 >0 (32)
and its evolution is governed by
{5@+U:f@®)+L®wU+D—h@@H (33)
P(t+1)=R(P(t), F(t), H(t), X, Xy),

where R denotes the usual Riccati equation which uses the
linearization of the model {F, H} computed at the current
estimate of the state, as described in [16]. We call ¥,,,, ¥, the
variance of the measurement and model noises, and ¥,,, ¥,
the tuning parameters that appear in the Riccati equation.

The aim of this section is to prove that the estimation
error generated by the filter just described is bounded. In
order to do so, we need a few definitions.

Definition 5. A stochastic process £(t) is said to be exponen-
tially bounded in mean-square (or MS-bounded) if there are
real numbers n, v > 0 and 0 < 6 < 1 such that

IEIEDI® < nlé©)I*6" + v

forall t > 0. &(t) is said to be bounded with probability one (or
bounded WP1) if P[sup;s ||£(t)]| < o] = 1.

Definition 6. The filter (6) is said to be stable if there exist real
numbers €,6 > 0 such that

€] < €, Bu(t) <8I, Du(t) <8I = &(t) is bounded.

Depending on whether &(t) is bounded in mean square or
with probability one, we say that the filter is “MS-stable” or
“stable WP1”.

We are now ready to state the core proposition of this
section.

Proposition 6. If the hypothesis of Proposition 5 is fulfilled, then
the filter based on the model (2) is MS-stable and stable WP1.

To prove the proposition, we need the following lemma:

Lemma 1. In the filter based on the model (2), let motion be
admissible and Py > 0. Then there exist positive real numbers
p1 and po such that p1I < P(t) < po IV t > 0.

Proof. The proof follows from Corollary 5.2 of [2], using
Proposition 5 on the uniform observability of the
linearization of (2). O

Proof of Proposition 6. The proposition follows directly
from Theorem 3.1 in [30], making use in the assumptions
of the boundedness of F(t), H(t), Lemma 1 and the
differentiability of f and g when 0 < p' < coVi. O
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